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Introduction to Turbulent Flow 

 

Turbulent Flow. In turbulent flow, the velocity components and other variables (e.g. pressure, density 

- if the fluid is compressible, temperature - if the temperature is not uniform) at a point fluctuate with 

time in an apparently random fashion. In general, turbulent flow is time-dependent, rotational, and 

three dimensional – thus, methods such as developed for potential flow in handout 13 do not work. For 

instance, measurement of the velocity component v1 at some stationary point in the flow may produce a 

plot as shown in Figure 1. In Figure 1, the velocity can be regarded as consisting of an average value 

1v  indicated by the dashed line, plus a random fluctuation v1' 

 

 v1(t) = 1v (t) + v1'(t)          (1) 

 

Figure 1 

 

Similarly, other variables may also fluctuate, for example 

 

 p(t) = p (t) + p'(t)          (2) 

 

 ρ(t) = ρ (t) + ρ'(t)          (3) 

 

The overscore denotes average values and the prime denotes fluctuations. Turbulence will always 

occur for sufficiently high Re numbers, regardless of the geometry of flow under consideration. The 

origin of turbulence rests in small perturbations imposed on the flow; for instance, by wall roughness, 

by small variations in fluid density, by mechanical vibrations, etc. At low Re numbers such 

disturbances are damped out by the fluid viscosity and the flow remains laminar, but at high Re (when 

convective momentum transport dominates over viscous forces) they can grow and propagate, giving 

rise to the chaotic phenomena perceived as turbulence. Turbulent flows can be very difficult to analyze. 

In this handout, some of the simplest concepts pertinent to turbulent flows are introduced.  

 

Statistical Averaging of the Differential Equations of Fluid Mechanics. The differential equations 

of mass, momentum and energy balance express fundamental physical laws and therefore hold for 

turbulent flow just as they do for laminar flow. If all the perturbations acting on the flow can be also 

mathematically modeled, then these equations could be solved for the flow properties (velocity, 

pressure, etc.) of interest. However, this is generally too difficult a problem. An easier task is to solve 

"time-averaged" versions of these equations in which some of the fluctuation contributions are 

averaged out. As we shall see the solution to such equations provides less detailed, but still very useful, 

information. 
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Before considering how the differential equations should be time-averaged, it is helpful to establish 

several rules. First of all, we define a time-averaged quantity a (t) as the average of the instantaneous 

quantity a = a + a' over a time period T,  

 

 a (t)  ≡ ∫
+

−
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          (4) 

 

The period T  has to be sufficiently long so that the fluctuations in equation (4) are averaged to zero 

(Figure 2), 
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Figure 2. 

 

 

In other words, T must be of sufficiently long duration so that dividing ∫
+

−
ττ

Tt

Tt

da
5.0

5.0

)('  by T yields a result 

that is very close to zero. Furthermore, it will be assumed that the time period T is not so long that 

measurable changes in the average values (such as a ) would occur. Therefore, during the period T, the 

average value a  of the instantaneous quantity a can be viewed as constant. Using equations (4) and (5) 

and accepting these stipulations, it is straightforward to show  

 

 a b a a b b a a b b a b+ = + + + = + + + = +' ' ' '      (6) 

 

In equation (6), a and b are two fluctuating quantities. The time-averages of the fluctuations a' and b' 

were set to zero, in accordance with (5). Similarly, if c is a constant then 

 

 ca c a a ca ca ca= + = + =( ' ) '     (c is a constant)    (7) 

 

Another helpful formula is 
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ab a a b b ab a b ab a b ab a b ab a b ab a b

ab ab a b
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= +

( ' )( ' ) ' ' ' ' ' ' ' ' ' '

' '

0 0
 

             (8) 

Note that the time-average of the product of the two fluctuations a' and b' cannot be set to zero; for 

instance, if b = a, the product of the two fluctuations would be a a a' ' '= 2 . Clearly, a squared term like 

a'
2
 will always be positive, and so its time-average will not be zero. On the other hand, terms like a b'  

can be regarded as the average of a fluctuation a' multiplied by a constant value b . Therefore, just as in 

the case of the term ca'  in equation (7), the term a b'  is zero.  

