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Fluid Statics 

 

Fluid statics deals with situations of "static equilibrium."  

In static equilibrium: 

 

 - no part of a fluid is in motion relative to another part of the fluid 

 - no shear stress is present in the fluid 

 - only normal isotropic stresses (ie. pressure) exist 

 

The fluid could simply be at rest, or it could be moving. If motion of the fluid is 

involved, the only motions possible in static equilibrium are a solid body translation, a 

solid body rotation, or a combination of the two (ex. a body of fluid may be rotating 

about its axis at the same time that it is being translated along a particular direction). 

The terminology "solid body" implies that the movement of the fluid is equivalent to 

that of a body in which no part is capable of movement relative to any other part, as in a 

solid.  
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Differential Equations of Fluid Statics:  

We consider a differential volume element in a fluid that is in static equilibrium. The 

fluid element is acted on by an arbitrary "body force" per unit volume Fv = Fviδδδδi (recall 

the summation convention). A "body force" is a force that acts throughout the volume 

(body) of a fluid. An example of a body force is gravity since gravity "pulls" 

simultaneously on all parts of a body. An example of a surface force is pressure or shear 

stress, since these forces act through direct contact at the surface of a body.   

 

The figure illustrates the forces that act on the fluid element. Also, we chose a CCS 

coordinate system in which the fluid element is stationary. In this coordinate system, 

the fluid element is not perceived to accelerate, so that the sum of the forces acting on 

the fluid element must sum to zero along each of the three coordinate directions x, y and 

z: 

 

p(x)dydz - (p(x) + ∂p/∂x dx)dydz + Fvx dxdydz = 0      (1a) 

 

p(y)dxdz - (p(y) + ∂p/∂y dy)dxdz + Fvy dxdydz = 0      (1b) 

 

p(z)dxdy - (p(z) + ∂p/∂z dz)dxdy + Fvz dxdydz = 0      (1c) 

 

Recall that the force Fv was defined on a per unit volume basis. Then Fv dxdydz is the 

total body force acting on the fluid element. Dividing expressions (1a) through (1c) by 

dxdydz: 

 

∂p/∂x = Fvx            (2a) 

  

∂p/∂y = Fvy            (2b) 
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∂p/∂z = Fvz            (2c) 

 

or, in vector notation 

 

∇∇∇∇p = Fv            (3) 

 

The set of equations (3) comprises the "differential equations of fluid statics."  

 

 

Example: Gravitational Force Only: A container of fluid is at rest. If gravity acts in the 

- z direction, then the force Fv becomes Fv = -mg/V δδδδz = -ρ g δδδδz (here m is the mass of 

the fluid element, g is the gravitational acceleration, V is the volume of the fluid 

element, and ρ is the density of the fluid element). Equation (3) then yields 

 

∂p/∂x = 0             

∂p/∂y = 0             

∂p/∂z = -ρg            

 

so that 

  

dp/dz = -ρg  dp = -ρgdz         (4) 

 

If the density ρ of the fluid is constant, it can be taken outside of the integral:  

 

d dp g z
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∫ ∫= −ρ   which evaluates to (p2 - p1) = -ρg (z2 - z1)   (5) 

 

Equation (5) applies for an incompressible (ρ = constant) fluid. In general, the density 

could vary with pressure and temperature, as for an ideal gas. For an ideal gas, ρ = 

pM/(RT) where M is the molar mass (ex. kg/kg-mol), R is the gas constant, and T is the 

absolute temperature. Substituting the ideal gas expression for ρ into (4), and assuming 

isothermal conditions (T = constant): 

dp / p = -g M/(RT) dz   
d
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∫ ∫= −    

so that  
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ln(p2/p1)= - g M/(RT) (z2 - z1)  p2 = p1 e 
-g M/(RT) (z

2
 - z

1
)    

(6) 

 

 

Example: Linear Acceleration Combined with Gravitational Acceleration:  A container 

of fluid is undergoing constant acceleration ax along the + x direction. Also, the fluid is 

in the standard gravitational field which acts in the - z direction. The movement of the 

fluid corresponds to a rigid body translation, i.e. static equilibrium holds. 

