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Review of Vector Analysis in Cartesian Coordinates 

 

Scalar: A quantity that has magnitude, but no direction. Examples are mass, temperature, pressure, 

time, distance, and real numbers. Scalars are usually represented by italic letters: for example, T for 

temperature or p for pressure.  

 

Vector: A quantity that has a magnitude and a direction. Examples are velocity, force, acceleration, 

and spatial position. You have encountered vectors in calculus and in physics. Graphically, we 

represent a vector by an arrow starting at an "initial point" and ending at a "terminal point" (Figure 1). 

The direction of the arrow corresponds to the direction of the vector and the length of the arrow 

corresponds to the vector's magnitude. Vectors are often represented by bold faced letters: for example, 

velocity may be written as v, and position as r.  

 

The "magnitude" of a vector is a scalar. For instance, v could represent speed (speed is the magnitude 

of velocity) of an object. We will now see how to mathematically represent vectors. 

 

You should be familiar with the three-dimensional Cartesian coordinate system (CCS) depicted in 

Figure 2. The three CCS axes are labeled x1, x2, and x3 (alternately, it is also common to represent the 

axes using the letters x, y, and z). Also, three unit vectors are drawn in Figure 2, labeled as δδδδ1, δδδδ2 and 

δδδδ3. The direction of each vector is along one of the coordinate axes. The vectors are "unit" vectors 

because their magnitude (length) is equal to 1. The three vectors δδδδ1, δδδδ2 and δδδδ3 are termed the "basis 

vectors" for the CCS. Note that the basis vectors are mutually orthogonal; in other words, they are at 

right angles to one another. Although we have drawn the basis vectors at the origin in Figure 2, they are 

defined at every point of the CCS as shown in Figure 3. Some simple examples: if a particle has a 

velocity v = 1δδδδ1, then the particle moves by one unit length in one unit of time in the positive direction 

of the x1 axis. If a particle has a position r = 1δδδδ1 relative to the origin, then the particle is located at the 

point (1,0,0) on the x1 axis.  

 

 
Fig. 1     Fig. 2     Fig. 3
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Vector Algebra 
 

Equality: Two vectors are equal if they have the same magnitude and direction, regardless of the 

position of their initial points (Figure 4). A vector with a direction exactly opposite to that of vector A 

but with the same magnitude is denoted by -A (Figure 5). 

 

 
 Fig. 4. These vectors are equal. Fig. 5. These vectors are negatives of each other. 

 

Addition and Subtraction: The sum of two vectors C = A + B is graphically formed by placing the 

initial point of B on the terminal point of A and then joining the initial point of A to the terminal point 

of B (Figure 6). The sum can also be formulated in terms of the so-called parallelogram law (Figure 7). 

Note that vector addition is commutative, ie. A + B = B + A. Sums of more than two vectors follow 

analogous rules; Figure 8 shows the case when three vectors are added: D = A + B + C. A subtraction 

C = A - B can always be written as the addition C = A + (-B) (Figure 9), and follows the same rules as 

addition.  

 
Fig. 6. C = A + B     Fig. 7. C = A + B Fig. 8. D = A + B + C                 Fig. 9. C = A - B 

 

The CCS basis vectors can be used to represent any arbitrary vector. For example, A = 1δδδδ1 + 3δδδδ2 - 2δδδδ3 

is shown graphically in Figure 10. The prefactors 1, 3 and -2 in front of the basis vectors are termed the 

"components" of the vector A along the x1, x2 and x3 directions, respectively. To add (or subtract) two 

or more vectors, we add (subtract) their components along each of the coordinate directions: 

 

 A = A1δδδδ1 + A2δδδδ2 + A3δδδδ3 B = B1δδδδ1 + B2δδδδ2 + B3δδδδ3 

 

 C = A + B = (A1 + B1)δδδδ1 + (A2 + B2)δδδδ2 + (A3 + B3)δδδδ3  (1) 

            123         123       123 

     C1  C2                C3 

           678         678       678 

 C = A - B = (A1 - B1)δδδδ1 +  (A2 - B2)δδδδ2  +  (A3 - B3)δδδδ3  (2) 

 

 Fig. 10 
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Also, note that if C = A + B, then  C - A = B,   C + B = A + 2B, etc., same as for ordinary (ie. scalar) 

algebraic equations involving addition and subtraction.  

 

 

Multiplication and Division of a Vector by a Scalar: The product mA, where m is a scalar 

multiplying the vector A, increases the magnitude of A by a factor of m and either preserves the 

direction of A (if m > 0) or reverses it (if m < 0) (Figure 11). It is easy to show that (you should verify 

this graphically if you don't believe it) 

 

  mA = Am = mA1δδδδ1 + mA2δδδδ2 + mA3δδδδ3   (3) 

 

 

 

 

 Fig. 11. 

 

Division of a vector A by a scalar m is the same as multiplying A by 1/m: A/m = (1/m)A. Multiplying a 

vector by 0 gives the "null" vector. The magnitude of the null vector is 0 and its direction is 

unspecified. Division of a vector by 0 is undefined.  

 

 

Magnitude of a Vector: The magnitude A of a vector A is the square root of the sum of the squares of 

its components: A = (A1
2
 + A2

2
 + A3

2
)
1/2

. This result comes directly from the Pythagorean theorem. For 

example, the distance r from the origin for an object whose position is r = x1δδδδ1 + x2δδδδ2 + x3δδδδ3 is simply r 

= (x1
2
 + x2

2
 + x3

2
)
1/2

 (Figure 12). The speed v of an object whose velocity is v = v1δδδδ1 + v2δδδδ2 + v3δδδδ3 is v = 

(v1
2
 + v2

2
 + v3

2
)
1/2

.  

 
 Fig. 12. The magnitude r of the position vector r is (x1

2
 + x2

2
 + x3

2
)
1/2

. 

 

 

Scalar and Vector Fields: In a scalar field, each point in space gets a scalar value. For example, a 

constant temperature field T can be written T(x1,x2,x3) = K, where K is a constant. This expression 

assigns the same temperature K to every point in space. For a varying temperature field T(x1,x2,x3) 

would vary with position; for instance, T(x1,x2,x3) = x1
3
x2 - x3

2
.  

