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Differential Balance Equations 
 

We have previously derived integral balances for mass, momentum, and energy for a control volume. 

The control volume was assumed to be some large object, such as a pipe. What if the balance equations 

were instead performed on a differential (infinitesimally small) control volume? As will be shown, the 

balance equations then assume the form of differential equations. The physical concepts are not new; 

rather, the differential equations are just a restatement of the three basic balance laws performed on a 

point in space rather than a macroscopic control volume. The differential balance equations will enable 

us to determine how velocity, pressure, temperature, composition, and other quantities of interest vary 

with position and/or time within a fluid flow.  

 

The Divergence Theorem will be used to convert the previously derived integral balance equations to 

their differential counterparts. The Divergence Theorem is:  

 

   ∫∫ ⋅
B

BdAn = ∫∫∫ ⋅∇
V

VdA        (1) 

 

As shown by Equation (1), the Divergence Theorem converts a flux integral of A over the (closed) 

surface B into an integral of the divergence of A over the volume V, where the volume V is enclosed by 

the surface B.  

 

1). Differential Equation of Continuity (Conservation of Mass). In the previous set of notes the 

Integral Equation of Continuity was derived 
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where ρ is the density of the fluid, v is the fluid velocity, and n is a unit outward normal to the surface 

A that encloses the control volume V'. The control volume V' is assumed to be fixed, so that its shape or 

volume do not change. Concretely, this means that the upper and lower limits on the triple integral over 

V' are constant, and do not change with time. It is then permissible to move the d/dt operator inside the 

integral on the left hand side of equation (2), resulting in  
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   (V' is a fixed control volume)     (3) 

 

Equation (3) states that the total rate of accumulation of mass in the control volume V' (the left hand 

side term) equals the sum (i.e. the integral) of the local rates of mass accumulation 
t∂

∂ρ
dV' occurring 

at all points within V' (the right hand side term). If desired, the control volume V' could be allowed to 

change with time, but we'll stay away from such complications. So, as stated, V' is a fixed control 

volume whose shape or size are constant.  

 

Using the Divergence Theorem to rewrite the right hand side of equation (2), where the vector ρv takes 

the place of the generic vector A in the Divergence Theorem (1), yields 
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  ∫∫ ⋅−
A

dAvnρ  = ∫∫∫ ⋅∇−
V'

V'dvρ        (4) 

 

Using Equations (3) and (4), the integral equation of continuity (2) becomes 

 

  ∫∫∫
∂

∂

'
'd

V
V

t

ρ
 + ∫∫∫ ⋅∇

V'
V'dvρ = 0   so that 
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




'
'd

V
V

t
vρ

ρ
 = 0        (5) 

 

Since the control volume V' is arbitrary, we cannot choose a "special" V' for which the left hand side of 

equation (5) would equal zero. Therefore, the only way that the equality to zero can be assured is to 

require that the following condition hold everywhere within the control volume: 

 

  vρ
ρ

⋅∇+
∂

∂

t
= 0         (6) 

 

In Cartesian coordinates, Equation (6) is (note the use of the summation convention): 
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        (6b) 

 

Equation (6) is the Differential Equation of Continuity, or, as it is more customarily called, simply 

the Equation of Continuity. The Equation of Continuity expresses the law of mass conservation in the 

form of a differential equation. The terms in equation (6) have the same physical meaning as they had 

in the integral mass balance, except that now they apply to a differential control volume rather than a 

macroscopic one: ∂ρ/∂t dV  would be the local rate of mass accumulation in the differential volume dV, 

while - ∇• ρv dV would be the net rate of mass inflow (convection) into dV. Using the identity 

ρρρ ∇⋅+⋅∇=⋅∇ vvv  (equation (30d) in the handout on vector analysis), the equation of 

continuity can be written 

 

  +
∂

∂

t

ρ
ρρ ∇⋅+⋅∇ vv  = 0        (7) 

 

Incompressible Flow. If the flow is incompressible, the density is constant so that the first and last 

terms in equation (7) become zero. Therefore, for incompressible flow 

 

   v⋅∇  = 0         (8).  
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2). Differential Equation of Change of Momentum (also referred to as the "Equation of 

Motion").  