 

Since the order of integration over τ and of differentiation with respect to a coordinate xi commute, 
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Equation (9) can thus be simply rewritten, 

 

 
∂

∂

a

xi
=

∂

∂

a

xi
           (10a) 

 

Equation (10a) implies that the ∇ operator, which takes derivatives with respect to position, also 

commutes with time-averaging:  

 

 ∇ = ∇a a            (10b) 

 

Similarly, it can be proven that 

 

 
∂

∂

a

t
=

∂

∂

a

t
           (10c) 

 

Equations (5) to (10) will be of assistance in time-averaging the differential conservation equations. 

 

 

i) Time-Averaged Equation of Continuity (differential mass balance). The differential equation of 

continuity is  

  vρ
ρ

⋅∇+
∂

∂

t
= 0         (11) 

 

Substituting ρ = ρ  + ρ', v = v  + v', and time-averaging: 

 

∂(ρ + ρ

∂
ρ + ρ

' )
'

t
+ ∇ ⋅ + =( )( ' )v v 0  �    

∂(ρ + ρ

∂
ρ + ρ ρ ρ

'
'

)
( ' ' ')

t
+ ∇ ⋅ + + =v v v v 0   (12) 
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Simplifying,  

 

 
∂ρ

∂
ρ + ρ

t
+ ∇ ⋅ =( ')v v' 0          (13) 

 

For an incompressible fluid, ρ is a constant and ρ' is zero; therefore, the differential mass balance (13) 

becomes 

 

 ∇• v  = 0    (incompressible fluid)     (14) 

 

 

ii). Time-Averaged Equation of Motion (differential momentum balance). The fluid is assumed to be 

Newtonian, incompressible, and of constant viscosity. The differential equation of motion is then given 

by (note that the convective term v •∇∇∇∇v can only be directly expanded in Cartesian coordinates)  

 

 ρ
∂

∂

v
v v

t
+ ⋅∇ =









 B v− ∇ +p µ∇2         (15) 

 

The body force is assumed to be gravitational only, and thus equal to -ρg which does not fluctuate for 

an incompressible fluid. Substituting v = v  + v' and p = p  + p', followed by time-averaging yields 

 

 ρ
∂(

∂

v v
v v v v

+
+ + ⋅∇ +









 =

' )
( ') ( ')

t
)'()'( 2 vvB +∇µ++∇− pp    (16) 

 

which simplifies to 

 

 ρ
∂

∂

v
v v v v

t
+ ⋅ ∇ + ⋅∇









 =' ' B v− ∇ +p µ∇2        (17) 

 

From the continuity equation for incompressible flow,  

 

 ∇ • v = 0   

 

what implies 

 

 ∇ • ( v  + v') = ∇ • v  + ∇ • v' = 0        (18) 

 

From equation (14) above, for incompressible turbulent flow ∇• v  = 0. When substituted into equation 

(18) this implies 

 

 ∇ • v' = 0           (19) 
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Since ∇ • v' equals zero, adding v v' ( ' )∇ ⋅ to v v' '⋅∇  on the left of equation (17) will not alter the 

equation. Furthermore, these two terms can be combined using the vector identity v'(∇ • v') + v' • ∇v' 

= ∇ • v'v', so that v v' ( ' )∇ ⋅ + v v' '⋅∇ = ∇ ⋅ v v' ' . With these modifications, equation (17) becomes 

  

 

 ρ
∂

∂

v
v v v v

t
+ ⋅ ∇ + ∇ ⋅









 =' ' B v− ∇ +p µ∇2       (20) 

 

Most often, the term ∇ ⋅ v v' '  is written on the right hand side, with the density ρ (a constant by 

assumption) inside the divergence, 

 

 ρ
∂

∂

v
v v

t
+ ⋅ ∇









 = B v− ∇ +p µ∇2 '' vvρ⋅∇−       (21) 

 

Equation (21) is the time-averaged differential momentum balance for an incompressible, constant 

viscosity Newtonian fluid. The quantity -ρv'v' in the last term of equation (21) is often referred to as 

the "Reynolds stress." The i,jth Reynolds stress is 

 

 (-ρv v' ' )ij = -ρv i v j' '           (22) 

 

Equation (21) is straightforward to expand in Cartesian coordinates. The easiest way to expand it in 

curvilinear coordinates is by adding the Reynolds stresses, '' vvρ⋅∇− , to the corresponding curvilinear 

momentum balance equation after replacing all velocities and pressures by their respective time-

averaged values. An example will be encountered later during the discussion of pipe flow when 

equation (21) will be expanded in cylindrical coordinates. When in doubt, one can always time-average 

the expanded curvilinear expressions directly. Also, if fluctuations in density or viscosity were allowed, 

then additional terms would have appeared in equation (21). Should it be necessary to account for such 

effects, the appropriate modifications can be derived following a procedure analogous to that used 

above.  