 

 
 

The body force per unit volume that acts on an element in the accelerating fluid has the 

form Fv = -ρax δδδδx - ρg δδδδz, where the force component along the x direction, Fvx, is equal 

to -max/Vol = -ρax (note that when the container of fluid is accelerated in the +x 

direction, the fluid element experiences an inertial body force that acts in the -x 

direction). Equations (3) become  

 

 

∂p/∂x = -ρax ⇒  p = -ρaxx + f1(y,z)       (7a) 

∂p/∂y = 0  ⇒  p = f2(x,z)       (7b) 

∂p/∂z = -ρg ⇒  p = -ρgz + f3(y,x)       (7c) 

  

The functions f1, f2 and f3 need to be chosen so that the final expression for p satisfies 

all three differential equations. By inspection, p cannot vary with y (equation (7b)), and 

setting f1 = -ρgz + C1 and f3 = -ρaxx + C2 will satisfy equations (7a) and (7c) 

simultaneously. Therefore, the final expression for p is (setting C1 + C2 = C) 

 

 p = -ρaxx -ρgz + C          (8) 

 

To find the equation for the free surface of the fluid, we set p = po where po is the 

external (atmospheric) pressure at the free surface. Rearranging the resultant expression 

we get a relationship between z and x that specifies the free surface: 

 

 z = -(ax/g)x + (C - po)/(ρg)        (9) 
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The free surface of the fluid has a negative slope equal to -(ax/g), as illustrated in the 

figure below.  

    
 

 

 

 

Fluid Forces on Submerged Bodies Calculated by 

Direct Integration:   

The force of a fluid in static equilibrium on a 

submerged surface is, at least conceptually, 

straightforward to calculate. Since the only stress 

present is pressure, the force on a differential 

surface element is -pn dA where n is a surface 

normal to the surface element dA (see figure 

below). The minus sign signifies that the stress 

exerted on a surface by pressure is compressive (ie. in the direction of -n). To calculate 

the total force F of the fluid on the surface we simply sum the contributions for the 

entire surface, i.e. we perform the surface integral 

 

  F = ∫∫ − pndA

A

         (10)  

  

To perform the integration in (10), the following steps are required:  

 

1). Setup a coordinate system (try to choose one that will make the integration easier). 

2). Express p, n and dA in terms of the system's coordinate variables. 

3). Perform the integration according to equation (10). 

 

The following example illustrates the general procedure for a submerged, inclined 

plane depicted in the figure below. We will calculate the total force due to pressure 

acting on the top surface of the plane. We will assume the liquid is incompressible (i.e. 

ρ = constant). 
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1). The coordinate system is setup as shown above. This example will also provide 

opportunity to practice vector surface integration.  

 

2). The surface is given by z = x tanθ. Therefore, the surface normal is found from 

 n = ∇∇∇∇(z - x tanθ ) / (∇∇∇∇(z - x tanθ ) • ∇∇∇∇(z - x tanθ ))
1/2

 

 n = (- tanθ δδδδx + δδδδz) / (tan
2θ + 1)

1/2
 = (- tanθ δδδδx + δδδδz) / secθ 

 n = - sinθ δδδδx + δδδδz / secθ  

  

Using Equation (5), the pressure is (the subscript "o" denotes conditions at the free 

surface of the fluid): 

 

 p = po - γ(z - zo)   where γ = ρg 

 

On the surface of the plane,  

 

 p = po - γ(x tanθ  - zo) 

 

The area element dA, expressed in terms of x and y, is  

 

 dA = dy dx/cosθ  (see figure at right)  

 

 

 

The limits of integration on y are 0 and W, where W is 

the width of the surface. The limits of integration on x 

are 0 and Lcosθ, where L is the length of the plate.  

