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Review of Vector Analysis in Cartesian Coordinates

Scalar: A quantity that has magnitude, but no direction. Examples are mass, temperature, pressure,
time, distance, and real numbers. Scalars are usually represented by italic letters: for example, T for
temperature or p for pressure.

Vector: A quantity that has a magnitude and a direction. Examples are velocity, force, acceleration,
and spatial position. You have encountered vectors in calculus and in physics. Graphically, we
represent a vector by an arrow starting at an "initial point" and ending at a "terminal point" (Figure 1).
The direction of the arrow corresponds to the direction of the vector and the length of the arrow
corresponds to the vector's magnitude. Vectors are often represented by bold faced letters: for example,
velocity may be written as v, and position as r.

The "magnitude" of a vector is a scalar. For instance, v could represent speed (speed is the magnitude
of velocity) of an object. We will now see how to mathematically represent vectors.

You should be familiar with the three-dimensional Cartesian coordinate system (CCS) depicted in
Figure 2. The three CCS axes are labeled x;, x,, and x3 (alternately, it is also common to represent the
axes using the letters x, y, and z). Also, three unit vectors are drawn in Figure 2, labeled as 8, 8, and
;. The direction of each vector is along one of the coordinate axes. The vectors are "unit" vectors
because their magnitude (length) is equal to 1. The three vectors 8;, &, and 85 are termed the "basis
vectors" for the CCS. Note that the basis vectors are mutually orthogonal; in other words, they are at
right angles to one another. Although we have drawn the basis vectors at the origin in Figure 2, they are
defined at every point of the CCS as shown in Figure 3. Some simple examples: if a particle has a
velocity v = 18y, then the particle moves by one unit length in one unit of time in the positive direction
of the x; axis. If a particle has a position r = 18, relative to the origin, then the particle is located at the
point (1,0,0) on the x; axis.
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Vector Algebra

Equality: Two vectors are equal if they have the same magnitude and direction, regardless of the
position of their initial points (Figure 4). A vector with a direction exactly opposite to that of vector A
but with the same magnitude is denoted by -A (Figure 5).

Fig. 4. These vectors are equal. Fig. 5. These vectors are negatives of each other.

Addition and Subtraction: The sum of two vectors C = A + B is graphically formed by placing the
initial point of B on the terminal point of A and then joining the initial point of A to the terminal point
of B (Figure 6). The sum can also be formulated in terms of the so-called parallelogram law (Figure 7).
Note that vector addition is commutative, ie. A + B = B + A. Sums of more than two vectors follow
analogous rules; Figure 8 shows the case when three vectors are added: D = A + B + C. A subtraction
C = A - B can always be written as the addition C = A + (-B) (Figure 9), and follows the same rules as

addition.
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The CCS basis vectors can be used to represent any arbitrary vector. For example, A = 18; + 38, - 283
is shown graphically in Figure 10. The prefactors 1, 3 and -2 in front of the basis vectors are termed the
"components" of the vector A along the xi, x, and x3 directions, respectively. To add (or subtract) two
or more vectors, we add (subtract) their components along each of the coordinate directions:

A= A181 + A282 + A383 B= 3181 + 3282 + B383
A 15 o2
: %_283 C=A+B=(A1+Bl)81 +(A2+Bz)82+(A3+B3)83 (1)
JI- A N ’ N -
! -7 C G Cs
+ ~r x2
! A’/I’ —_— —_— —_—
E?—+——I——'|'——> X C=A—B=(A1—Bl)81+ (A2—32)82 + (A3—B3)83 )



R. Levicky, CBE 6333 3

Also, note thatif C=A + B, then C-A =B, C+ B =A + 2B, etc., same as for ordinary (ie. scalar)
algebraic equations involving addition and subtraction.

Multiplication and Division of a Vector by a Scalar: The product mA, where m is a scalar
multiplying the vector A, increases the magnitude of A by a factor of m and either preserves the
direction of A (if m > 0) or reverses it (if m < 0) (Figure 11). It is easy to show that (you should verify
this graphically if you don't believe it)

A mA = Am = mA181 + mA282 + mA383 (3)
—
3A >
2
Fig. 11.

Division of a vector A by a scalar m is the same as multiplying A by 1/m: A/m = (1/m)A. Multiplying a
vector by O gives the "null" vector. The magnitude of the null vector is 0 and its direction is
unspecified. Division of a vector by 0 is undefined.

Magnitude of a Vector: The magnitude A of a vector A is the square root of the sum of the squares of
its components: A = (A12 + A22 + A32)1/ 2 This result comes directly from the Pythagorean theorem. For
example, the distance r from the origin for an object whose position is r = x;8; + x28; + x303 is simply r
= (x12 + x22 + X32)1/2 (Figure 12). The speed v of an object whose velocity is v = v18; + v28, + v303 is v =
(V12 + V22 + V32)1/2.
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Fig. 12. The magnitude r of the position vector r is (x> + x2” + x3°)"/2.