 

Physically, equation (21) states that the change in the average velocity that a fluid element moving at 

the average velocity would experience is equal to the sum of the time-averaged body, pressure, and 

viscous forces acting on the element, plus a contribution due to the Reynolds stresses. The negative 

divergence of the Reynolds stresses represents convective momentum transfer due to the random 

motion of macroscopic fluid packets (eddies). Figure 3 illustrates momentum transfer due to this 

random motion. For instance, if a fluid packet is transferred by a turbulent fluctuation from position y2 

to y1 as illustrated in the figure, then the momentum in the x direction at y1 will be increased since the 

incoming fluid packet has a greater x-momentum than the fluid being displaced. It is this turbulent 

motion of the fluid packets that makes for a more effective momentum (as well as mass and energy) 

transport than in laminar flow.  
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 Figure 3 

 

Using analogous procedures, one could also develop equations for a time-averaged differential energy 

balance. The remainder of the handout will focus on understanding turbulence as it manifests in 

momentum transport.  

 

 

The Stress Tensor in Turbulent Flow. The stress tensor for a Newtonian fluid is given by 

 σij = − pδij − (2/3) µ (

k
x
k

v

∂

∂
) δij + µ (

∂

∂

vi

jx
+

∂

∂

v j

ix
)      (23) 

It will be assumed that the fluid is incompressible (∂vk/∂xk = 0) and of constant viscosity. Substituting  

p = p  + p', v = v  + v', and time averaging,  

 

 σij = − p δij + µ (
∂

∂

v

x
i

j
 + 

∂

∂

v

x

j

i
)        (24) 

 

Using similar manipulations as in handout #8 where the differential momentum balance was derived 

for a Newtonian fluid, we could show that the first term in equation (24) gives rise to the − ∇ p  in the 

time-averaged momentum balance (equation (21)) while the second term gives rise to µ∇2 v . As 

discussed earlier, this second, viscous stress term µ (
∂

∂

v

x

i

j
 + 

∂

∂

v

x

j

i
) is often said to cause momentum 

transport by "conduction." Conduction of momentum results from molecular level processes such as 

the interchange of fluid molecules between parts of fluid moving at different speeds, or from the forces 

generated by fluid molecules "rubbing" against each another. Because conductive momentum transport 

also occurs in laminar flow; it is customary to think of the viscous term µ∇2 v  in equation (21) as 

laminar in nature. In contrast, the Reynolds stresses represent momentum transport due to the turbulent 

convection of macroscopic packets of fluid (eddies) as illustrated in Figure 3. The i,jth Reynolds stress 

can be designated by the notation σΤ
ij  

 

 σΤ
ij  = -ρv i v j' '           (25) 

 

and added to the Newtonian fluid stress (equation (24)) to produce the "total stress" σ ijTOT  
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 σ ijTOT  = σij  + σΤ
ij  = − p δij + µ (

∂

∂

v

x
i

j
 + 

∂

∂

v

x

j

i
)   −  ρv i v j' '     (26) 

The total stress includes not only viscous and pressure stresses, but also the convection term  −ρv i v j' ' . 

The total stress is symmetric. In terms of the total stress, the time-averaged differential momentum 

balance (equation (21)) is written 

 

 ρ
∂

∂

v
v v

t
+ ⋅ ∇









 = B + ∇ ⋅ σσσσ ijTOT         (27) 

 

 

For example, for flow in two dimensions that can be fully described by a time-averaged velocity 1v (x2), 

equation (26) predicts an effective total shear stress σ21TOT  

 

 σ21TOT  =  µ 
∂

∂

v

x
1

2
   −  ρv v' '1 2         (28) 

Equation (28) can be rewritten in terms of the eddy viscosity ε 

 ε =  − ( v v' '1 2 ) /
∂

∂

v

x

1

2









          (29) 

to appear as 

 

 σ21TOT  =  (µ  + ρε) 
∂

∂

v

x
1

2
   

A single eddy viscosity can be defined for any flow characterized by a single time-averaged velocity 

component that depends on a single coordinate variable. The purpose of the eddy viscosity is simply to 

rewrite equation (28) into a form similar to that for laminar flow. Next to a solid wall where the 

fluctuations in velocities, and thus the Reynolds stresses, must approach zero, the eddy viscosity will 

also approach zero. Therefore, in general, the eddy viscosity varies with position.  