 

Writing out (x1,x2,x3) to refer to a point in space can get tiresome, and often it's simpler to just write r 

to denote position. Let's say we have a scalar field S. Then the notations S(x1,x2,x3) and S(r) are 
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equivalent, with the notational convention that the position vector r replaces the list of coordinates 

x1,x2,x3.  

 

In a vector field, each point in space gets a vector assigned to it. The set of position vectors r represents 

a vector field, since each point in space has a vector r assigned to it (Figure 12). Similarly, a velocity 

vector field can be defined. An example of a constant velocity field is v = 3.715δδδδ1 - 0.5δδδδ2 + 1.2δδδδ3. The 

velocity field is constant, or "uniform",  since the components of v do not vary with position. An 

example of a varying velocity field is  

 

 v(r) =  { 1 - cos[2tan
-1

(x2/x1)] }δδδδ1  -  sin[2tan
-1

(x2/x1)] δδδδ2     (4) 

   (x1
2
 + x2

2
)        (x1

2
 + x2

2
) 

 

Equation (4) refers to so-called "incompressible potential flow" of fluid around a cylindrical object. In 

equation (4), the velocity component along the δδδδ3 direction is zero, and the notation v(r) instead of 

v(x1, x2) has been used to indicate the position dependence of v.  

 

 

Vector Dot Product: The dot product of two arbitrary vectors A and B is written A • B. Taking the dot 

product of two vectors produces a scalar. The magnitude of the scalar S = A • B equals the product of 

the magnitudes of A and B and the cosine of the angle θ between A and B (Figure 13). In equation 

form, 

  S = A • B = AB cosθ  0 < θ < π     (5) 

     
         Fig. 13. 

 

From equation (5) it follows that the dot product is commutative, A • B = B • A. The dot product is 

also distributive; ie. A • (B + C) = A • B + A • C. 

   

The dot product of two vectors that are perpendicular to one another is 0 since cos(90
o
) = 0. The dot 

product of two parallel vectors pointing in the same direction is the product of their magnitudes since 

cos(0
o
) = 1. The dot product of two parallel vectors pointing in opposite directions is the negative of 

the product of their magnitudes since cos(180
o
) = -1. From equation (5) it follows that 

   

     δδδδ1 • δδδδ1 = δδδδ2 • δδδδ2 = δδδδ3 • δδδδ3 = 1     (6) 

 

(remember that the basis vectors have unit magnitudes) and 

 

     δδδδ1 • δδδδ2 = δδδδ2 • δδδδ3 = δδδδ3 • δδδδ1 = 0    (7) 

 

since basis vectors pointing along different CCS axes are perpendicular. Using equations (6) and (7) 

and the distributive law, we can show that for two arbitrary vectors A and B 
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  A = A1δδδδ1 + A2δδδδ2 + A3δδδδ3   B = B1δδδδ1 + B2δδδδ2 + B3δδδδ3 

 

  A • B = (A1δδδδ1 + A2δδδδ2 + A3δδδδ3) • (B1δδδδ1 + B2δδδδ2 + B3δδδδ3)     (8a) 

           = A1δδδδ1 • (B1δδδδ1 + B2δδδδ2 + B3δδδδ3) + A2δδδδ2 • (B1δδδδ1 + B2δδδδ2 + B3δδδδ3) + A3δδδδ3 • (B1δδδδ1 + B2δδδδ2 +  

    B3δδδδ3)          (8b) 

 A • B = A1B1 + A2B2 + A3B3        (8c) 

 

In arriving at equation (8c), we used the fact that dot products between perpendicular basis vectors are 

zero. Equation (8c) states that the dot product between two arbitrary vectors can be simply calculated 

by summing the products of their respective components. The values produced by equations (8c) and 

(5) are identical, and either equation can be used to calculate the dot product. 

 

 

Use of the Dot Product: Dot products are convenient for obtaining the magnitude A of a vector A: 

 

  A = (A • A)
1/2

 = (A1
2
 + A2

2
 + A3

2
)
1/2

      (9) 

 

Dot products are also useful for obtaining the component of a vector A along an arbitrary direction a. 

This component is often called the "projection of A onto the direction a". Imagine that an object travels 

with a velocity  

   v = v1δδδδ1 + v2δδδδ2 + v3δδδδ3.  

 

To obtain the projection of v along a particular direction, we form the dot product of v and a unit vector 

pointing along the desired direction. For example, if we want the speed with which the object moves 

along the x1 direction, we get  

   δδδδ1 • v = v1  

 

Indeed, v1 is the velocity component that tells us how fast the object advances in the x1 direction. For a 

less trivial example, let's say we want the speed of the object in the direction specified by an arbitrary 

unit vector n = n1δδδδ1 + n2δδδδ2 + n3δδδδ3. Since n is a unit vector it will be true that (n1
2
 + n2

2
 + n3

2
)
1/2

 = 1. The 

speed vn of the object in the direction specified by n is vn = n • v = n1v1 + n2v2 + n3v3. We could also 

have used vn = v cosθ, where θ is the angle between v and n (the magnitude n is not explicitly shown in 

the expression v cosθ since it is unity).  

 

The use of the dot product to obtain vector projections onto particular directions is perhaps best 

illustrated graphically, as in Figure 14. Figure 14 shows how the dot product can be used to calculate 

the speed of a fluid perpendicular to a surface by dotting the velocity v of the fluid with a unit vector n 

that is perpendicular to the surface. Such dot products will be important in calculating the flux of mass, 

energy, or momentum across a surface due to material transport, for example. Because θ is greater than 

90
o
 in Figure 14, the dot product v cosθ  will have a negative value. The absolute value of the dot 

product equals the length of the projection of v onto the line along which n lies, as drawn in Figure 14. 

You may have seen similar diagrams in physics, where the component of a force F along a particular 

direction was given by F • n = F cosθ, where n pointed along the desired direction and θ  was the angle 

between F and n.  
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  Fig. 14 

 

 

 

 

 

 

 

Cross Product: The cross product of two arbitrary vectors A and B is a vector C written C = A × B. 