First, we recall the definition of the stress tensor σσσσ. The i,jth component of the stress tensor, σij, is the 

stress exerted in direction j on a surface that is oriented perpendicular to direction i. Figure 1 illustrates 

how the various components of σσσσ act on a differential cube of fluid.  

 

Fig. 1 

The stress S acting on a surface whose unit normal is 

n equals 

 

 S = n • σσσσ     (9) 

 

Equation (9) can be written Sj = niσij (as obtained by 

applying the definition of the tensor inner product; 

see handout on tensors for details). For example, if n 

= δδδδ1, then n1 = 1 and n2 = n3 = 0, so that Sj = σ1j. In 

this case, S is the stress that acts on a surface 

oriented perpendicular to the x1 direction. In other 

words, S = σ11δδδδ1 + σ12δδδδ2 + σ13δδδδ3, as can be verified 

by direct inspection of Figure 1.  

 

 

 

From equation (11) of the previous handout, the integral momentum balance is (note that n • vρv is 

equivalent to (n • v)ρv ):  
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The surface force dFS in equation (10) is a differential force acting on an area element on the surface of 

V'. Therefore, dFS = n • σσσσ dA  (since n • σσσσ is the stress on dA; multiplying the stress by the area dA is 

the actual force). With this substitution, equation (10) becomes 
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To proceed, a generalized version of the divergence theorem is needed. In particular, we state without 

proof the following, 

 

  ∫∫ ⋅
B

BdGn = ∫∫∫ ⋅∇
V

VdG         (12) 

 

where G is a tensor of rank greater than zero (G could be a vector, a 2nd rank tensor, a 3rd tensor, etc.). 

B is a closed surface that encloses the volume V, and n is the unit surface normal.  If G is a vector, 

equation (12) becomes the familiar Divergence Theorem. Using equation (12), equation (11) can be 

written as 
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Taking the operator d/dt inside the integral on the left side of equation (13) (recall that this is allowed if 

V' is a fixed control volume), and combining all the terms into a single integral over V',  
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For an arbitrary control volume V', the equality to zero mandates that for all points within the control 

volume  
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Equation (15) can be expanded, since 
( )

ttt ∂

∂
+

∂

∂
=

∂

∂ ρ
ρ

ρ
v

vv
 (product rule of differentiation) and 

vvρ⋅∇ = vvvv ∇⋅+⋅∇ ρρ . With these modifications, equation (15) becomes 
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v
vvvv ∇⋅+⋅∇ ρρ 0=⋅∇−− σB      (16) 

 

The 2nd and 3rd terms in equation (16) can be written as 







⋅∇+

∂

∂
vv ρ

ρ

t
, which, according to the 

Equation of Continuity, must be zero. Therefore the final expression for the differential momentum 

balance is  

 

 







∇⋅+

∂

∂
vv

v

t
ρ = B + ∇ ⋅ σσσσ         (17) 

 

Often, equation (17) is referred to as the Equation of Change of Momentum, the Momentum Equation, 

or the Equation of Motion. Note that equation (17) is a vector equation. What do the various terms 

mean? The ∂v/∂t term is the local (i.e. at a point) rate of change of velocity with time. This term is 

nonzero if the flow pattern is changing with time (i.e. the flow is unsteady). In steady-state, ∂v/∂t is 

equal to zero. The convective term v • ∇v can be thought of as the "projection of the velocity gradient 

∇v in the direction of v", multiplied by the speed v with which the fluid is displaced in that direction. 

This term came from the convection term in the original integral momentum balance. We will now 

consider its meaning in more detail.  

 

Picture a small element of fluid. The surface enclosing the element moves with the bulk velocity v, so 

that no convection of any quantity (such as mass, momentum, or energy) into the element occurs. 

Under these conditions, the fluid element is said to "move with the flow." We now measure the 
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rate at which a property (ex. density, energy, or the velocity of the element) changes. There will be two 

contributions to this rate of change. First, a property may change because the flow is unsteady. This 

change occurs locally at each point in space as time progresses. For example, the pressure or velocity at 

a point may increase with time. Second, the fluid element may experience a change in a property due to 

its motion through a gradient of the property. Note that this change would be observed even if the flow 

was steady state. For example, the fluid element may move from a region where the pressure or 

velocity is low to one where these properties are high. The sum of the rate of change arising from the 

unsteady nature of the flow, plus the rate of change by virtue of moving in a gradient, is equal to the 

total rate of change of the property experienced by the fluid element. 

