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Fluid Statics

Fluid statics deals with situations of "static equilibrium."
In static equilibrium:

- no part of a fluid is in motion relative to another part of the fluid
- no shear stress is present in the fluid
- only normal isotropic stresses (ie. pressure) exist

The fluid could simply be at rest, or it could be moving. If motion of the fluid is
involved, the only motions possible in static equilibrium are a solid body translation, a
solid body rotation, or a combination of the two (ex. a body of fluid may be rotating
about its axis at the same time that it is being translated along a particular direction).
The terminology "solid body" implies that the movement of the fluid is equivalent to
that of a body in which no part is capable of movement relative to any other part, as in a
solid.
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Differential Equations of Fluid Statics:

We consider a differential volume element in a fluid that is in static equilibrium. The
fluid element is acted on by an arbitrary "body force" per unit volume F, = F;8; (recall
the summation convention). A "body force" is a force that acts throughout the volume
(body) of a fluid. An example of a body force is gravity since gravity "pulls"
simultaneously on all parts of a body. An example of a surface force is pressure or shear
stress, since these forces act through direct contact at the surface of a body.

The figure illustrates the forces that act on the fluid element. Also, we chose a CCS
coordinate system in which the fluid element is stationary. In this coordinate system,
the fluid element is not perceived to accelerate, so that the sum of the forces acting on
the fluid element must sum to zero along each of the three coordinate directions x, y and
Z

p(x)dydz - (p(x) + dp/ox dx)dydz + F,, dxdydz =0 (1a)
p(y)dxdz - (p(y) + dp/dy dy)dxdz + F,ydxdydz =0 (1b)
p(z)dxdy - (p(z) + dp/dz dz)dxdy + F,, dxdydz =0 (1c)

Recall that the force F, was defined on a per unit volume basis. Then F, dxdydz is the
total body force acting on the fluid element. Dividing expressions (1a) through (1c) by
dxdydz:

op/ox = F, (2a)

dp/dy = F,, (2b)
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dpldz = F,, (2¢)
or, 1n vector notation

Vp =F, (3)
The set of equations (3) comprises the "differential equations of fluid statics."
Example: Gravitational Force Only: A container of fluid is at rest. If gravity acts in the
- z direction, then the force F, becomes F, = -mg/V 8, = -p g 8, (here m is the mass of

the fluid element, g is the gravitational acceleration, V is the volume of the fluid
element, and pis the density of the fluid element). Equation (3) then yields

op/dx =0

op/dy =0

dp/dz = -pg

so that

dp/dz = -pg dp = -pgdz 4)

If the density p of the fluid is constant, it can be taken outside of the integral:

D )
J.dp =—pg J.dz which evaluates to (p, - p1) =-pg (z2- 21) (5)
D 2

Equation (5) applies for an incompressible (p = constant) fluid. In general, the density
could vary with pressure and temperature, as for an ideal gas. For an ideal gas, p=
pM/(RT) where M is the molar mass (ex. kg/kg-mol), R is the gas constant, and T is the
absolute temperature. Substituting the ideal gas expression for p into (4), and assuming
1sothermal conditions (7 = constant):

dp/p=-g MI(RT) dz

so that
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In(pa/p1)= - § MI(RT) (z2- 71) pa=py e SMED G2 (6)

Example: Linear Acceleration Combined with Gravitational Acceleration: A container
of fluid is undergoing constant acceleration a, along the + x direction. Also, the fluid is
in the standard gravitational field which acts in the - z direction. The movement of the
fluid corresponds to a rigid body translation, i.e. static equilibrium holds.

gravity

The body force per unit volume that acts on an element in the accelerating fluid has the
form F, = -pa, 8, - pg §,, where the force component along the x direction, F,,, is equal
to -ma,/Vol = -pa, (note that when the container of fluid is accelerated in the +x
direction, the fluid element experiences an inertial body force that acts in the -x
direction). Equations (3) become

op/dx = -pa, = p=-pax+fi(y,z) (7a)
op/dy =0 = p =fH(x,2) (7b)
dpldz =-pg = p =-pgz+ (%) (7c)

The functions fi, f> and f5 need to be chosen so that the final expression for p satisfies
all three differential equations. By inspection, p cannot vary with y (equation (7b)), and
setting f; = -pgz + C; and f; = -pa,x + C, will satisfy equations (7a) and (7c)
simultaneously. Therefore, the final expression for p is (setting C; + C, = C)

p=-pax-pgz+C (8)

To find the equation for the free surface of the fluid, we set p = p, where p, is the
external (atmospheric) pressure at the free surface. Rearranging the resultant expression
we get a relationship between z and x that specifies the free surface:

z=-(adg)x + (C- p.)/(pg) )
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The free surface of the fluid has a negative slope equal to -(a,/g), as illustrated in the
figure below.

gravity

Fluid Forces on Submerged Bodies Calculated by
Direct Integration:

The force of a fluid in static equilibrium on a
submerged surface is, at least conceptually,
straightforward to calculate. Since the only stress
present is pressure, the force on a differential
surface element is -pn dA where n is a surface
normal to the surface element dA (see figure
below). The minus sign signifies that the stress
exerted on a surface by pressure is compressive (ie. in the direction of -n). To calculate
the total force F of the fluid on the surface we simply sum the contributions for the
entire surface, i.e. we perform the surface integral

F= ]| —pnda (10)
A

To perform the integration in (10), the following steps are required:

1). Setup a coordinate system (try to choose one that will make the integration easier).
2). Express p, n and dA in terms of the system's coordinate variables.
3). Perform the integration according to equation (10).