The magnitude of C is the product of the magnitudes of A and B and the sine of the angle θ between A 

and B. In equation form, 

 

 C = ABsinθ   0 < θ < π       (10)  

 

C becomes the null vector when A and B are parallel (since sin0
o
 = 0). For all other cases, (i.e. 

nonparallel A and B), the direction of C is perpendicular to the plane formed by A and B and such that 

A, B and C form a "right-handed" system. In a right-handed system, the thumb of your right hand 

points in the direction of the resultant vector (C) if the other fingers of your right hand curl from the 

first vector in the cross product (A) toward the second vector of the cross product (B) through the angle 

θ. The right-handedness of the cross product is illustrated in Figure 15. Note that θ is always defined so 

that it is less than π.  

 

     Fig. 15. 

 

Consideration of Figure 15 shows that A × B = - B × A, so that the vector product is not commutative. 

The distributive law does hold, ie. A × (B + C) = A × B + A × C.  

   

Since basis vectors of the same type are parallel in the CCS, it follows that   

 

     δδδδ1 × δδδδ1 = δδδδ2 × δδδδ2 = δδδδ3 × δδδδ3 = 0    (11) 

 

Furthermore (use the right hand rule and the definition of the cross-product to verify these 

expressions): 

 

δδδδ1 × δδδδ2 = δδδδ3 δδδδ2 × δδδδ1 = -δδδδ3 δδδδ2 × δδδδ3 = δδδδ1 δδδδ3 × δδδδ2 = -δδδδ1 δδδδ3 × δδδδ1 = δδδδ2 δδδδ1 × δδδδ3 = -δδδδ2  (12) 
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The general formula for the cross product of two arbitrary vectors A and B can be derived using 

equations (11) and (12): 

 

 A = A1δδδδ1 + A2δδδδ2 + A3δδδδ3   B = B1δδδδ1 + B2δδδδ2 + B3δδδδ3 

 

  A × B = (A1δδδδ1 + A2δδδδ2 + A3δδδδ3) × (B1δδδδ1 + B2δδδδ2 + B3δδδδ3)     (13a) 

           = A1δδδδ1 × (B1δδδδ1 + B2δδδδ2 + B3δδδδ3) + A2δδδδ2 × (B1δδδδ1 + B2δδδδ2 + B3δδδδ3) + A3δδδδ3 × (B1δδδδ1 + B2δδδδ2  

  + B3δδδδ3)          (13b) 

           = A1B2δδδδ3 - A1B3δδδδ2 - A2B1δδδδ3 + A2B3δδδδ1 + A3B1δδδδ2 - A3B2δδδδ1      

 A × B = (A2B3 - A3B2)δδδδ1 + (A3B1 - A1B3)δδδδ2 + (A1B2 - A2B1)δδδδ3    (13c) 

 

In arriving at equation (13c), we used equations (11) and (12) to evaluate the cross products between 

basis vectors. Equation (13c) can be used to calculate the cross product between any two arbitrary 

vectors. Note that the formula (13c) can be obtained from the expression 

 

 A B× =

δδδδ δδδδ δδδδ1 2 3

1 2 3

1 2 3

A A A

B B B

            (14)  

 

using standard rules of determinant evaluation. If you are familiar with determinants, Equation (14) can 

help you remember the formula for calculating the cross product. 

 

 

Use of the Cross Product: One way cross products are useful in transport phenomena is in 

determining a quantity called "vorticity". Vorticity will be introduced later on in the course. Also, recall 

from physics that torque ττττ and angular momentum L are cross products. For instance, the angular 

momentum of an object is 

  L = r' × p 

 

where r' is the position of the object (relative to the point around which the angular momentum is 

being calculated) and p is the linear momentum of the object. 

 

 

Vector Division: Division of a vector A by another vector B, A/B, is not defined. 

 

 

Notational Conventions: Often, "shorthand notations" are employed to make handling vector 

equations easier and more compact. Here two notational conventions will be introduced: (1) the 

Kronecker delta and (2) the summation convention. Both are widely employed by engineers and 

scientists and are routinely used in books that make use of vector analysis.  

 

The Kronecker delta δij is defined as follows: 

 

 δij = 1  if i = j 

 δij = 0  if i ≠ j          (15) 
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For instance, using the Kronecker delta we can write equations (6) and (7) as  

 

 δδδδi • δδδδj = δij      i,j = 1..3        (16) 

 

Equation (16) states that the dot product of a basis vector δδδδi with a second basis vector δδδδj is 0 unless i = 

j, in which case the dot product is unity.  

 

The "summation convention" states that an index is to be summed over whenever it appears twice in a 

term. Thus the summation convention allows A = A1δδδδ1 + A2δδδδ2 + A3δδδδ3 to be written as A = Aiδδδδi. Because 

the index i appears twice in the term Aiδδδδi, it is understood to be summed over. Many of the earlier 

equations can be rewritten in a more compact form using the summation convention. For instance, 

equation (8c) for the dot product becomes A • B = AiBi.  
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Vector Calculus  
 

Vector Differentiation: Let's first consider the derivative of a scalar S that depends on n variables q1, 

q2,…, qn (the q's could be coordinates, such as x1, x2, and x3; as well as other variables such as time; 

temperature; pressure etc.). As you have learned in calculus, the derivative of S(q1, q2,…, qn) with 

respect to one of the variables, say qi, is defined as 

 

 
∂

∂

S

q

S q q q q q S q q q q

qqi i

i i n i n

i
=

+ −

→
lim

( , ,..., ,..., ) ( , ,..., ,..., )

∆

∆

∆0

1 2 1 2
  (17) 

 

As an arbitrary example, if we have S(q1, q2, q3, q4) = q1 + ln(q2/ q3)/ q4, then 
∂

∂

S

q1
= 1, 

422

1

qqq

S
=

∂

∂
, 

etc.  The derivative of a vector A(q1, q2,…, qn) is defined in an analogous fashion, except that each 

component of the vector is differentiated. In equation form,  

 

 
∂

∂

A A A

q

q q q q q q q q q

qqi i

i i n i n

i
=

+ −

→
lim

( , ,..., ,..., ) ( , ,..., ,..., )

∆

∆

∆0

1 2 1 2
 

 