Scalar and Vector Fields: In a scalar field, each point in space gets a scalar value. For example, a
constant temperature field 7 can be written 7(x;,x,,x3) = K, where K is a constant. This expression
assigns the same temperature K to every point in space. For a varying temperature field 7(x,x;,x3)
would vary with position; for instance, T(x;,x2,x3) = x13x2 - x32.

Writing out (x;,x2,x3) to refer to a point in space can get tiresome, and often it's simpler to just write r
to denote position. Let's say we have a scalar field S. Then the notations S(x;,x,,x3) and S(r) are
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equivalent, with the notational convention that the position vector r replaces the list of coordinates
X1,X2,X3.

In a vector field, each point in space gets a vector assigned to it. The set of position vectors r represents
a vector field, since each point in space has a vector r assigned to it (Figure 12). Similarly, a velocity
vector field can be defined. An example of a constant velocity field is v = 3.7158; - 0.59, + 1.28;. The
velocity field is constant, or "uniform", since the components of v do not vary with position. An
example of a varying velocity field is

vir)={1- cos[2tan'1(x;/xl)j 10 - sin[2tan'1(x;/xl)j o €))
(0 +x2) (1 +x2%)

Equation (4) refers to so-called "incompressible potential flow" of fluid around a cylindrical object. In
equation (4), the velocity component along the &5 direction is zero, and the notation v(r) instead of
v(x1, x2) has been used to indicate the position dependence of v.

Vector Dot Product: The dot product of two arbitrary vectors A and B is written A ¢ B. Taking the dot
product of two vectors produces a scalar. The magnitude of the scalar S = A ¢ B equals the product of
the magnitudes of A and B and the cosine of the angle &between A and B (Figure 13). In equation
form,
S=A*B=ABcosf 0<f<m 5)
A

-

B
Fig. 13.

From equation (5) it follows that the dot product is commutative, A * B = B * A. The dot product is
also distributive;iec. A*(B+C)=A*B+A+C.

The dot product of two vectors that are perpendicular to one another is 0 since cos(90°) = 0. The dot
product of two parallel vectors pointing in the same direction is the product of their magnitudes since

cos(0%) = 1. The dot product of two parallel vectors pointing in opposite directions is the negative of
the product of their magnitudes since cos(180°) = -1. From equation (5) it follows that

01°01=0,°0,=03°8=1 (6)
(remember that the basis vectors have unit magnitudes) and
01°0,=8,°0:=8;°8,=0 (7

since basis vectors pointing along different CCS axes are perpendicular. Using equations (6) and (7)
and the distributive law, we can show that for two arbitrary vectors A and B
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A :A181 +A282 +A383 B= 3181 + 3282 + B383
A*B= (A181 +A282 +A383) o (3181 + 3282 + B383) (83.)
= A181 b (3181 + 3282 + B383) +A282 ® (3181 + 3282 + B383) +A383 b (3181 + 3282 +
B383) (8b)
A*B :AlBl +Asz +AgB3 (80)

In arriving at equation (8c), we used the fact that dot products between perpendicular basis vectors are
zero. Equation (8c¢) states that the dot product between two arbitrary vectors can be simply calculated
by summing the products of their respective components. The values produced by equations (8c) and
(5) are identical, and either equation can be used to calculate the dot product.

Use of the Dot Product: Dot products are convenient for obtaining the magnitude A of a vector A:
A=A A)2=(A2+A,2 + A" )

Dot products are also useful for obtaining the component of a vector A along an arbitrary direction a.
This component is often called the "projection of A onto the direction a". Imagine that an object travels
with a velocity

V= V181 + V282 + V383.

To obtain the projection of v along a particular direction, we form the dot product of v and a unit vector
pointing along the desired direction. For example, if we want the speed with which the object moves
along the x; direction, we get

81 *vV=YV]

Indeed, v, is the velocity component that tells us how fast the object advances in the x; direction. For a
less trivial example, let's say we want the speed of the object in the direction specified by an arbitrary
unit vector n = m8; + 128, + n38s. Since n is a unit vector it will be true that (n;> + ny> + n3>)"? = 1. The
speed v, of the object in the direction specified by nis v, = n * v =n;v| + nyv; + n3v3. We could also
have used v, = v cos @, where @1is the angle between v and n (the magnitude » is not explicitly shown in
the expression v cos@since it is unity).