 

If mathematical expressions were available for the Reynolds stresses, then they could be inserted into 

the equation for the stress tensor or the momentum balance. To avoid the introduction of new 

unknowns, such expressions should be written in terms of unknowns already present in the equations 

(such as derivatives of the average velocities). Indeed, several such semiempirical expressions for the 

Reynolds stresses are available. These expressions can be especially useful for modeling simple flows 

such as when a single time-average velocity component v1  varies with the distance x2 from a solid 

wall. We will consider two such relations for the Reynolds stresses. 

 

i). Prandtl's Mixing Length. Prandtl imagined that the eddies in turbulent flow move around similar to 

the manner in which molecules move about in a gas. By drawing an analogy to viscosity expressions 

for gases from kinetic theory, he suggested that 

  

 σΤ
21 = -ρv v' '1 2  =  ρL

2
 |d v1 /dx2| d v1 /dx2       (30) 
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where L is called the "mixing length." Usually, L is set to equal L = k1x2 where k1 is a constant and x2 

is the distance from a solid wall. Experimentally, k1 = 0.36 has been shown to work reasonably well. 

As required, the Prandtl Mixing Length expression reduces to zero at the solid wall. The analogy of 

momentum transfer by turbulence to that by molecules in a gas is rather poor, but expression (30) has 

nevertheless proven useful. Expression (30) is most accurate sufficiently far from the solid wall (i.e. in 

the turbulent core regime discussed later).  

 

ii). Deissler's Formula for the Region Near the Wall. Based on experimental results, Deissler suggested 

that near the pipe wall (i.e. in the laminar sublayer and the transition region discussed later) a more 

accurate expression for the Reynolds stress σΤ
21  than equation (30) is 

 

 σΤ
21 = -ρv v' '1 2  =  ρn

2 
v1 x2 (1 - exp{- ρn

2 
v1 x2/µ}) d v1 /dx2    (31) 

 

where the constant n has been experimentally estimated as n = 0.124. Again, the Reynolds stress 

reduces to zero at the wall. 

 

 

Turbulent Flow Past Solid Surfaces. 

i). Law of the Wall. Dimensional analysis can suggest which dimensionless groups affect the time-

averaged velocity distribution near a solid wall. The dependent variable of interest is the velocity v1  

parallel to the wall. The wall is assumed to be smooth and it is postulated that v1 will depend on the 

distance x2 from the wall, the fluid density ρ, the fluid viscosity µ, and the wall shear stress σ21W (i.e. 

v1 = f(x2, ρ, µ, σ21W) ) . σ21W is a quantity local to the wall region that is sensitive to, and therefore 

accounts for, the rate of fluid flow past the wall. Since the near-wall region is being analyzed, it is 

desirable to use local quantities like σ21W rather than quantities defined far from the wall (such as the 

maximum velocity).  

 

Applying the Buckingham Pi Theorem, ρ, µ, and σ21W are chosen as the repeating parameters (note: 

since x2 varies even if all other parameters are fixed, it is more convenient to regard it as an 

independent variable than as a parameter). From the dimensional analysis, two dimensionless groups 

emerge 

 

 v1 * = v1 / σ ρ21w /  =  v1 / vf  x2* = x2 σ ρ21w / µ    (32) 

so that 

 v1 * = f(x2*)           (33) 

 

The "frictional velocity" vf = σ ρ21w / has been introduced in equation (32). Equation (33) suggests 

that v1 * depends only on x2*, an observation that is sometimes referred to as the "Law of the Wall." 

Below, experimental evidence will be considered to see how well this law holds in practice.  
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ii). Isotropic versus Wall Turbulence. Far from any walls, turbulence can be isotropic in the sense that 

turbulent quantities become independent of direction. For instance, in isotropic turbulent flow, the 

mean squared velocity fluctuation 2

1'v  in the x1 direction would be equal to the mean squared velocity 

fluctuations v'2
2 and v'3

2 . On the other hand, near a solid surface the velocity fluctuations along 

different directions are influenced differently by the presence of the surface, and the turbulence 

becomes anisotropic. Such anisotropic turbulence is sometimes referred to as wall turbulence. Since 

typical flows of interest to chemical engineering involve contact with solid surfaces, anisotropic 

turbulence is of significant practical interest. Below, an example of experimental measurements of 

turbulence anisotropy in pipe flow will be presented.  