For A = A1δδδδ1 + A2δδδδ2 + A3δδδδ3, the above equation can be written 

 

∂

∂

A

q

A q q q q q A q q q q

qqi i

i i n i n

i

=
+ −

+
→

lim
( , ,..., ,..., ) ( , ,..., ,..., )

∆

∆

∆0

1 2 1 21 1
1δδδδ  

 lim
( , ,..., ,..., ) ( , ,..., ,..., )

∆

∆

∆q

A q q q q q A q q q q

qi

i i n i n

i→

+ −
+

0

1 2 1 22 2
2δδδδ  

 lim
( , ,..., ,..., ) ( , ,..., ,..., )

∆

∆

∆q

A q q q q q A q q q q

qi

i i n i n

i→

+ −
+

0

1 2 1 23 3
3δδδδ  

∂

∂

∂

∂

∂

∂

∂

∂

A

q

A

q

A

q

A

qi i i i
=








 +









 +









1

1
2

2
3

3δδδδ δδδδ δδδδ     (CCS)   (18) 

 

Using the summation convention, equation (18) is written 

 

∂

∂

∂

∂

A

q

A

qi i
=










j
jδδδδ        (CCS)   (19) 

 

Note that the derivative of a vector is also a vector. For the present we are only working in the CCS, in 

which the basis vectors are constant (i.e. their direction and magnitude do not change). For this reason, 

derivatives of the basis vectors do not appear in equations (18) and (19). In other coordinate systems, 

such as cylindrical and spherical coordinate systems, the direction of a unit basis vector may be a 

function of position, and this dependence will have to be accounted for when vectors are being 

differentiated with respect to spatial coordinates. For now, it is important to realize that equation 

(19) is specialized to the CCS and that later it will have to be generalized when other coordinate 

systems are considered.  
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Having defined the derivative of a vector, 
∂

∂

A

qi
, we can also list some useful formulas for manipulating 

vector derivatives. These include: 

 

∂

∂

∂

∂

∂

∂q q qi i i
(A B) =

A B
+ +          (21a) 

∂

∂

∂

∂

∂

∂q q qi i i
(A B) = A

B A
B⋅ ⋅ + ⋅         (21b) 

∂

∂

∂

∂

∂

∂q q qi i i
(A B) = A

B A
B× × + ×         (21c) 

∂

∂

∂

∂

∂

∂q
S S

q

S

qi i i
( A) =

A
A+          (21d) 

 

In these formulas, A and B are arbitrary but differentiable vectors, and S is an arbitrary but 

differentiable scalar. Second and higher order derivatives can be formed by repeated application of 

equation (19).  

 

As an example of vector differentiation, let's first consider the position vector r = x1δδδδ1 + x2δδδδ2 + x3δδδδ3. 

Using equation (19), 
∂

∂

r

x1
1= δδδδ . In this case, second and higher order derivatives are zero, since both 

the magnitude and direction of δδδδ1 are constant (therefore there is nothing that can be further 

differentiated). As a second example, let's suppose that a particle in a fluid moves so that its position rp 

varies with time t as rp = t
2 

δδδδ1 + 1/t δδδδ2 + (1-t) δδδδ3. The derivative 
d

d

rp

t
=  2tδδδδ1 - 1/t

2
δδδδ2 - δδδδ3 is the velocity v 

of the particle. Differentiating again with respect to t would give us the acceleration of the particle. 

Since rp depends only on t, the ordinary derivative symbol 
d

dt
was used instead of the partial 

derivative symbol 
∂

∂t
. 

  

Differentials of Vectors and Scalars: A "differential" is an infinitesimal (arbitrarily small) change in 

a quantity.  The differential dS of a scalar S(q1, q2,…, qn) is (note the use of the summation convention; 

hereafter, its use will not always be pointed out) 

 

  d d
i

iS
S

q
q=

∂

∂
  i = 1..n       (22) 

 

In Equation (22), dS = S(q1+dq1, q2+dq2,…, qn+dqn) - S(q1, q2,…, qn), and dqi represents an 

infinitesimally small change in the variable qi. Equation (22) states that differential changes in the 

variables qi (i = 1..n) on which S depends give rise to a differential change dS in S. This resultant 

change dS equals the sum of n terms, where each term is a product of the rate of change (slope) of S 

with respect to one of the qi multiplied by the corresponding change dqi in that variable.  
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As an example of equation (22), let's imagine that temperature T(r) depends on position as T(r) = x1
2
 + 

x2x3. Then if an observer walks from r to r + dr - in other words, the observer's position changes from 

(x1, x2, x3) to (x1 + dx1, x2 + dx2, x3 + dx3) - the observer will experience a differential change in 

temperature equal to dT = 2x1dx1 + x3dx2 + x2dx3. Note that this statement is only accurate for truly 

differential (i.e. infinitesimal) changes. 

 

For a vector A(q1, q2,…, qn), infinitesimal changes dqi in the variables qi (i = 1..n) will give rise to 

infinitesimal changes in each of the vector components. Therefore, if A(q1, q2,…, qn) = A1(q1, q2,…, 

qn)δδδδ1 + A2(q1, q2,…, qn)δδδδ2 + A3(q1, q2,…, qn)δδδδ3, then the differential of A is 

 

 dA = dA1 δδδδ1 + dA2 δδδδ2 + dA3 δδδδ3        (23) 

 

where, for j = 1, 2 or 3 

 d dj
j

i
iA

A

q
q=

∂

∂
       (CCS)   (24) 

Again, caution must be exercised in coordinate systems other than the CCS, since the basis vectors may 

then also change with the variables qi (i.e. if some of the qi are coordinates).  

 

 

The Vector Differential Operator, "Del": The Del operator is denoted by the symbol ∇∇∇∇, and in CCS 

it is defined by 

 

 ∇∇∇∇ ≡ 
∂

∂xi
iδδδδ  = 

∂

∂

∂

∂

∂

∂x x x1
1

2
2

3
3δδδδ δδδδ δδδδ+ +    (CCS)   (25) 

From the definition, we see that the ∇∇∇∇ operator takes derivatives with respect to system coordinates, i.e. 

with respect to position (in fact, some texts prefer the notation 
∂

∂r
 instead of ∇∇∇∇, where r is the position 

vector). ∇∇∇∇ has units of inverse length. 