The use of the dot product to obtain vector projections onto particular directions is perhaps best
illustrated graphically, as in Figure 14. Figure 14 shows how the dot product can be used to calculate
the speed of a fluid perpendicular to a surface by dotting the velocity v of the fluid with a unit vector n
that is perpendicular to the surface. Such dot products will be important in calculating the flux of mass,
energy, or momentum across a surface due to material transport, for example. Because f1is greater than
90° in Figure 14, the dot product v cos@ will have a negative value. The absolute value of the dot
product equals the length of the projection of v onto the line along which n lies, as drawn in Figure 14.
You may have seen similar diagrams in physics, where the component of a force F along a particular
direction was given by F * n = F cosé, where n pointed along the desired direction and € was the angle
between F and n.
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Cross Product: The cross product of two arbitrary vectors A and B is a vector C written C = A X B.
The magnitude of C is the product of the magnitudes of A and B and the sine of the angle &between A
and B. In equation form,

C=ABsinf 0<fO<m (10)

C becomes the null vector when A and B are parallel (since sin0° = 0). For all other cases, (i.e.
nonparallel A and B), the direction of C is perpendicular to the plane formed by A and B and such that
A, B and C form a "right-handed" system. In a right-handed system, the thumb of your right hand
points in the direction of the resultant vector (C) if the other fingers of your right hand curl from the
first vector in the cross product (A) toward the second vector of the cross product (B) through the angle
0. The right-handedness of the cross product is illustrated in Figure 15. Note that 81is always defined so
that it is less than 7.

Fig. 15.

Consideration of Figure 15 shows that A X B =- B X A, so that the vector product is not commutative.
The distributive law does hold,ie. AX (B+ C)=A XxB + A xC.

Since basis vectors of the same type are parallel in the CCS, it follows that
81X81=82X82:83X83=0 (11)

Furthermore (use the right hand rule and the definition of the cross-product to verify these
expressions):

0 x®h=08 &HXxd=-8 ©Hx&yh=08 &Xxsyh=-0 #Hxd=858 dxdh=-0 (12)
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The general formula for the cross product of two arbitrary vectors A and B can be derived using
equations (11) and (12):

A :A181 +A282 +A383 B= 3181 + 3282 + B383
AXB= (A181 +A282 +A383) X (3181 + 3282 + B383) (133.)
= A181 X (3181 + 3282 + B383) +A282 X (3181 + 3282 + B383) +A383 X (3181 + 3282
+ B303) (13b)
= A1B103- A1B38; - A2B163 + A2B30; + A3B18; - A3Brd,
A X B = (AyB5 - A3B>)0; + (A3B) - A1B3)& + (A1B> - A>B1)d3 (13¢)

In arriving at equation (13c), we used equations (11) and (12) to evaluate the cross products between
basis vectors. Equation (13c) can be used to calculate the cross product between any two arbitrary
vectors. Note that the formula (13c) can be obtained from the expression

8 98, &3
AxXB=|A, A A (14)
B, B, B;

using standard rules of determinant evaluation. If you are familiar with determinants, Equation (14) can
help you remember the formula for calculating the cross product.

Use of the Cross Product: One way cross products are useful in transport phenomena is in
determining a quantity called "vorticity". Vorticity will be introduced later on in the course. Also, recall
from physics that torque T and angular momentum L are cross products. For instance, the angular
momentum of an object is

L=r'xp

where r' is the position of the object (relative to the point around which the angular momentum is
being calculated) and p is the linear momentum of the object.

Vector Division: Division of a vector A by another vector B, A/B, is not defined.

Notational Conventions: Often, "shorthand notations" are employed to make handling vector
equations easier and more compact. Here two notational conventions will be introduced: (1) the
Kronecker delta and (2) the summation convention. Both are widely employed by engineers and
scientists and are routinely used in books that make use of vector analysis.

The Kronecker delta d; is defined as follows:

Si=1ifi=j
8i=0 ifi#] (15)
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For instance, using the Kronecker delta we can write equations (6) and (7) as
di*d=0; 1ij=1.3 (16)

Equation (16) states that the dot product of a basis vector §; with a second basis vector §; is O unless i =
J, in which case the dot product is unity.

The "summation convention" states that an index is to be summed over whenever it appears twice in a
term. Thus the summation convention allows A = A;8; + A28, + A3 to be written as A = A;9;. Because
the index i appears twice in the term A;;, it is understood to be summed over. Many of the earlier
equations can be rewritten in a more compact form using the summation convention. For instance,
equation (8c) for the dot product becomes A * B = A;B;.
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Vector Calculus

Vector Differentiation: Let's first consider the derivative of a scalar S that depends on n variables ¢,
q2s-- -, gn (the g's could be coordinates, such as xj, x,, and x3; as well as other variables such as time;
temperature; pressure etc.). As you have learned in calculus, the derivative of S(qi, g2,..., gn) With
respect to one of the variables, say g;, is defined as

a_S = lim 5(91,92’---,611 +Aqi,m,qn)—5(611,92,...,%,...,%)
aQi Agi —0 AQi

(7)

oS
As an arbitrary example, if we have S(q1, q2, 3, q1) = g1 + In(q2/ ¢3)/ qa, then — =1, B_S !