 

iii). Internal Turbulent Flow (Pipe Flow). Experiments indicate that the Law of the Wall holds quite 

well for pipe flow. The plot in Figure 4 shows data from pipe flow measurements for different systems. 

Indeed, the different experiments collapse onto a single curve when displayed as vz * vs. x2*. vz * is 

the time-averaged velocity in the z-direction (Figure 5), and the distance x2 from the pipe wall is related 

to the radial distance r from the center of the pipe by 

 

 x2 = R - r            (34) 

 

R is the pipe radius. The curve in Figure 4 is the function f in the relation zv * = f(x2*) (equation (33)). 

By pure fortuitousness, the law of the wall persists remarkably far from the solid wall, despite being 

specifically derived for the near-wall region only. In fact, it is often assumed to hold with negligible 

error across the entire cross-section of a pipe, 0 < x2* < R σ ρ21w /µ.  

 

vz*

x2*  
Figure 4 
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(Figure 4 is adapted from Schaum's Outline of Theory and Problems of Fluid Dynamics, W.F. Hughes, 

J.F. Brighton, McGraw-Hill, New York, 1991). 

 

 

 

   Figure 5 

 

The region right next to the pipe wall, where x2* < 5, is referred to as the laminar sublayer. Here, 

turbulent fluctuations are strongly suppressed due to the requirement that all fluctuations be zero at the 

wall. Since turbulence is suppressed, viscous effects dominate and the flow can be regarded as laminar. 

Momentum transport in the laminar sublayer occurs by viscous conduction (i.e. through the action of 

viscous forces between different layers of the fluid). Accordingly, the laminar sublayer is also referred 

to as the viscous sublayer. Next to the laminar sublayer is the transition region, approximately 

located between 5 < x2* < 30. In the transition region, conductive viscous and convective turbulent 

momentum transport are of comparable magnitude. The transition region is also known as the buffer 

zone. For x2* > 30 the flow is part of the turbulent core. Here, momentum transport by convective 

turbulent effects dominates while conductive viscous transport of momentum is of minor importance. 

The turbulent core is also referred to as the free turbulent or fully developed turbulent flow. The 

division between the three  regions is somewhat conceptual, and need not be taken too literally. The 

velocity profile in turbulent flow is flatter in the central part of the pipe (i.e. in the turbulent core) than 

in laminar flow (Figure 6) due to the extra equalization of velocities brought about by the turbulent 

"mixing" of the fluid.  

 

Figure 6. 

 

 

As indicated in Figure 4, Deissler's formula for the Reynolds stress (equation (31)) holds for x2* < 30. 

This region includes the so-called transition layer (5 < x2* < 30) as well as the laminar sublayer (x2* < 

5). The Prandtl mixing length expression (equation (30)) is most applicable to the turbulent core, x2* > 

30. By inserting the Prandtl mixing length expression for the Reynolds stress σΤ
rz  into the time-

averaged momentum balance (equation (21)) and then solving for the velocity vz * (x2*), under certain 

approximations (i.e. viscous momentum transport negligible in the turbulent core, incompressible flow) 

it can be shown that in the turbulent core the time-averaged velocity varies as 

 

 vz *= C1 ln(x2*) + C2    (turbulent core)    (35) 

 

where C1 and C2 are constants. Experimental measurements indicate that a suitable choice for the 

values of these constants is C1 = 2.5 and C2 = 5.5. Equation (35) obeys the expected dimensionless 

form expressed by equation (33), and fits the data of Figure 4 in the turbulent core region. Equation 
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(35) is called at times the Logarithmic Form of the Law of the Wall. An alternate expression that is 

more convenient to use mathematically, but does not fit the data quite as well as equation (35) is 

 

  vz * = 8.74 (x2*)
1/7

    (turbulent core)    (36) 

 

The time-average velocity profile vz * in the laminar sublayer and the transition region could be 

analyzed using Deissler's formula (equation (31)) for the Reynolds stresses and the time-averaged 

momentum balance. In particular, this approach can be used to show that in the laminar sublayer (x2* < 

5) the velocity profile obeys the simple relation vz * =  x2*.  