 

3). To evaluate equation (10), we have to integrate: 
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Integrating with respect to y and combining some of the trigonometric terms, 

 

F = − − − − −∫ ∫δδδδ δδδδx zW tan d dθ γ θ γ θ
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Integrating with respect to x 
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Simplifying, 

F = −
− −









− −
− −









δδδδ

δδδδ

x

z

WL sinθ γ
θ

θ

θ γ
θ

θ

p
L z z

L

WL p
L z z

L

o
o o

o
o o

( sin )

sin

cos
( sin )

sin

2 2

2 2

2

2

 

 

F = −
−






 − −

−





δδδδ δδδδx zWL sinθ γ

θ
θ γ

θ
p

L z
WL p

L z
o

o
o

osin
cos

sin2

2

2

2

             (11) 

 

Below we will compare equation (11), which gives the force acting on the top surface 

of the inclined plane, to other results obtained by simpler routes. 

 

 

Simplified Approaches for Calculation of Fluid Forces on Submerged Bodies:  
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(1). Calculation of Vertical Force on a Submerged Surface. 

The vertical force on a submerged surface equals 

the vertical component of the body force acting on 

the fluid directly above that surface, plus the force 

due to pressure at the free surface of the fluid. If 

the only body force is gravitational, then the 

"vertical component of the body force acting on 

the fluid" is equal to the weight of the fluid 

directly above the surface.  

 

To illustrate, we use the inclined plane as an 

example. The total volume Vol of the fluid 

directly above the plane is (see illustration) 

 

 Vol  = (zo-Lsinθ) W Lcosθ  +  (1/2) W Lsinθ  Lcosθ  

  = W Lcosθ (zo- Lsinθ / 2) 

 

The total body force on this fluid volume due to gravity is (the minus sign indicates that 

the force acts in the - z direction): 

 

 FB = - γ Vol δδδδz = γ W Lcosθ (Lsinθ / 2 - zo) δδδδz 

 

The pressure on the free surface of the fluid is po W Lcosθ. Therefore, the total 

downward force Fz on the inclined plane equals 

 

 Fz = FB - po W Lcosθ δδδδz = -δδδδz W Lcosθ (po − γ (Lsinθ / 2 - zo)) 

 

This result is equal to the z-component of the force calculated previously using the 

surface integral approach (see equation (11)). 

 

(2). Calculation of Horizontal Force on a Submerged Surface. 
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The horizontal force acting on one side of a submerged surface can be determined by 

integrating the pressure along a plane vertical surface which is the projected area of the 

surface of interest.  

 

An example will make the 

above statement clearer. Again, 

we refer to the inclined plane. 

The projected area of the 

inclined plane onto a vertical 

plane is illustrated in the 

figure. The projected area 

extends from z = 0 to z= Lsinθ, 

and from y = 0 to y = W. To 

integrate pressure along the 

projected area, we evaluate (note that A is now the "projected area", not the actual area 

of the inclined plane) 
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 Fx  = δδδδx W L sinθ  [po - γ (L sinθ / 2 - zo)] 

 

This expression is equivalent to the x-component of the force in equation (11).  

 

The above approach allows us to calculate the horizontal force on even highly irregular 

surfaces, provided we can specify their projected area correctly. 

   

 

(3). Buoyant Force on a Submerged Object. 

The buoyant force on a submerged object is the vertical component of the force exerted 

by static equilibrium pressure on the object: 

 

buoyant force = δδδδz • ∫ −
A

Ap )d( n  = 
−∫ pn dz A

A
      (12) 
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where the integral is performed over the entire surface of the object, and the z-axis was 

taken as denoting the vertical direction. The integral can be evaluated directly, similar 

to the procedure used earlier for the inclined plane. However, a much easier way is to 

use "Archimedes' principle," which states that the buoyant force equals 

 

buoyant force  = weight of fluid displaced by object     (13) 

 

For incompressible fluids (ρ = constant) this principle can be written as 

 

buoyant force = γ (volume of object)         

 

If, in addition to gravity, other body forces act on the fluid along the vertical direction 

the effect of such forces on the fluid's (apparent) weight must be considered. For 

example, if the fluid is being accelerated along the z direction instead of being 

stationary, the resultant inertial body force must be added to the gravitational body 

force. 

 

 

Surface Tension  

(1) Introduction.  