dq1 g, q,q,
etc. The derivative of a vector A(g1, ¢,..., ¢n) is defined in an analogous fashion, except that each
component of the vector is differentiated. In equation form,

OA lim A(q1.92,-:9;i +Agi,--.qn) —A(q1,925--5Gi5--:qn)
9q;  Ag;—0 Ag;

For A = A1, + A28, + A38;, the above equation can be written

0A A 2,42 q; +Ag; ..., —-A 3D seeesGisenns
9A 1(91,92--:9; +Aqi,--.qn) = A1(G1,92, -, G; qn)81 N
9q;  Agi—>0 Ag;
A 2,42 5--»q; +Aq;s..., - A 20D seeesQirenns
lim A2041:9259i + AGis-qn) = A2 (41,924 qn)82 N
Agi =0 Ag;
A »d25-q; +Ag; ..., —-A 5D seeesGirenns
im 23041925243 + AGi»-qn) = A3(91,92 -4 qn)83 N
Agi =0 Ag;
0A (0A 0A 0A
2B
dg; \dg; dg; dg;
Using the summation convention, equation (18) is written
B_A = (%jﬁ (CCS) (19)
dgi \9¢q;) !

Note that the derivative of a vector is also a vector. For the present we are only working in the CCS, in
which the basis vectors are constant (i.e. their direction and magnitude do not change). For this reason,
derivatives of the basis vectors do not appear in equations (18) and (19). In other coordinate systems,
such as cylindrical and spherical coordinate systems, the direction of a unit basis vector may be a
function of position, and this dependence will have to be accounted for when vectors are being
differentiated with respect to spatial coordinates. For now, it is important to realize that equation
(19) is specialized to the CCS and that later it will have to be generalized when other coordinate
systems are considered.



R. Levicky, CBE 6333 10

0A
Having defined the derivative of a vector, — , we can also list some useful formulas for manipulating

dgi
vector derivatives. These include:

J (A+B) oA + oB (21a)
9 _o 9P a
dg; dg;  9g;

i(A B)=A a_B+a_A B (21b)
dg; ~ 7 dgq;  9q;

J (AXB) AXaB+aAXB (21¢)
9 - 9b  9Aa c
dg; dgi 9q;

9 say=s AL 95 21d)
dg; "~ 9q;  9g;

In these formulas, A and B are arbitrary but differentiable vectors, and § is an arbitrary but
differentiable scalar. Second and higher order derivatives can be formed by repeated application of
equation (19).

As an example of vector differentiation, let's first consider the position vector r = x18; + x28, + x308s.
or

ax 1

the magnitude and direction of &, are constant (therefore there is nothing that can be further
differentiated). As a second example, let's suppose that a particle in a fluid moves so that its position r;,

dr
varies with time 7 as r, = & + 1/t & + (1-1) 85. The derivative d_tp = 218, - 1/°8, - 8; is the velocity v

Using equation (19), = 9. In this case, second and higher order derivatives are zero, since both

of the particle. Differentiating again with respect to # would give us the acceleration of the particle.

Since r;, depends only on ¢, the ordinary derivative symbol G was used instead of the partial

derivative symbol —.

ot

Differentials of Vectors and Scalars: A "differential" is an infinitesimal (arbitrarily small) change in
a quantity. The differential dS of a scalar S(q, ¢2,..., ¢n) is (note the use of the summation convention;
hereafter, its use will not always be pointed out)

oS .
dS =—=——dg; i=1.n 22)
dq;

In Equation (22), dS = S(q1+dq1, g2+dqa,..., gi+dqn) - S(q1, q2,- - ., gn), and dg; represents an
infinitesimally small change in the variable g;. Equation (22) states that differential changes in the
variables ¢; (1 = 1..n) on which § depends give rise to a differential change dS in S. This resultant
change dS equals the sum of n terms, where each term is a product of the rate of change (slope) of S
with respect to one of the g; multiplied by the corresponding change dg; in that variable.
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As an example of equation (22), let's imagine that temperature 7(r) depends on position as 7(r) = X2+

xox3. Then if an observer walks from r to r + dr - in other words, the observer's position changes from
(x1, X2, x3) to (x1 + dxj, X2 + dxp, x3 + dx3) - the observer will experience a differential change in
temperature equal to d7 = 2x;dx; + x3dx, + xpdx;. Note that this statement is only accurate for truly
differential (i.e. infinitesimal) changes.