 Having outlined the behavior of the average velocity, we next consider the behavior of the 

fluctuation components of the velocities. Experimental measurements of the root-mean-square velocity 

fluctuations v Z'
2 , v r'

2 , and v'θ
2 are plotted in Figure 7. The fluctuations are displayed as a 

function of the distance x2/R from the pipe wall. The velocity fluctuations are normalized by the time-

averaged maximum velocity V z max  in the center of the pipe. From Figure 7, it is clear that maximum 

velocity fluctuations occur in the z-direction (i.e. the flow direction), while minimal fluctuations occur 

in the radial direction (i.e. perpendicular to the pipe walls).  The turbulence is anisotropic at all radial 

positions, with the degree of anisotropy increasing closer to the pipe wall. Although not shown in 

Figure 7, very close to the pipe wall all of the velocity fluctuations rapidly drop to zero as the transition 

region and laminar sublayer are entered. 
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Figure 7. (Adapted from Schaum's Outline of Theory and Problems of Fluid Dynamics, W.F. Hughes, 

J.F. Brighton, McGraw-Hill, New York, 1991). 

 

Figure 8 plots the Reynolds stress  -ρv x v z' '
2

 as a function of x2/R. The Reynolds stress is normalized 

by the wall shear stress σrzW. From Figure 8 it is evident that the Reynolds stress is positive. The 

positive magnitude can be expected on physical grounds. For instance, consider that a velocity 

fluctuation in the positive radial direction occurs at a point in the flow. A velocity fluctuation in the 

positive radial direction corresponds to a negative velocity fluctuation v'x2 in the x2 direction, v'x2 < 0. 

This is because the coordinate x2 = R - r points opposite to the radial coordinate r. As a result of the 

radial fluctuation, fluid will be brought to the point from a region that is closer to the center of the pipe. 

Since fluid toward the center of the pipe tends to flow faster in the z direction, the incoming fluid will 
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in general have a greater z-velocity than the fluid it displaces. Therefore, the incoming fluid will tend to 

produce a positive fluctuation v'Z > 0. Accordingly, the product v'x2v'Z of the radial and z-direction 

fluctuations tends to be negative, so that the Reynolds stress  -ρv x v z' '
2

 will have a positive value. 

 

-
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Figure 8. (Adapted from Schaum's Outline of Theory and Problems of Fluid Dynamics, W.F. Hughes, 

J.F. Brighton, McGraw-Hill, New York, 1991). 

 

Further insight into the Reynolds stresses can be obtained by referring to the time-averaged equation of 

motion. For constant viscosity, incompressible turbulent flow in a pipe, the z-component of the time-

averaged equation of motion (equation (21)) is 

 

ρ
∂

∂

∂
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∂
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







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− + + + +












 + + +

2

1 1

2 2

1 1
   (37) 

 

The last three terms in equation (37) involve the Reynolds stresses, where σrz
T = -ρv r v z' ' is the r,z 

component of the Reynolds stress and so on. Equation (37) was obtained by writing out the cylindrical 

z-component momentum balance in terms of time-averaged quantities and then adding the Reynolds 

stress terms according to equation (21). Since the flow is fully developed, vz and the Reynolds stresses 

do not vary with position z along the pipe. In addition, due to symmetry they also do not vary with θ . 

These considerations imply that vz  and the Reynolds stresses only depend on r. Furthermore, vr = vθ  

= 0 and body forces are neglected. With these simplifications, equation (37) becomes 

 

 

( ) ( )

0
2

1 1 1 1

0
1 1 1

= − + +












 + = − +









 +

= − + + = − +

d

d

d2

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d TOT

p

z

vz

r r

vz

r r

r rz

r

p

z r r
r

vz

r r r
r rz

p

z r r
r rz r r

r rz
p

z r r
r rz

µ
σ

µ σ

σ σ σ

T
T

T

( )

( )

  (38) 
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Going from the first to the second line in equation (38), the term µ (d vz /dr) was recognized as the 

time-averaged viscous stress σrz  for a Newtonian fluid. Then the viscous stress σrz and the Reynolds 

stress σrz
T were combined into the "total stress" σrzTOT  defined previously by equation (26), σ ijTOT  

= σij  + σΤ
ij . Integrating equation (38) and applying the "center of flow" symmetry boundary 

condition, σrzTOT = 0 at r = 0, yields 

 

σrzTOT  = (r/2) (d p /dz) = (1 − x2/R) (R/2)(d p /dz)  

  = (R/2)(d p /dz) −  x2/R (R/2)(d p /dz)       (39) 

 