 

 

The Gradient: Let S(x1, x2, x3) be a differentiable scalar field. Then the gradient of S(x1, x2, x3) is 

written ∇∇∇∇S (sometimes the notation 'grad S ' is used) and is defined by 

 

 ∇∇∇∇S = 
∂

∂

S

xi
iδδδδ = 

∂

∂

∂

∂

∂

∂

S

x

S

x

S

x1
1

2
2

3
3δδδδ δδδδ δδδδ+ +    (CCS)   (26) 

 

 The gradient ∇∇∇∇S is a vector defined at every point at which S is defined and differentiable. 

Physically, ∇∇∇∇S is the rate of change of the scalar S with position. For example, if S is the pressure p, 

then ∇∇∇∇p would be the pressure gradient. If the pressure is measured in pascals (Pa) and distances along 

the coordinates in meters (m), then ∇∇∇∇p would have the units Pa/m. For instance, if ∇∇∇∇p = 3 δδδδ2 Pa/m, then 

an observer walking along the δδδδ2 direction would feel the pressure increase at a rate of 3 Pa/m.  

 

 The rate of change of S in a direction specified by a unit vector a is given by the dot product a • 

∇∇∇∇S. Because the magnitude of a is unity, the dot product simply represents the projection of the vector 
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∇∇∇∇S onto the direction specified by a (cf. Fig. 14). In the pressure example, if the observer walked in the 

direction of a = 3/5δδδδ1 + 4/5δδδδ2 (you can verify that a has a unit magnitude), then the rate of change in 

pressure that the observer would experience is a • ∇∇∇∇S = (3/5δδδδ1 + 4/5δδδδ2) • 3 δδδδ2 = 12/5 Pa/m (equation 

(8c) was used to calculate the dot product). Note that the vector a has no units and is simply used to 

specify direction. If the observer walked in the δδδδ1 (or δδδδ3) direction he/she would experience no change 

in pressure. Of course, S can be any scalar quantity, and pressure was simply used as a convenient 

example to illustrate the physical meaning of the gradient. Since a • ∇∇∇∇S is greatest when a points in the 

same direction as ∇∇∇∇S (why? see equation (5)), it follows that the steepest rate of change in S occurs 

in the direction specified by its gradient.  

 Returning to the concept of differentials, the differential dS = S(r + dr) - S(r) corresponding to 

an infinitesimal change in position dr = dx1 δδδδ1 + dx2 δδδδ2 + dx3 δδδδ3 is  

 

 dS = ∇∇∇∇S • dr = 
∂

∂

S

xi
iδδδδ • dxj δδδδj = 

∂

∂

S

xi
dxj δij = 

∂

∂

S

xi
dxi   (CCS)   (27) 

Let's review what was done in equation (27). Briefly, the summation convention and the Kronecker 

delta were used to avoid writing out the full expressions for ∇∇∇∇S, dr, and their dot product. In detail: 

after the second '=' sign the summation convention was used to represent ∇∇∇∇S and dr. Note that different 

indices were used for ∇∇∇∇S and dr (i was used for ∇∇∇∇S and j was used for dr). The indices must be 

different since each component of ∇∇∇∇S needs to be dotted with each component of dr. In other words, 

taking a specific component i of ∇∇∇∇S, we need to dot it with each of the three components j = 1, 2, 3 of 

dr. If instead i had been used as the index for both ∇∇∇∇S and dr, then we would be implying that the 

component i of ∇∇∇∇S needs to only be dotted with the corresponding component i of dr. Fortuitously, in 

the case of equation (27), this would not produce an error; however, in general incorrect use of indices 

will produce incorrect results. After the third '=' sign the fact that δδδδi • δδδδj = δij (Equation (16)) was used. 

Performing a mental sum over the j index and making use of the definition of the Kronecker delta, only 

terms for which j = i survive (the rest are zero). After the fourth '=' sign, only these nonzero terms are 

retained (we could also have summed over i instead of j, with the same end result except that j would 

be the final index instead of i). You can also do the manipulations in equation (27) just as effectively 

by writing out the ∇∇∇∇S and dr vectors in full, but you will have to write much more. Note that the final 

expression for dS is identical with that obtained using the general equation (22) for the differential of a 

scalar.  

 

 

The Divergence: Let A(x1,x2,x3) = A1(x1,x2,x3)δδδδ1 + A2(x1,x2,x3)δδδδ2 + A3(x1,x2,x3)δδδδ3 be a differentiable 

vector field. The divergence of A is written ∇∇∇∇•A and is defined by 

 

 ∇∇∇∇•A  =  
∂

∂xi
iδδδδ • Ajδδδδj  = 

∂

∂

A

x

j

i
δij  = 

∂

∂

∂

∂

∂

∂

∂

∂

A

x

A

x

A

x

A

x

i

i
= + +

1

1

2

2

3

3
 (CCS)   (28) 

 

The divergence is a scalar quantity. In deriving the final result in equation (28), similar manipulations 

were used as for equation (27) (see above). ∇∇∇∇•A ≠ A•∇∇∇∇ since in A•∇∇∇∇ the Del operator does not operate 

on the vector A (instead, A•∇∇∇∇ = Ai

∂

∂xi
). The divergence of a vector field is often encountered in 

transport phenomena (i.e. if ∇∇∇∇•v = 0 the fluid under study is incompressible, where v is the fluid 

velocity).  
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The Curl: Let A(x1,x2,x3) = A1(x1,x2,x3)δδδδ1 + A2(x1,x2,x3)δδδδ2 + A3(x1,x2,x3)δδδδ3 be a differentiable vector 

field. The curl of A is written ∇∇∇∇ × A and is given by the cross product of the Del operator with the 

vector A  

 

∇∇∇∇ × A = 
∂

∂

∂

∂

∂

∂x x x1
1

2
2

3
3δδδδ δδδδ δδδδ+ +









 × (A1δδδδ1 + A2δδδδ2 + A3δδδδ3) 

 = (
∂

∂

A

x

3

2
 - 

∂

∂

A

x

2

3
)δδδδ1 + (

∂

∂

A

x

1

3
 - 

∂

∂

A

x

3

1
)δδδδ2 + (

∂

∂

A

x

2

1
 - 

∂

∂

A

x

1

2
)δδδδ3 (CCS)   (29) 

Equation (29) can be verified by a procedure analogous to that used in obtaining equation (13c) for the 

vector cross product. The curl of a vector field produces another vector field. The curl is not 

commutative so that ∇∇∇∇ × A ≠ A × ∇∇∇∇. Later we will encounter the curl of the fluid velocity, ∇∇∇∇ × v. 