For a vector A(qi, g2,..., ¢n), infinitesimal changes dg; in the variables g; (i = 1..n) will give rise to
infinitesimal changes in each of the vector components. Therefore, if A(qi, g2,..., ¢n) = A1(q1, G2,-- -»
qn)®1 + Ax(q1, gas..., g)& + A3(q1, q2...., qn)8s, then the differential of A is

dA:dA181+dA262+dA383 (23)
where, for j=1, 2 or 3
aAj
dA; = —dg; (CCS) 24)
b og;

Again, caution must be exercised in coordinate systems other than the CCS, since the basis vectors may
then also change with the variables g; (i.e. if some of the g; are coordinates).

The Vector Differential Operator, ''Del'': The Del operator is denoted by the symbol V, and in CCS
it is defined by

0 0 d 5 20
_axl 1+8x2 2+

From the definition, we see that the V operator takes derivatives with respect to system coordinates, i.e.

s 83 (CCS) (25)

with respect to position (in fact, some texts prefer the notation — instead of V, where r is the position

or

vector). V has units of inverse length.

The Gradient: Let S(xi, x», x3) be a differentiable scalar field. Then the gradient of S(xy, x», x3) is
written VS (sometimes the notation 'grad S ' is used) and is defined by

oS oS oS oS
VS = o 8= o 8 + o 5, + o 83 (CCS) (26)

The gradient VS is a vector defined at every point at which § is defined and differentiable.
Physically, VS is the rate of change of the scalar S with position. For example, if S is the pressure p,
then Vp would be the pressure gradient. If the pressure is measured in pascals (Pa) and distances along
the coordinates in meters (m), then Vp would have the units Pa/m. For instance, if Vp = 3 §, Pa/m, then
an observer walking along the §, direction would feel the pressure increase at a rate of 3 Pa/m.

The rate of change of S in a direction specified by a unit vector a is given by the dot product a ¢
VS. Because the magnitude of a is unity, the dot product simply represents the projection of the vector
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VS onto the direction specified by a (cf. Fig. 14). In the pressure example, if the observer walked in the
direction of a = 3/58; + 4/58, (you can verify that a has a unit magnitude), then the rate of change in
pressure that the observer would experience is a ® VS = (3/58; + 4/58;) * 3 &, = 12/5 Pa/m (equation
(8c) was used to calculate the dot product). Note that the vector a has no units and is simply used to
specify direction. If the observer walked in the &; (or 83) direction he/she would experience no change
in pressure. Of course, S can be any scalar quantity, and pressure was simply used as a convenient
example to illustrate the physical meaning of the gradient. Since a * VS is greatest when a points in the
same direction as VS (why? see equation (5)), it follows that the steepest rate of change in S occurs
in the direction specified by its gradient.

Returning to the concept of differentials, the differential dS = S(r + dr) - S(r) corresponding to
an infinitesimal change in position dr = dx; 8; + dx; &, + dx3 &5 is

dS=VSed aSS-de anx anx CCS 27
B r_axi P O Jéj_axi ' ( ) @7

Let's review what was done in equation (27). Briefly, the summation convention and the Kronecker
delta were used to avoid writing out the full expressions for VS, dr, and their dot product. In detail:
after the second '=' sign the summation convention was used to represent V.S and dr. Note that different
indices were used for VS and dr (i was used for VS and j was used for dr). The indices must be
different since each component of VS needs to be dotted with each component of dr. In other words,
taking a specific component i of VS, we need to dot it with each of the three components j =1, 2, 3 of
dr. If instead i had been used as the index for both VS and dr, then we would be implying that the
component i of V§ needs to only be dotted with the corresponding component i of dr. Fortuitously, in
the case of equation (27), this would not produce an error; however, in general incorrect use of indices
will produce incorrect results. After the third '=' sign the fact that §; * §; = & (Equation (16)) was used.
Performing a mental sum over the j index and making use of the definition of the Kronecker delta, only
terms for which j =i survive (the rest are zero). After the fourth '=' sign, only these nonzero terms are
retained (we could also have summed over i instead of j, with the same end result except that j would
be the final index instead of i). You can also do the manipulations in equation (27) just as effectively
by writing out the VS and dr vectors in full, but you will have to write much more. Note that the final
expression for dS is identical with that obtained using the general equation (22) for the differential of a
scalar.