Equation (39) states that the total shear stress σrzTOT decreases linearly as x2/R increases, with a slope 

given by  −(R/2)(d p /dz). In the turbulent core, σrzTOT ≈ σrz
T to a very good approximation since 

turbulent shear stresses dominate viscous shear stresses. Therefore, across the turbulent core, it is 

expected that the turbulent shear stress will vary linearly with x2/R. This is indeed borne out by the data 

in Figure 8. Also plotted in Figure 8 is the total shear stress, given by a straight line decreasing from 1 

at x2/R = 0 to 0 at x2/R = 1. It is clear that the approximation σrzTOT ≈ σrz
T holds across most of the 

pipe, since the curves for σrzTOT  and σrz
T  are coincident above x2/R > ~ 0.1 (for this particular set of 

measurements). For x2/R  < ~ 0.1 the flow passes from the turbulent to the transition and laminar 

sublayer regimes, and the Reynolds stress decreases due to its suppression by the vicinity of the solid 

wall.  

 

iv). External Turbulent Flow Over a Flat Plate. As discussed previously, external flow over a solid 

surface can be conceptualized as consisting of a potential flow and a boundary layer region. The 

potential flow region is laminar. The boundary layer will start as laminar at the upstream edge of the 

solid surface or body, but will turn turbulent once it exceeds a certain thickness. The position at which 

the laminar to turbulent transition occurs is denoted by x1 = x1tr as illustrated in Figure 9. If the length L 

of the plate is too short, so that L < x1tr, then the transition will not be reached.  

 

Figure 9 

 

 

Measurements on turbulent boundary layers on flat plates indicate that the Law of the Wall (equation 

(33)) holds very well, with experimental results looking very similar to those for pipe flow shown in 

Figure 4. In addition, the laminar sublayer, the transition region, and turbulent flow occupy similar 

distances from the plate as they did in the case of pipe flow: x2* < 5 for laminar sublayer, 5 < x2* < 30 
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for the transition region, and 30 < x2* < δ* for the turbulent region. Here δ* = δ σ ρ21w / µ  is the 

value of x2* at the outer periphery of the boundary layer. For x2* > δ*, the flow becomes laminar again 

as the potential flow region is entered. Note that x2* is as defined previously in equation (32), x2* = x2 

σ ρ21w / µ. Except at the outermost part of the boundary layer where the potential flow region is 

approached, the mean velocity in the turbulent region obeys the logarithmic form of the Law of the 

Wall given previously in equation (35),  

 

 v1 *= 2.5 ln(x2*) + 5.5         (40) 

 

Alternately, the power law expression (36) can also be used to represent the velocity profile in the 

turbulent part of the boundary layer,  

 

 v1 * = 8.74 (x2*)
1/7

          (41) 

 

 

Furthermore, in the turbulent part of the boundary layer similar anisotropy is observed for the time-

averaged fluctuations v'1
2 , v'2

2 , and v'3
2 as for the case of pipe flow (Figure 7). However, in 

contrast to pipe flow, due to the difference in flow geometry the total shear stress in the boundary layer 

does not decrease linearly with distance from the plate; rather, it decreases in a slightly sigmoidal 

fashion.  

 

Equation (41) is convenient for evaluation of the shear stress on the plate, σ21P, as well as the variation 

of the turbulent boundary layer thickness δ with position along the plate. Using the definitions of v1 * 

and x2* from equation (32), equation (41) becomes  

 

 v1 / σ ρ21P / = 8.74 (x2 σ ρ21P / µ)
1/7

       (42) 

 

At the outer edge of the boundary layer, v1 = Vo and x2 = δ so that 

 

 Vo / σ ρ21P / = 8.74 (δ σ ρ21P / µ)
1/7

       (43) 

 

Rearranging equation (43) to isolate σ21P produces 

 

 σ21P = 0.0225ρVo
2
 (µ / ρVoδ)

1/4
        (44) 

 

Division of equation (42) by (43) gives 

 

 v1 / Vo = (x2 / δ)
1/7

           (45) 

 

In handout 11, an integral momentum balance was applied to a control volume in the boundary layer to 

show that  
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 σ21P = ( )











∫ −
δ

ρ
0

2
d

11
1

xvv
o

V
dx

d
        (46) 

  

Time-averaging equation (46) replaces the instantaneous velocity component v1 with the time-average 

value v1 , 

 

 σ21P = ( )d

d
d

x
Vo v v x

1
1 1 2

0

ρ

δ

−














∫         (46) 

 

Note that a term - ρ 2
1'v  was omitted in the integral of equation (46). There is no rigorous justification 

for this omission - at this stage it is simply done to simplify the subsequent mathematics. The ultimate 

test of the results derived based on equation (46) will have to be by comparison to experiment. 