The interface between two immiscible fluids possesses a tendency to contract. The 

interface wants to contract because the molecules of each fluid prefer ("prefer" in the 

sense of minimizing their free energy) being next to molecules from the same fluid 

rather than molecules from the other fluid. The undesired contact between molecules 

from one fluid with those from the other fluid is minimized if the area of the interface 

between the fluids is as small as possible; ie. by contracting the interface as much as 

possible. The force driving this contraction is termed "surface tension." Surface tension 

acts along (parallel to) the interface, and under conditions of static equilibrium it is 

independent of the direction within the interface (i.e. it is isotropic within the interface). 

If the interface is curved, the presence of the surface tension causes the pressure on the 

two sides of the interface to be different. On the inside (the concave side) of the 

interface the pressure will be higher. The expression for the pressure difference is  

 

 pin - pout = T (1/R1 + 1/R2)         (14) 

 

where T is the surface tension (units of force/length, ex. dyne/cm), pin is the pressure on 

the concave side of the interface, pout is the pressure on the convex side, and R1 and R2 

are the two radii of curvature of the surface at the point where the pressure difference is 

pin - pout. The radii of curvature are the radii of any two mutually perpendicular circles 

whose perimeters have the same curvature as the surface at the point of interest. Note 
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that both circles are also perpendicular to the surface. For a planar interface both R1 and 

R2 are infinite, and thus the pressure difference across a planar interface is zero. 

 

R1

R2

pout

pin

 
 

 

 

(2) An Interfacial Force Balance  

 

C: a perimeter curve bounding the area A of an interface between two fluid phases 

t: a unit outward normal vector to C, tangential to the interface 

n: a unit outward normal vector to A, perpendicular to the interface  

T: interfacial tension (units: force/length) 

dl:  a differential displacement (length) along the perimeter C 

 

At static equilibrium, the forces on the interfacial region A must sum to 0. These forces 

consist of the pressure acting on A from above and below, and of the surface tension 

force acting on A along its perimeter C. In mathematical terms, this statement becomes: 

 

∫∫∫∫∫ =++−
CA

in

A

out dlTdApdAp 0tnn
    (15) 

 

The below figure shows the orientations of vectors t and n. The first term in the above 

equation is force on A due to pressure from the "outside" fluid (the "outside" fluid is the 

one pointed at by n), the second term is force on A from pressure from the "inside" 

fluid, and the third term is force on A due to surface tension which acts on A along the 

perimeter C. You can think of the surface region A as a control volume to which we 

applied the force balance given by equation 15. 
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As a simple example, let's assume we have a perfectly spherical bubble of fluid 1 inside 

of fluid 2. We cut the bubble in half, so that we are left with two hemispheres, and take 

the top hemisphere as our surface A (see figure). The curve C is now the dotted line, 

with t = -δδδδz. We moreover assume that body forces are negligible, so that the pressure 

outside the bubble is constant at pout, and the pressure inside the bubble is constant at pin 

(i.e. no gravitational effects). Taking the dot product of equation (15) with δδδδz leads to 

 

∫∫∫∫∫ =−+−
CA

zin

A

zout dlTdAnpdAnp 0
     (16) 

 

 
 

We made use of the fact that T, pout, and pin, are constant, δδδδz• n = nz, and δδδδz• t = -1. The 

area integrals ∫∫
A

z dAn  are just the projected areas of the hemispherical surface onto the 

x-y plane; these integrals therefore equal πR
2
 where R is the bubble radius. The integral 

∫
C

dl is just the total length of the perimeter, which in this case of a perfect hemisphere is 

simply 2πR. With these substitutions equation 16 becomes 

 

 πR
2
(pin - pout) - 2πRT= 0 
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what rearranges to 

 

 pin - pout = 2T/R         (17) 

 

Equation 17 was derived from the interfacial force balance (15). It shows that, for a 

spherical interface, the difference in pressures on the two sides is counterbalanced by 

the surface tension T within the interface multiplied by 2/R. It is also a specific case of 

the more general equation (14), in which the two radii of curvature were allowed to be 

different. Equation 14 can also be derived from 15, through a somewhat more complex 

process.  

 