The Divergence: Let A(x1,x,x3) = A1(x1,%2,%3)81 + Ax(x1,%2,%3)8, + A3(x1,X2,X3)93 be a differentiable
vector field. The divergence of A is written VeA and is defined by

0A; 0A; 0A; O0A, O0A
ig _ 94 _0A dAp 3
axi éj B axi axl * 8x2 * 8x3 (CCS) (28)

J :
VeA = a—XiSi'AJSj =

The divergence is a scalar quantity. In deriving the final result in equation (28), similar manipulations
were used as for equation (27) (see above). VeA # AV since in A*V the Del operator does not operate

on the vector A (instead, A*V = A;— ). The divergence of a vector field is often encountered in

axi
transport phenomena (i.e. if Vev = 0 the fluid under study is incompressible, where v is the fluid
velocity).
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The Curl: Let A(xy,x0,x3) = Al(xl,)Cz,X3)81 + Az(xl,)Cz,X3)62 + A3(X1,)C2,X3)83 be a differentiable vector
field. The curl of A is written V X A and is given by the cross product of the Del operator with the
vector A

0 0 0
VxA= (axl &)+ o 3, + o3 53) X (A10) + A28; + A33)
_0A3 04y 0A; 0A3 0A; 04
=G - g G- g e (GRS he o) (29)

Equation (29) can be verified by a procedure analogous to that used in obtaining equation (13c) for the
vector cross product. The curl of a vector field produces another vector field. The curl is not
commutative so that V X A # A X V. Later we will encounter the curl of the fluid velocity, V X v.
When V x v = 0 the fluid flow is called "irrotational" and simplified approaches can be used to study it.
V X v is often called the "vorticity."

Formulas Involving V: There are many identities involving the V operator. Some of these are listed
below.

If S and R are arbitrary but differentiable scalar fields, and A and B are arbitrary but differentiable
vector fields, then

V(S +R)= VS + VR (30a)
Ve(A +B) = VoA + VB (30b)
VXx(A+B)=VxA+VxB (30c)
Ve(SA) = VS * A + S(Ve A) (30d)
V X (SA)= VS x A +S(V x A) (30e)
VeAXxB)=B+(VxA)-As(VxB) (30f)
VX(AXB)=(B+*V)A-B(VeA)-(As*V)B+A(V+B) (30g)
VA*B)=B*V)A+(A*V)B+Bx(VxA)+AXx(VxB) (30h)
V x (VS) =0 (30i)
Ve(VxA) =0 (30j)

For instance, from (301) we see that the curl of a gradient of an arbitrary scalar field is always zero, and
from (30j) that the divergence of a curl of an arbitrary vector field is always zero. The above
expressions are general in that they are not restricted to the CCS.

The Laplacian Operator: The Laplacian operator is written V2. In cartesian coordinates it is defined
by

v 82 82 82

_ + n (CCS) (31)
oxt  ox3 ox3
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The Laplacian of a scalar field S(x;,x,,x3) is
9%s  9%s 9°s

2
VS = 8x12 + ax% + ax% (CCS) (32)

The Laplacian of a vector field A(x,x;,x3) is (note the implied summation over 1)

. (074, %A, %4
VA= |55 5; (CCS) (33)
X1 X2 X3

Again, we need to keep in mind that definitions and operations with the V and V? as discussed thus far
are restricted to the CCS. While extension to other coordinate systems is not difficult, we need to first
thoroughly understand these operations in the CCS system.

Vector Integration:
Conservative Vector Fields and Line Integrals. Recall that the definite integral of a scalar R(g), where
R is the derivative of a scalar S(g) with respect to g (ie. R(q) = dS(¢)/dq ), is

RS 94 S(qH)

ds
[R@dg= [ ~dg= [ds=5(q,)-S(,) (34)
qaL qaL S(qL)

Also recall that graphically the integral has a simple interpretation: it is the area under the curve
R(g) in the region g1 < g < gu (Figure 16). In Figure 16 there are also drawn three rectangular elements:
the sum of the areas of the rectangles can be used to

A
approximate the value of the integral. In particular, the area R D ;
under the curve can be approximated as the sum @) a 112 \g'/\
/ «>| 3
N ] Aq
Area = i_Z‘iASi , < > g
- v q. dy

Here, g; is the value of ¢ at the midpoint of rectangle i, and Ag; is the width of rectangle i (in Fig. 16, i
ranges from 1 to 3 so that N = 3).

In the limit N — o the shaded area gets discretized into an infinite number of rectangles, each
possessing a differential (i.e. infinitesimal) width dg;. Also, the magnitude of each rectangle area AS;
approaches a differential value dS; = R(g;) dg;. In this limit, the sum becomes exactly equal to the
integral,
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N S(f]H)
lim Y AS;= [dS=S(g,)-5(q,) (35)
Nz Sy )

The main point to recognize is that we can think of the integral in (34) as the sum of an infinite
number of infinitesimally small increments dS that, when added together, sum up to the total difference

given by S(QH )‘S(QL ) .
Now consider the gradient vector field

A(x1,x2,x3) = VS(x1,x2,x3) (S(x1,x2,x3) is a scalar field that depends on position r)
Then Aedr=VSedr=dsS (see equation (27))
In words: if an observer walked from r to r + dr, he/she would observe a change in S from S(r) to S(r)
+ dS, where dS = VS ¢ dr. Do not let the notation r, dr etc. confuse you; r is simply position as
specified by the vector r = x;8; + x28, + x30; and dr is an infinitesimal change in position specified by

the (differential) vector dr = dx;&; + dx,8, + dx36s.