 

 

 

An element of fluid "moving with the 

flow." The boundary of the element 

moves with the bulk velocity v.  

 

 

For instance, let's say that the measured property is the velocity, and that the fluid element is part of a 

steady state, incompressible flow in a converging channel as illustrated in Figure 2. Clearly, the 

velocity must increase as the channel narrows; therefore, a velocity gradient ∇v (that is, a change in 

velocity with position) will exist. As a fluid element moves from left to right, it moves along the 

velocity gradient and its velocity will therefore increase. This increase will occur even though the flow 

is steady state. Now, if in addition the flow becomes unsteady, so that the velocity at each point starts 

to increase with time, then the fluid element will 

experience this new rate of velocity increase (due to the 

unsteady nature of the flow) as well as the increase due to 

the element's motion through a velocity gradient. To sum 

up: The total rate of change of a property experienced 

by a fluid element moving with the flow equals the 

sum of the local rate of change in the property, arising 

from the unsteady nature of the flow, plus the rate of 

change due to moving through a gradient of the 

property.  

 

In equation (17), the total rate of change in the velocity of 

a fluid element as it moves with the flow is given by the 

two terms ∂v/∂t + v • ∇v. The first term is the local rate of 

change in velocity, and is zero if the flow is steady state. 

The second term is the rate of change in velocity by virtue 

of moving in a velocity gradient. In particular, the fluid 

element moves through the gradient ∇v at a velocity v. 

The term v • ∇v can therefore be thought of as first taking the component of the velocity gradient in the 

direction of v to give the "rate" with which the velocity  changes in this direction. This result is then 

multiplied by the speed v with which the fluid element moves in this direction. The final result, v • ∇v, 

equals the rate of change of velocity, experienced by a fluid element moving with the flow, that is 

attributable to motion through the velocity gradient ∇v. Of course, "rate of change of velocity" is the 

same as acceleration, and the units of both v • ∇v as well as ∂v/∂t are length/time
2
.  

 

 

 
Fig. 2. The velocity of the incompressible 

fluid must increase as the fluid passes 

from left to right of the figure since the 

cross-sectional area of the channel 

decreases. Therefore, a velocity gradient 

∇v exists. 
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Thinking in terms of the rate at which a property changes for a fluid element moving with the flow is 

so common in fluid mechanics that a dedicated operator, called the "material derivative" D/Dt, has 

been defined  

 

 
D

Dt t
= + ⋅ ∇

∂

∂
v           (18) 

 

The first term on the right represents rate of change due to unsteady conditions, while the second term 

represents rate of change due to moving through a gradient. Here is one more example to clarify, this 

time using the material derivative to operate on a scalar quantity. Imagine that we apply the material 

derivative to T, the temperature, to yield 

 

 T
t

T

t

T
∇⋅+

∂

∂
= v

D

D
       

 

Then the first term on the right represents rate of change due to unsteady conditions, while the second 

term represents rate of change due to moving through a gradient of T with a velocity v. Imagine that an 

observer is located at a point inside a pool of fluid that is being heated (Fig. 3a). Then, at the fixed 

location at which the observer is located (the velocity v of the observer is zero), the observer would see 

the temperature rise as the fluid becomes warmer. In this situation, the temperature of the fluid is not at 

steady state; i.e. it changes with time. At the observer's fixed position, the rate of rise in temperature 

corresponds to the unsteady state term ∂T/∂t. 