When ∇∇∇∇ × v = 0 the fluid flow is called "irrotational" and simplified approaches can be used to study it. 

∇∇∇∇ × v is often called the "vorticity." 

 

 

Formulas Involving ∇∇∇∇: There are many identities involving the ∇∇∇∇ operator. Some of these are listed 

below.  

 

If S and R are arbitrary but differentiable scalar fields, and A and B are arbitrary but differentiable 

vector fields, then 

 

 ∇∇∇∇(S + R) = ∇∇∇∇S + ∇∇∇∇R         (30a) 

 ∇∇∇∇•(A + B) = ∇∇∇∇•A + ∇∇∇∇•B        (30b) 

 ∇∇∇∇ × (A + B) = ∇∇∇∇ × A + ∇∇∇∇ × B        (30c) 

 ∇∇∇∇•(SA) = ∇∇∇∇S • A + S(∇∇∇∇• A)        (30d) 

 ∇∇∇∇ × (SA) = ∇∇∇∇S × A + S(∇∇∇∇ × A)       (30e) 

 ∇∇∇∇•(A × B) = B • (∇∇∇∇ × A) - A • (∇∇∇∇ × B)      (30f) 

 ∇∇∇∇ × (A × B) = (B • ∇∇∇∇)A - B(∇∇∇∇ • A) - (A • ∇∇∇∇)B + A(∇∇∇∇ • B)    (30g) 

 ∇∇∇∇ (A • B) = (B • ∇∇∇∇)A + (A • ∇∇∇∇)B + B × (∇∇∇∇ × A) + A × (∇∇∇∇ × B)   (30h) 

 ∇∇∇∇ × (∇∇∇∇S) = 0          (30i) 

 ∇∇∇∇ • (∇∇∇∇ × A) = 0         (30j) 

  

For instance, from (30i) we see that the curl of a gradient of an arbitrary scalar field is always zero, and 

from (30j) that the divergence of a curl of an arbitrary vector field is always zero. The above 

expressions are general in that they are not restricted to the CCS. 

 

 

The Laplacian Operator: The Laplacian operator is written ∇∇∇∇
2
. In cartesian coordinates it is defined 

by 

 ∇∇∇∇
2
 = 

∂

∂

∂

∂

∂

∂

2 2 2

x x x1
2

2
2

3
2

+ +      (CCS)   (31) 
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The Laplacian of a scalar field S(x1,x2,x3) is 

 

 ∇∇∇∇
2
S = 

∂

∂

∂

∂

∂

∂

2 2 2
S

x

S

x

S

x1
2

2
2

3
2

+ +      (CCS)   (32) 

 

The Laplacian of a vector field A(x1,x2,x3) is (note the implied summation over i) 

 

 ∇∇∇∇
2
A = 

∂

∂

∂

∂

∂

∂

2 2 2A

x

A

x

A

x

i

1
2

i

2
2

i

3
2

+ +










δδδδ i     (CCS)   (33) 

 

Again, we need to keep in mind that definitions and operations with the ∇∇∇∇ and ∇∇∇∇
2
 as discussed thus far 

are restricted to the CCS. While extension to other coordinate systems is not difficult, we need to first 

thoroughly understand these operations in the CCS system.  

 

 

Vector Integration:  

Conservative Vector Fields and Line Integrals. Recall that the definite integral of a scalar R(q), where 

R is the derivative of a scalar S(q) with respect to q ( ie. R(q) = dS(q)/dq ), is  

 

 R q q
S

q
q S S q S q

q q

S

S q

( )

( )

( )

d
d

d
d d

q
L

H

q
L

H

q
L

H

H L∫ ∫ ∫= = = ( ) - ( )      (34) 

 

 Also recall that graphically the integral has a simple interpretation: it is the area under the curve 

R(q) in the region qL < q < qH (Figure 16). In Figure 16 there are also drawn three rectangular elements: 

the sum of the areas of the rectangles can be used to 

approximate the value of the integral. In particular, the area 

under the curve can be approximated as the sum  

 

 Area = ∆S

N

i
i=

∑
1

,  

 

 ∆Si = R(qi) ∆qi         Fig. 16 

 

Here, qi is the value of q at the midpoint of rectangle i, and ∆qi is the width of rectangle i (in Fig. 16, i 

ranges from 1 to 3 so that N = 3).  

 

 In the limit N → ∞ the shaded area gets discretized into an infinite number of rectangles, each 

possessing a differential (i.e. infinitesimal) width dqi. Also, the magnitude of each rectangle area ∆Si 

approaches a differential value dSi = R(qi) dqi. In this limit, the sum becomes exactly equal to the 

integral, 
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   lim
N

N

S
→∞ =

∑ =∆ i
i 1

d

q
L

H

S

S

S q

( )

( )

∫ = S q S q( ) - ( )
H L

    (35) 

 

 The main point to recognize is that we can think of the integral in (34) as the sum of an infinite 

number of infinitesimally small increments dS that, when added together, sum up to the total difference 

given by S q S q( ) - ( )
H L

. 

 

Now consider the gradient vector field  

 

  A(x1,x2,x3) = ∇∇∇∇S(x1,x2,x3)   (S(x1,x2,x3) is a scalar field that depends on position r) 

 

Then  A • dr = ∇∇∇∇S • dr = dS   (see equation (27)) 

 

In words: if an observer walked from r to r + dr, he/she would observe a change in S from S(r) to S(r) 

+ dS, where dS = ∇∇∇∇S • dr. Do not let the notation r, dr etc. confuse you; r is simply position as 

specified by the vector r = x1δδδδ1 + x2δδδδ2 + x3δδδδ3 and dr is an infinitesimal change in position specified by 

the (differential) vector dr = dx1δδδδ1 + dx2δδδδ2 + dx3δδδδ3.  