The integral of A * dr = A;dx; along a path that starts at an initial position ry to a final position
ry is called a "line integral" and is written

rfA -dr (36)

When A = VS, equation (36) can be manipulated to yield

XHX2H X351

[A-dr=" [(Adx +A,dr, +Adx,)

S(r,) 37
= [dS=S(r)-Sr)=S(x,. %, ,%,)-S(x, %, %, )
S(r,)

IMPORTANT: When the vector field A can be expressed as the gradient of a scalar field, A = VS (as
in equation (37)), A is said to be "conservative" and S is termed the "scalar potential" of A. The line
integral of a conservative vector field only depends on the starting and ending points rp, and ry, and is
independent of the particular path along which the integral is performed (Figure 17 left). This
independence of path is the reason why we did not have to specify a particular path in equation (37)
along which the integral is to be performed. Clearly, the line integral of a conservative vector field A =
VS around a closed path, i.e. when rp = ry, must be zero (Figure 17 right):

jSCA dr=0 (38)
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w

Fig. 17. The line integral of a conservative vector field from r to ry will be the same regardless of
what path is followed (three possible paths are sketched in the left figure). The line integral of a
conservative vector field around any closed path will be zero (two examples of a closed path are
sketched in the right figure).

The circle on the integration symbol, § , indicates that the integration is around a closed curve C. Note
C
that A = V.S must be defined for every point on the curve C as well as in the region enclosed by C.

Given a vector field A, is there a test to tell whether A is conservative? One way to show that A
oS
a_xi )
we could integrate A; with respect to xj, A, with respect to x,, and Az with respect to x3 to find S,

remembering that the "constants of integration" in each of these cases are functions of the variables
with respect to which we are not integrating. Alternately, it can be shown (see also identity (301)) that

is conservative is to show that it can be derived from a scalar field S. Since the component A; =

A is conservative if and only if VX A =0

The "curl test" is often the easiest way to find out whether A is a conservative vector field. For
example, the curl test can be used in to determine whether a fluid flow is "irrotational", i.e. whether the
condition V X v = 0 holds (v is the velocity field of the flow). If it does, then the velocity v is a
conservative vector field and therefore can be derived from a scalar potential @, where v =V @. Not
surprisingly, @ is called the "velocity potential."

We can also evaluate line integrals of nonconservative vector fields. Nonconservative vector
fields cannot be expressed as a gradient of a scalar field. The value of nonconservative vector line
integrals will depend on the path taken between the initial and final positions, and the particular path
taken must be explicitly specified when performing the integral. Typically, the path would be
parametrized by a variable ¢ (¢ could be time, for example) so that r = r(g) = x1(¢)d; + x2(¢)d, +
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x3(¢)d; and dr = (%)dq o + (%qu o+ (%]dq 0;. The line integral J. A -dr is then written in
q q q

L

qu

the form j (Al.(q)

qL

d X (q)
dg

jdq and is performed from gy to gy.

Surface Integrals. Let B(x1,x2,x3) be a surface (ex. x12 + x22 + x32 =@ specifies a spherical surface for
which the sphere radius equals @). If the surface is closed, then we will call the outer side of the
surface the positive side (Figure 18). If the surface is not closed, then we arbitrarily choose one of the
sides to be "positive". Let n be a unit vector that is perpendicular to the surface, and that points in the
"positive" direction (Figure 18). n is called the "positive unit normal."

Fig. 18. For a closed surface, such as the sphere on the left, the positive unit normal n points outward
as drawn. For the open surface on the right, either the top or the bottom side could have been chosen as
the positive side. In the drawing, the top side was taken to be positive.

A surface B can be subdivided into arbitrarily small differential surface elements dB. The sum

of all the dB elements adds up to the total surface area; i.e. H dB = surface area, where the integral is
B

taken over the entire surface B. When deriving some of the basic rules of transport phenomena, we will

be particularly interested in surface integrals of the type

[[AnaB (39)
B

This type of integral is often called the "flux" of A over the surface B. The reason for this
terminology is relatively straightforward. Let's say A is the velocity v of a fluid, A = v. Then v(r) * n is
the component (projection) of v in the direction of n at point r (Figure 19). In other words, v(r) * n is
the speed of fluid particles perpendicular to the surface at point r (remember that n has a magnitude of
unity, and points perpendicular to the surface). For instance, if v and n are orthogonal to each other at
r, then v(r)* n = 0 and no fluid particles are passing across the surface at r (Figure 20). If v and n are
parallel to each other at r, then at point r the fluid particles pass across the surface with a speed v.