 

 
Fig. 3 

 

 Now, imagine that an observer is in a pool of fluid in which the temperature is at steady state 

(i.e. not changing with time) so that, at each point in the fluid, ∂T/∂t = 0. However, imagine also that 

there is a gradient in the temperature ∇∇∇∇T from one end of the pool to the other (i.e. the fluid is hotter at 

one end of the pool but cooler at the other; Fig. 3b). If the observer remains stationary, as time goes on 

the observer would experience the same temperature since ∂T/∂t = 0. However, if the observer begins 

to move from the cool end of the pool to the warm end, the observer would experience a rate of rise in 

temperature given by the rate of change of temperature with position (this rate is the gradient ∇∇∇∇T) times 

the speed at which the observer is moving up this gradient from the cooler to the warmer end. This 

product of speed times the temperature gradient is the v ⋅∇∇∇∇T term, where v is the observer's velocity. 

The dot product ensures that only that component of v that results in motion in the direction of ∇∇∇∇T 
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contributes to the observed rate of temperature increase. For example, if the observer were not moving 

up the gradient ∇∇∇∇T but only across it, meaning that v is perpendicular to ∇∇∇∇T, then no change in 

temperature would be experienced since the observer would move along a curve along which the 

temperature is constant. 

 Getting back to the equation of motion, D

D

v

t

then is the rate of change of velocity that a fluid 

element moving with the flow would experience. Using the definition of the material derivative, 

Equation (17) can be rewritten as  

 

 ρ
D

D

v

t
= B + ∇ ⋅ σσσσ           (19) 

 

Equation (19) states that the acceleration Dv/Dt of a fluid element moving with the flow equals the 

sum of the body force B and surface force ∇∇∇∇ • σσσσ acting on the fluid element (right hand side). Both 

forces are expressed on a per unit volume basis. Though it may look more complicated, equation (19) 

is just a restatement of Newton's 2nd law in the form ma/volume = F/volume. The reason why this 

equation assumes this familiar form is that it has been expressed for a fluid element moving with the 

flow; in other words, for a given "piece" of fluid rather than an open control volume through which 

fluid flows.  

 

Equation (19) is a vector equation and therefore has three components, one for each coordinate 

direction. For example, to write the momentum balance for the x1-direction in a Cartesian coordinate 

system, those terms in equation (19) are needed that represent the x1 components of the various vector 

quantities. Specifically, the x1-momentum balance is 

 

 ρ
D

D

1
v

t
= B

x1
+

∂

∂

σ i1

i

         (20) 

 

In writing equation (20), the fact that ∇∇∇∇ • σσσσ = ∂σij/∂xi was used. For the x1-component j = 1, so that the 

surface force term becomes ∂σi1/∂xi. This expression represents a sum of three terms (i = 1, 2, 3), in 

accordance with the summation convention. The term with i = 1, ∂σ11/∂x1, represents a gradient in the 

normal surface stress that tends to accelerate the fluid in the x1 direction (i.e. a pressure gradient). The 

terms with i = 2 and i = 3, ∂σ21/∂x2 and ∂σ31/∂x3, represent gradients in shear stresses that act to 

accelerate the fluid in the x1 direction.  

 

An important point: The stress tensor σσσσij is symmetric, so that σσσσ ij = σσσσ ji. If it was not, then a net 

torque would exist on an infinitesimal fluid element, causing it to accelerate with an infinite 

angular acceleration (see Figure 4). For a rigorous mathematical proof  see, for instance, Dahler and 

Scriven, Nature 192, 36-37, 1961.  
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Since the stress tensor σσσσ is symmetric, σi1 = σ1i and equation (20) can be rewritten as 

  

 ρ
D

D

1
v

t
= B

x1
+

∂

∂

σ1i

i

= + + +B
x y z1

∂

∂

∂

∂

∂

∂

σ σ σ11 12 13
 (x-momentum balance) (21a) 

 

Similarly, for the y and z components,  

 

 ρ
D

D

2
v

t
= B

x2
+

∂

∂

σ2i

i

= + + +B
x y z2

∂

∂

∂

∂

∂

∂

σ σ σ21 22 23
 (y-momentum balance) (21b) 

 

 ρ
D

D

3
v

t
= B

x3
+

∂

∂

σ3i

i

= + + +B
x y z3

∂

∂

∂

∂

∂

∂

σ σ σ31 32 33
 (z-momentum balance) (21c) 

 

 

Equations (21) will be used for determining, for example, velocity distributions in flowing fluids. For 

now, the application of the equations must wait as we have not yet specified how to calculate the stress 

tensor σσσσ. 