The following example illustrates the general procedure for a submerged, inclined
plane depicted in the figure below. We will calculate the total force due to pressure
acting on the rop surface of the plane. We will assume the liquid 1s incompressible (i.e.
p = constant).
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). The coordinate system is setup as shown above. This example will also provide
opportunity to practice vector surface integration.

2). The surface is given by z = x tan 6. Therefore, the surface normal is found from
n=V(z-xtand)/(V(z-xtanf) * V(z - x tanf))"*
n=(-tand8, +§,) / (tan’0+ 1)"* = (- tan 8, + 3,) / secH
n=-sin@d, + d,/ secd

Using Equation (5), the pressure is (the subscript "o" denotes conditions at the free
surface of the fluid):

P =Po-YZ- 2) where Y = pg
On the surface of the plane,
p=po-Yxtand -z,
The area element dA, expressed in terms of x and y, is

dA =dy dx/cos@ (see figure at right)

The limits of integration on y are 0 and W, where W is
the width of the surface. The limits of integration on x
are 0 and Lcos@, where L is the length of the plate.

3). To evaluate equation (10), we have to integrate:
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Integrating with respect to y and combining some of the trigonometric terms,

Lcos@ Lcos@
F=8Wtané [[p,-y(xtanf-z,)ldx —8,W [[p, - y(xtanf-z,)]dx
0 0
Integrating with respect to x
( p )2 Lcos@
tan6 —z
F =8 Wtan6| p,x—y-— 0
* (po 4 2tan @ }
( p )2 Lcosé@
tant —z
~8, W] px—yt 0
z (Po 4 2tan @ J
Simplifying,

(LsinH—z0)2 —z§]

F =0,WL sin -
X H(po S Lsing

2 2
—SZWLCOSQLPO—Y(LSIHQ %) ZOJ

2Lsin@

Lsinf-2z,
2

Lsin@— 2z0)

)—SZWLcosﬁ(pO—y 5

F=06,WL sinH(pO 4
(11)

Below we will compare equation (11), which gives the force acting on the top surface
of the inclined plane, to other results obtained by simpler routes.

Simplified Approaches for Calculation of Fluid Forces on Submerged Bodies:
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(1). Calculation of Vertical Force on a Submerged Surface.

The vertical force on a submerged surface equals
the vertical component of the body force acting on
the fluid directly above that surface, plus the force

P

... Free Surface of Fluid

due to pressure at the free surface of the fluid. If i Y
the only body force is gravitational, then the - W |
"vertical component of the body force acting on éLsme
the fluid" is equal to the weight of the fluid \)
directly above the surface. /é / 7Y

a8 W15y
To illustrate, we use the inclined plane as an Lcost
example. The total volume Vol of the fluid |

directly above the plane is (see illustration)

Vol = (z,-Lsin@) W Lcos@ + (1/2) W Lsin& Lcosé
= W Lcos 8 (z,- Lsin8/ 2)

The total body force on this fluid volume due to gravity is (the minus sign indicates that
the force acts in the - z direction):

Fg=- yVol §, = yW Lcos@ (Lsinf/ 2 - z,) 9§,

The pressure on the free surface of the fluid is p, W Lcos 6. Therefore, the total
downward force F, on the inclined plane equals

F,=Fg-p, WLcos@d, = -8, W LcosO (p, — y(Lsinf/ 2 - z,))

This result is equal to the z-component of the force calculated previously using the
surface integral approach (see equation (11)).

(2). Calculation of Horizontal Force on a Submerged Surface.
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The horizontal force acting on one side of a submerged surface can be determined by
integrating the pressure along a plane vertical surface which is the projected area of the
surface of interest. z

oo Free -Surface of Fluid
An example will make the S Eg
above statement clearer. Again,

we refer to the inclined plane.

The projected area of the

inclined plane onto a vertical

plane is illustrated in the

figure. The projected area projected
extends from z =0 to z= Lsin6, ,peq

and fromy=0toy= W. To

integrate pressure along the

projected area, we evaluate (note that A is now the "projected area", not the actual area
of the inclined plane)

W Lsin@
F, =8, [pdA=8,[ [[p,—¥(z—2,)ldzdy
A 0 0
Lsin@ ) Lsin@
=8xW  [[pp—7(z—2,)dz=8xW[p,z —@]
0 0
F, =0,W [p,Lsinf- y(Lsme_ZO)z _Zg]

2
F, =0, WLsiné [p,- y(Lsin@/?2 - z,)]

This expression is equivalent to the x-component of the force in equation (11).
The above approach allows us to calculate the horizontal force on even highly irregular

surfaces, provided we can specify their projected area correctly.