 

 The integral of A • dr = Aidxi along a path that starts at an initial position rL to a final position 

rH is called a "line integral" and is written  

 

 rA

r

r

d⋅∫
H

L

          (36) 

 

When A = ∇∇∇∇S, equation (36) can be manipulated to yield 

 

),,(-),,(=)(-)(

)ddd(d

LLLHHH

321

321

321321

)(

)(

,,

,,

332211

xxxSxxxSSSSd

xAxAxA

LH

H

L

HHH

LLL

H

L

S

S

xxx

xxx

rr

rA

r

r

r

r

==

++=⋅

∫

∫∫

    (37) 

 

IMPORTANT: When the vector field A can be expressed as the gradient of a scalar field, A = ∇∇∇∇S (as 

in equation (37)), A is said to be "conservative" and S is termed the "scalar potential" of A. The line 

integral of a conservative vector field only depends on the starting and ending points rL and rH, and is 

independent of the particular path along which the integral is performed (Figure 17 left). This 

independence of path is the reason why we did not have to specify a particular path in equation (37) 

along which the integral is to be performed. Clearly, the line integral of a conservative vector field A = 

∇∇∇∇S around a closed path, i.e. when rL = rH, must be zero (Figure 17 right): 

 

 A r⋅ =∫ d
C

0            (38) 
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Fig. 17. The line integral of a conservative vector field from rL to rH will be the same regardless of 

what path is followed (three possible paths are sketched in the left figure). The line integral of a 

conservative vector field around any closed path will be zero (two examples of a closed path are 

sketched in the right figure).  

 

 

The circle on the integration symbol,

C

∫ , indicates that the integration is around a closed curve C. Note 

that A = ∇∇∇∇S must be defined for every point on the curve C as well as in the region enclosed by C.  

 

 Given a vector field A, is there a test to tell whether A is conservative? One way to show that A 

is conservative is to show that it can be derived from a scalar field S. Since the component Ai = 
∂

∂

S

xi
, 

we could integrate A1 with respect to x1, A2 with respect to x2, and A3 with respect to x3 to find S, 

remembering that the "constants of integration" in each of these cases are functions of the variables 

with respect to which we are not integrating. Alternately, it can be shown (see also identity (30i)) that 

  

  A is conservative if and only if ∇∇∇∇ × A = 0 

 

The "curl test" is often the easiest way to find out whether A is a conservative vector field. For 

example, the curl test can be used in to determine whether a fluid flow is "irrotational", i.e. whether the 

condition ∇∇∇∇ × v = 0 holds (v is the velocity field of the flow). If it does, then the velocity v is a 

conservative vector field and therefore can be derived from a scalar potential Φ, where v = ∇∇∇∇Φ. Not 

surprisingly, Φ is called the "velocity potential." 

 

 We can also evaluate line integrals of nonconservative vector fields. Nonconservative vector 

fields cannot be expressed as a gradient of a scalar field. The value of nonconservative vector line 

integrals will depend on the path taken between the initial and final positions, and the particular path 

taken must be explicitly specified when performing the integral. Typically, the path would be 

parametrized by a variable q (q could be time, for example) so that r = r(q) = x1(q)δδδδ1 + x2(q)δδδδ2 + 



R. Levicky, CBE 6333   17 

x3(q)δδδδ3 and dr = q
q

x
d

d

d 1









δδδδ1 + q

q

x
d

d

d 2









δδδδ2 + q

q

x
d

d

d 3









δδδδ3.  The line integral rA

r

r

d⋅∫
H

L

 is then written in 

the form ∫ 






H

L

d
d

)(d
)(

q

q

i

i q
q

qx
qA  and is performed from qL to qH.   

 

 

 

Surface Integrals. Let B(x1,x2,x3) be a surface (ex. x1
2
 + x2

2
 + x3

2
 = ϖ2

 specifies a spherical surface for 

which the sphere radius equals ϖ). If the surface is closed, then we will call the outer side of the 

surface the positive side (Figure 18). If the surface is not closed, then we arbitrarily choose one of the 

sides to be "positive". Let n be a unit vector that is perpendicular to the surface, and that points in the 

"positive" direction (Figure 18). n is called the "positive unit normal."  

 

    
Fig. 18. For a closed surface, such as the sphere on the left, the positive unit normal n points outward 

as drawn. For the open surface on the right, either the top or the bottom side could have been chosen as 

the positive side. In the drawing, the top side was taken to be positive.  

 

 

 A surface B can be subdivided into arbitrarily small differential surface elements dB. The sum 

of all the dB elements adds up to the total surface area; i.e. d surface areaB

B

∫∫ = , where the integral is 

taken over the entire surface B. When deriving some of the basic rules of transport phenomena, we will 

be particularly interested in surface integrals of the type 

 

 A n⋅∫∫ dB

B

          (39) 

 

 This type of integral is often called the "flux" of A over the surface B. The reason for this 

terminology is relatively straightforward. Let's say A is the velocity v of a fluid, A = v. Then v(r) • n is 

the component (projection) of v in the direction of n at point r (Figure 19). In other words, v(r) • n is 

the speed of fluid particles perpendicular to the surface at point r (remember that n has a magnitude of 

unity, and points perpendicular to the surface). For instance, if v and n are orthogonal to each other at 

r, then v(r)• n = 0 and no fluid particles are passing across the surface at r (Figure 20). If v and n are 

parallel to each other at r, then at point r the fluid particles pass across the surface with a speed v.  

 

IMPORTANT: when we multiply v(r) • n by the (infinitesimal) surface area dB, we get the rate of fluid 

flow through the area element dB in units of volume/time (Figure 19). In other words, v(r) • n dB (you 

should check that the units are length
3
/sec) is the rate at which fluid volume sweeps across the area dB 
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at point r. If all such (infinitesimal) volume flows are summed over the entire surface B, what is 

equivalent to performing the integral ∫∫ ⋅
B

Bdnv , the result is the net volumetric flow rate of fluid 

across the surface B. In these types of integrals, n dB is sometimes simply written as dB.  