 

 

3. Differential Equation of Conservation of Energy. The integral equation for the conservation of 

energy, written for a control volume V' enclosed by the surface A, is (equation (16) in the previous 

handout) 

 

 
d

d
d d

d

d

d

dt
e V

V

e A

A

Q

t

W

t
ρ ρ'

'
∫∫∫ = − ⋅∫∫ + −








 n v       (22) 

 

The rate of heat addition to V', dQ/dt, can be written as the sum of two terms: a surface flux integral of 

the so-called "heat flux vector" q over the surface A, and a heat rate generation term per unit volume 

q'''. The units of the heat flux vector q are energy/(area time), ex. BTU/ (ft
2
 sec). The heat flux vector q 

represents the local flow of heat across the control volume surface per unit area per unit time; e.g. due 

to conduction. The rate of heat flow across the surface of the control volume V' is 

 

Fig. 4. If the stress tensor is not symmetric, so that σij ≠ σji, 

then a finite torque on a differential fluid element will be 

present. In the figure, σxy is greater than σyx, causing a 

counterclockwise torque on the fluid element. In the limit as 

dx and dy approach zero, the rotational inertia (moment of 

inertia) of the fluid element vanishes, implying an infinite 

angular acceleration. Recall the formula: torque = (moment of 

inertia) (angular acceleration). Infinite angular acceleration 

would be unphysical, thus justifying the requirement that σij = 

σji. 
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 − ⋅∫∫ n q dA

A

           (23a) 

  

Here, n • q is the component of q perpendicular to the surface A. This is the component of q that 

contributes to heat flux across A  ( n • q has units of  energy/[area time] ). Then n • q dA equals the rate 

of heat flow across the differential area dA ( n • q dA has units of energy/time). Integration over the 

surface A results in the total rate of heat flow into V' through A.   

 

In addition to heat flowing across the surface A into V', heat can also be added to V' using some 

externally coupled mechanism to generate heat within volume V'. For example, the heat generation 

could be caused by a resistive heating element placed inside V', so that the heating element generates 

heat at the volumetric rate q''' ( q''' has the units energy/[volume time] ). The total rate of such heat 

generation inside V' is equal to the volume integral 

 

 q V

V

' ' ' '

'

d∫∫∫            (23b) 

 

The total rate of heat addition, dQ/dt, to V' is the sum of the heat transport across the surface A 

(equation (23a)) and the volumetric heat generation contribution (equation (23b)), 

 

 
d

d

Q

t
= − ⋅∫∫ +n q dA

A

q V

V

' ' ' '

'

d∫∫∫         (23c) 

 

 

Having discussed the rate of heat addition dQ/dt, a few remarks are also in order regarding the rate 

dW/dt at which the system does work on the surroundings. dW/dt is given by  

 

 
d

d

W

t
dA

A

= − ⋅ ⋅∫∫ n v( )σσσσ          (24) 

 

In equation (24), - n • σσσσ is the stress vector -S exerted by the system on (note the minus sign) the 

surroundings; therefore, - n • σσσσ dA is the force exerted by the system on the surroundings across the 

differential surface area dA. Dotting this force with the rate of displacement (i.e. the velocity), - (n • σσσσ) 

• v dA, gives the rate at which work is performed by the system on the surroundings across the area dA. 

Integrating over the entire surface A of the control volume gives the total rate of work dW/dt, as 

expressed in equation (24). For the present both shaft work and flow work are included in dW/dt (they 

will be separated later). Substituting the expressions (23c) and (24) for dQ/dt and dW/dt into equation 

(22), converting all surface integrals into volume integrals using the generalized Divergence Theorem, 

moving the operator d/dt on the left hand side of equation (22) inside the integral (since V' is a fixed 

control volume), and combining all of the resultant volume integrals together yields 

 

 
∂

∂

ρ
ρ

e

t
e q V

V

+ ∇ ⋅ + ∇ ⋅ − −∇ ⋅ ⋅∫∫∫ =






v q v' ' ' ( ) '

'

σσσσ d 0     (25) 



CBE 6333, R. Levicky  10 

 