IMPORTANT: when we multiply v(r) * n by the (infinitesimal) surface area dB, we get the rate of fluid
flow through the area element dB in units of volume/time (Figure 19). In other words, v(r) * n dB (you
should check that the units are length3 /sec) is the rate at which fluid volume sweeps across the area dB
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at point r. If all such (infinitesimal) volume flows are summed over the entire surface B, what is

equivalent to performing the integral I j v-ndB , the result is the net volumetric flow rate of fluid
B
across the surface B. In these types of integrals, n dB is sometimes simply written as dB.

Fig. 20.

Given a differentiable function f(xi, x», x3) = constant that specifies a surface B (ex. a spherical
surface would be specified by f= x;% + x,° + x3° = @), the unit normal n can be constructed using the
gradient Vf of f(an example is given below). Note that Vf points in the direction of n since Vf is
perpendicular to the surface. The reason why V£ is always perpendicular to the surface can be
explained as follows. Since f has a constant value on the surface, its rate of change along any direction
that is tangential (parallel) to the surface must be zero. Therefore, Vf, which is the rate of change of f
with position, cannot have a component that is tangential (parallel) to the surface. In other words, Vf
must be perpendicular to the surface. To derive n from Vf, Vf still needs to be divided by its
magnitude in order to produce a unit vector. In summary, a unit normal vector n to a surface can be
calculated using

n = V7 / (VpVH- (40)

As an example of a surface integral, let's take a velocity field v = 28; m/s and a surface B
specified by x; + x, = @ meters, where the constant @ is greater than 0. We also confine B to the
region of space for which 0 < x3 < 1 m and xi, x, > 0. The resultant surface and velocity are sketched in
Figure 21.

To calculate the unit normal n to the surface B, we use equation (40)

n=V(x +x)/ (V(x;+x) V(x; +x)"”
= (81 +8)/ (81 +8) « (8§ +82)"* = (8 + &) /2"
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Fig. 21.

Therefore, n, the unit normal to B, is n = (§; + &) / 2""* (you can check that the magnitude of n is
unity). Using equation (8c), it is straightforward to calculate that v  n = 2/2""* = 2"> m/s. The volume
flux of fluid through the surface B then becomes

[[v-nap=2" [[aB=2" 2" ®)=20 m’s
B B

We used the fact that the area of the surface, given by H dB, is equal to 2'2 @ m?. In this case the area
B
can be calculated from simple geometrical considerations - see Figure 21.

Volume Integrals. An example of a vector volume integral is (note the summation convention)

j‘[jAdvzsij‘[j A;dV 1)

V is the volume of space over which the integration is carried out, and A is an arbitrary vector. For
example, let's say a force per unit volume F = 2x1x3 8, - x; &> + x22 83 N/m? acts on material inside a
volume V, where V is enclosed by the surfaces x; =0m, x, =0 m, x, =6 m, x3 = xlz m, and x3 =4 m
(see Figure 22).

To find the total force F,; on the material in V, we need to perform a volume integral,

2 6 4 2 6 4
Fit = j I IFdV = j I I(ZX1X381 + X182 + X%83)dX3d.X2d.X1
x1=0 xp=0 x3=x% x1=0 xp=0 x3=x%
2 6

= J- .[ [(16xy - xsl )01 — (4xy — x? )0, + (4x% - xlzx%)ﬁg,]dxzdxl
x1=0 xp=0
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2
= [ 196x, - 617 )81 — (24x) —6x7 )8 + (288 - 727 )83 Jdxy
x1=0

Fiot = (192 -64) 8, - (48 -24) 8, + (576 - 192) &3 = 128 8, - 24 &, + 384 &5

Fig. 22.

The Divergence Theorem:
The Divergence Theorem states that if V is a volume bounded by a closed surface B and A(x,x;,x3) is a
vector field with continuous derivatives, then

jlng-ndB:jyv-Adv (42)

In equation (42), n is the positive (outward) unit normal vector to B. Equation (42) states that the net
flux of A through a closed surface B is equivalent to the integral of the divergence of A over the
volume enclosed by that surface. The Divergence Theorem will be used extensively in deriving so-
called differential balances on mass, energy, and momentum.

Stoke's Theorem:
Stoke's Theorem states that if B is an open surface bounded by a closed, non-intersecting curve C
(Figure 23), and if the vector field A has continuous derivatives, then

ﬁcA-drzﬂ(VxA)-ndB (43)
B

In equation (43), the integral around C is performed in the "positive" direction. If you point the thumb
of your right hand in the direction of the normal n, then the other fingers of your right hand will curl in
the positive direction. As V X A is a vector, the method of evaluating the surface integral on the right
side of equation (43) is the same as for any other flux integral. First, you would calculate the curl of A,
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then dot the resultant vector into n, and finally integrate the result over the surface B. Stokes' Theorem
will be useful later in the course when we study potential flow.

positive direction

Fig. 23.