  

 
   Fig. 19.    Fig. 20.  

 

  

 Given a differentiable function f(x1, x2, x3) = constant that specifies a surface B (ex. a spherical 

surface would be specified by f = x1
2
 + x2

2
 + x3

2
 = ϖ2

), the unit normal n can be constructed using the 

gradient ∇∇∇∇f  of  f (an example is given below). Note that ∇∇∇∇f  points in the direction of n since ∇∇∇∇f  is 

perpendicular to the surface. The reason why ∇∇∇∇f  is always perpendicular to the surface can be 

explained as follows. Since f  has a constant value on the surface, its rate of change along any direction 

that is tangential (parallel) to the surface must be zero. Therefore, ∇∇∇∇f, which is the rate of change of  f 

with position, cannot have a component that is tangential (parallel) to the surface. In other words, ∇∇∇∇f  

must be perpendicular to the surface. To derive n from ∇∇∇∇f, ∇∇∇∇f  still needs to be divided by its 

magnitude in order to produce a unit vector. In summary, a unit normal vector n to a surface can be 

calculated using  

 

    n = ∇∇∇∇f / (∇∇∇∇f•∇∇∇∇f)
1/2

       (40) 

 

 

 As an example of a surface integral, let's take a velocity field v = 2δδδδ1 m/s and a surface B 

specified by x1 + x2 = ϖ  meters, where the constant ϖ  is greater than 0. We also confine B to the 

region of space for which 0 < x3 < 1 m and x1, x2 > 0. The resultant surface and velocity are sketched in 

Figure 21.  

 

To calculate the unit normal n to the surface B, we use equation (40)  

 

 n = ∇∇∇∇( x1 + x2) / (∇∇∇∇( x1 + x2) • ∇∇∇∇( x1 + x2))
1/2

  

    =  (δδδδ1 + δδδδ2) / ((δδδδ1 + δδδδ2) • (δδδδ1 + δδδδ2))
1/2

 =  (δδδδ1 + δδδδ2) / 2
1/2
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Fig. 21. 

 

 

Therefore, n, the unit normal to B, is n = (δδδδ1 + δδδδ2) / 2
1/2

 (you can check that the magnitude of n is 

unity). Using equation (8c), it is straightforward to calculate that v • n = 2/2
1/2

 = 2
1/2

 m/s. The volume 

flux of fluid through the surface B then becomes 

 

 ∫∫ ⋅
B

Bdnv = 2
1/2

 dB

B

∫∫ = 2
1/2

 (2
1/2

 ϖ) = 2 ϖ m
3
/s 

We used the fact that the area of the surface, given by dB

B

∫∫ , is equal to 2
1/2

 ϖ m
2
. In this case the area 

can be calculated from simple geometrical considerations - see Figure 21.   

 

 

  

Volume Integrals. An example of a vector volume integral is (note the summation convention) 

 

 Ad diV A V

V V

∫∫∫ ∫∫∫= δδδδ i         (41) 

V is the volume of space over which the integration is carried out, and A is an arbitrary vector. For 

example, let's say a force per unit volume F = 2x1x3 δδδδ1 - x1 δδδδ2 + x2
2
 δδδδ3 N/m

3
 acts on material inside a 

volume V, where V is enclosed by the surfaces x1 = 0 m, x2 = 0 m, x2 = 6 m, x3 = x1
2
 m, and x3 = 4 m 

(see Figure 22).  

 

To find the total force Ftot on the material in V, we need to perform a volume integral, 

 

Ftot = Fd d d dV x x x x x x x

x xxx x xxx
3

4

2 0

6

1 0

1

3

4

2 0

6

1 0

2 3

=== ===

∫∫∫ ∫∫∫= �− +

1
2

2

1
2

2

2
2(2 1 3 1 3 2 1δδδδ δδδδ δδδδ )  

= [ ( ( ](16 1 1 1 1 2 1x - x x x x x x x x

xx

5 3
2
2

1
2

2
2

2

) ) )δδδδ −−−− δδδδ −−−− δδδδ1 2 3

2 0

6

1 0

4 4− +

==

∫∫ d d  
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= [ ( ( ](96 1 1 1 1
x - x x x x x

x

6 6 725 3
1
2

2

) ) )δδδδ −−−− δδδδ −−−− δδδδ1 2 3

1 0

124 288− +

=

∫ d  

 

Ftot = (192 - 64) δδδδ1 - (48 - 24) δδδδ2 + (576 - 192) δδδδ3 = 128 δδδδ1 - 24 δδδδ2 + 384 δδδδ3 

 

Fig. 22. 

 

 

The Divergence Theorem:  

The Divergence Theorem states that if V is a volume bounded by a closed surface B and A(x1,x2,x3) is a 

vector field with continuous derivatives, then 

 

 A n⋅∫∫ dB

B

= ∇∇∇∇ ⋅∫∫∫ A dV

V

        (42) 

In equation (42), n is the positive (outward) unit normal vector to B. Equation (42) states that the net 

flux of A through a closed surface B is equivalent to the integral of the divergence of A over the 

volume enclosed by that surface. The Divergence Theorem will be used extensively in deriving so-

called differential balances on mass, energy, and momentum. 

 

 

Stoke's Theorem:  

Stoke's Theorem states that if B is an open surface bounded by a closed, non-intersecting curve C 

(Figure 23), and if the vector field A has continuous derivatives, then 

 

  A r A n⋅ = × ⋅∫ ∫∫d
C

B

B( ) d∇∇∇∇        (43) 

 

In equation (43), the integral around C is performed in the "positive" direction. If you point the thumb 

of your right hand in the direction of the normal n, then the other fingers of your right hand will curl in 

the positive direction. As ∇∇∇∇ × A is a vector, the method of evaluating the surface integral on the right 

side of equation (43) is the same as for any other flux integral. First, you would calculate the curl of A, 
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then dot the resultant vector into n, and finally integrate the result over the surface B. Stokes' Theorem 

will be useful later in the course when we study potential flow.  

Fig. 23.  

 