The volume V' is arbitrary, thus it must hold that 

 

 
∂

∂

ρ
ρ

e

t
e q+ ∇ ⋅ + ∇ ⋅ − −∇ ⋅ ⋅v q v' ' ' ( )σσσσ = 0      (26) 

 

Now ∂ρe/∂t = ρ∂e/∂t + e∂ρ/∂t, and ∇ • ρev = e∇ • ρv + ρv • ∇e so equation (26) can be written 

 

 ρ
ρ

ρ ρ
∂

∂

∂

∂

e

t
e

t
e e q+ + ∇ ⋅ + ⋅ ∇ + ∇ ⋅ − −∇ ⋅ ⋅v v q v' ' ' ( )σσσσ = 0   (27) 

 

By equation of continuity, the sum of the 2nd and 3rd terms is zero; furthermore, the sum of the 1st 

plus 4th terms can be written as ρ (∂e/∂t + v • ∇e) = ρ De/Dt using the material derivative notation. The 

final form of the differential law of energy conservation becomes 

 

 ρ
D

D

e

t
q= −∇ ⋅ + +∇ ⋅ ⋅q v' ' ' ( )σσσσ         (28) 

 

Equation (28) is the last of the three basic laws we wanted to express in differential equation form. It 

states that the rate of change of the total energy (internal + kinetic + potential) of a fluid element 

moving with the flow (left hand side) is equal to the rate of heat flow into the element through its 

surface (1st term on the right), plus the rate of heat generation within the fluid element from externally 

coupled sources (2nd term on the right), plus the rate at which work is done on the fluid element by the 

surroundings (last term on the right). The work term can be further broken down into useful work and 

work that is dissipated to internal energy, but this must wait until after the stress tensor is discussed in 

greater detail. In Cartesian coordinates, equation (28) can be written as  

 

 ρ
σ∂

∂

∂

∂

∂

∂

∂(

∂

e

t
v

e

x

q

x
q

v

x
+ = − + +









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i

i

i

ij j

i

' ' '
)

      (29) 

 

According to the summation convention, the last term is summed over both the i and j indices over the 

dimensions of space (i.e. both i and j range from 1 to 3), and represents a total of nine terms. The 

double summation resulted from the double use of the dot product in equation (28). 

 

Conclusions. The integral balances for the three basic laws - mass conservation, momentum 

conservation, and energy conservation - were rewritten as differential equations. The results are: 

 

 

Equation of Continuity (mass conservation): 

 

 vρ
ρ

⋅∇+
∂

∂

t
= 0, or equivalently, 

D

D

ρ
ρ

t
= − ∇ ⋅ v      (30) 
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Equation of Change of Momentum (momentum balance):  

 

 







∇⋅+

∂

∂
vv

v

t
ρ = B + ∇ ⋅ σσσσ , or equivalently,  ρ

D

D

v

t
= B + ∇ ⋅ σσσσ    (31) 

 

 

Equation of Conservation of Energy:  

 

 ρ
∂

∂

e

t
e q+ ⋅ ∇ = −∇ ⋅ + +∇ ⋅ ⋅



 


v q v' ' ' ( )σσσσ , or equivalently,  

  ρ
D

D

e

t
q= −∇ ⋅ + +∇ ⋅ ⋅q v' ' ' ( )σσσσ        (32) 

 

The above equations were derived without recourse to any particular coordinate system description, 

and are expressed in tensor notation. In the future, whenever these equations are used to solve a 

problem, an appropriate coordinate system will need to be set up for the problem at hand and the above 

equations expressed in terms of that coordinate system. Fortunately, many textbooks have tables in 

which the differential tensor operations are expressed in the Cartesian, cylindrical, and spherical 

coordinate systems. The Cartesian forms of these equations were already mentioned in this handout 

(equations (6b), (21a) to (21c), and equation (29)). Other coordinate systems will be examined later in 

the course. Before these equations can be applied to the solution of actual problems the stress tensor σσσσ 

must be considered in greater detail. After considering how the stress tensor is related to properties of 

the fluid flow, specialized forms of the basic laws will be formulated that can then be applied to 

solving problems of interest.  