(3). Buoyant Force on a Submerged Object.
The buoyant force on a submerged object is the vertical component of the force exerted
by static equilibrium pressure on the object:

buoyant force = , j(—pndA) = .[_ pnz dA (12)
A A
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where the integral is performed over the entire surface of the object, and the z-axis was
taken as denoting the vertical direction. The integral can be evaluated directly, similar
to the procedure used earlier for the inclined plane. However, a much easier way is to
use "Archimedes' principle," which states that the buoyant force equals

buoyant force = weight of fluid displaced by object (13)
For incompressible fluids (o = constant) this principle can be written as
buoyant force = y(volume of object)

If, in addition to gravity, other body forces act on the fluid along the vertical direction
the effect of such forces on the fluid's (apparent) weight must be considered. For
example, if the fluid is being accelerated along the z direction instead of being
stationary, the resultant inertial body force must be added to the gravitational body
force.

Surface Tension

(1) Introduction.

The interface between two immiscible fluids possesses a tendency to contract. The
interface wants to contract because the molecules of each fluid prefer ("prefer" in the
sense of minimizing their free energy) being next to molecules from the same fluid
rather than molecules from the other fluid. The undesired contact between molecules
from one fluid with those from the other fluid is minimized if the area of the interface
between the fluids is as small as possible; ie. by contracting the interface as much as
possible. The force driving this contraction is termed "surface tension." Surface tension
acts along (parallel to) the interface, and under conditions of static equilibrium it is
independent of the direction within the interface (i.e. it is isotropic within the interface).
If the interface is curved, the presence of the surface tension causes the pressure on the
two sides of the interface to be different. On the inside (the concave side) of the
interface the pressure will be higher. The expression for the pressure difference is

pin'pout: T(l/Rl + 1/R2) (14)

where T is the surface tension (units of force/length, ex. dyne/cm), p;, is the pressure on
the concave side of the interface, p,, 1s the pressure on the convex side, and R; and R,
are the two radii of curvature of the surface at the point where the pressure difference is
Pin - Pout- The radii of curvature are the radii of any two mutually perpendicular circles
whose perimeters have the same curvature as the surface at the point of interest. Note
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that both circles are also perpendicular to the surface. For a planar interface both R, and
R, are infinite, and thus the pressure difference across a planar interface is zero.

pout

(2) An Interfacial Force Balance

C: a perimeter curve bounding the area A of an interface between two fluid phases
t: a unit outward normal vector to C, tangential to the interface

n: a unit outward normal vector to A, perpendicular to the interface

T interfacial tension (units: force/length)

dl: a differential displacement (length) along the perimeter C

At static equilibrium, the forces on the interfacial region A must sum to 0. These forces
consist of the pressure acting on A from above and below, and of the surface tension
force acting on A along its perimeter C. In mathematical terms, this statement becomes:

jA |- pondA+ jA [ p,nda+ i;Ttdl =0 s

The below figure shows the orientations of vectors t and n. The first term in the above
equation is force on A due to pressure from the "outside" fluid (the "outside" fluid is the
one pointed at by n), the second term is force on A from pressure from the "inside"
fluid, and the third term is force on A due to surface tension which acts on A along the
perimeter C. You can think of the surface region A as a control volume to which we
applied the force balance given by equation 15.
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inferface

As a simple example, let's assume we have a perfectly spherical bubble of fluid 1 inside
of fluid 2. We cut the bubble in half, so that we are left with two hemispheres, and take
the top hemisphere as our surface A (see figure). The curve C is now the dotted line,
with t = -8,. We moreover assume that body forces are negligible, so that the pressure
outside the bubble is constant at p,, and the pressure inside the bubble is constant at p;,
(i.e. no gravitational effects). Taking the dot product of equation (15) with J, leads to

—p. jA [n.da+p, jA | nZdA—Tidl =0 (6

We made use of the fact that T, p,, and p;,, are constant, 8, n =n,, and 3, t =-1. The

area integrals I I”sz are just the projected areas of the hemispherical surface onto the
A

x-y plane; these integrals therefore equal TR> where R is the bubble radius. The integral
§dl is just the total length of the perimeter, which in this case of a perfect hemisphere is
C

simply 27tR. With these substitutions equation 16 becomes

TCRZ(pin - pout) -2nRT=0
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what rearranges to
Pin = Pout = 2T/R (17)

Equation 17 was derived from the interfacial force balance (15). It shows that, for a
spherical interface, the difference in pressures on the two sides is counterbalanced by
the surface tension 7 within the interface multiplied by 2/R. It is also a specific case of
the more general equation (14), in which the two radii of curvature were allowed to be
different. Equation 14 can also be derived from 15, through a somewhat more complex
process.