Substituting equation (44) for σ21P on the left hand side of equation (46), equation (45) for v1 on the 

right hand side of equation (46), and dividing the result by ρVo
2
 yields 

 

 0.0225 (µ / ρVoδ)
1/4

 = 
d

d
d

x

x x
x

1
1

1/7 1/7

2
0

2 2
−









































∫
δ δ

δ

    (47) 

 

Integrating equation (47) and simplifying 

 

 0.231(µ / ρVo)
1/4

 = δ 1/4
 dδ /dx1   

 

 0.231(µ / ρVo)
1/4

 dx1 = δ 1/4
 dδ         (48) 

 

Integrating equation (48) from the transition point x1 = x1tr, where the boundary layer thickness is δtr, to 

an arbitrary downstream position x1 where the thickness is δ gives 

 

x

x

tr1

1

∫ 0.231(µ / ρVo)
1/4

 dx1 = 

δ

δ

tr

∫ δ 1/4
 dδ       (49) 

 

 

 δ 5/4
 - δtr 

5/4
 = 0.289(µ / ρVo)

1/4
(x1 - x1tr)       (50) 

 

If the position x1 is far along the plate, so that x1 >> x1tr and δ 5/4
 >> δtr 

5/4
, then equation (50) may be 

simplified to  

 

 δ = 0.371 x1(µ / ρVo x1)
1/5

 = 0.371 x1 (Rex1)
-1/5

      (51) 

 

In equation (51), Rex1 = ρVo x1 / µ. Inserting equation (51) into equation (44) produces an expression 

for σ21P 
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 σ21P = 0.0288ρVo
2
 (Rex1)

-1/5
         (52) 

 

The total drag force Ff on a flat plate of length L and width W, with boundary layers both on top and 

bottom of the plate, equals 

 

 Ff = 2 1
00

321σ p x
LW

xd d∫∫           (53) 

 

Inserting equation (52) into equation (53) and integrating,  

 

 Ff = 0.072ρVo
2
WL(ReL)

-1/5
          (54) 

 

The drag coefficient CD is (recall: CD = Ff / (A ρVo
2
/2 ) where the reference area A equals WL)  

 

 CD = 0.144(ReL)
-1/5

          (55) 

 

Equations (51), (52), (54) and (55) all apply to turbulent boundary layers. Equation (51) shows that the 

thickness of a turbulent boundary layer increases as x1
4/5

, what is significantly faster than the x1
1/2

 

increase observed for laminar boundary layers (see handout 11 for discussion of laminar boundary 

layers). The wall shear stress σ21P (equation (52)) decreases with x1
-1/5

, to be compared to the faster 

decrease with x1
-1/2

 observed for laminar boundary layers. It should be kept in mind that equations (51) 

to (55) assume that x1 >> x1tr. Also, comparison to experiment shows that because of limits on the 

applicability of the velocity profile expression (41) on which all of the above derivations were based, 

the results derived should not be used if Re exceeds 10
7
 or for plates whose surfaces are not smooth.  

 

If the position x1tr at which the boundary layer passes from laminar to turbulent is known, then greater 

accuracy may be achieved by applying laminar equations to the laminar portion of the boundary layer 

and turbulent equations to the turbulent part. For instance, the total shear drag on the plate could be 

calculated from 

 

 Ff = (ρVo
2
/2) (CDLAL + CDTAT)        (56) 

 

where CDL is the drag coefficient for the laminar boundary layer and AL is the area that the laminar 

boundary layer covers, and CDT and AT are the corresponding quantities for the turbulent boundary 

layer. However, it may be difficult to specify x1tr. Usually, as long as ReL = ρVo L /µ  remains below 1 × 

10
5
 the entire boundary layer remains laminar. Under carefully controlled conditions when disturbances 

such as mechanical vibrations in the incoming stream are minimized, the entire boundary layer may 

remain laminar even up to ReL of ~ 4 × 10
6
. In any case, as the Reynolds number increases the onset of 

turbulence first appears at the downstream edge of the plate (x1 ≈ L) since this is where Rex1 has its 

largest value, Rex1 = ReL. Additional increase in the Reynolds number would shift the laminar to 

turbulent transition closer to the leading edge of the plate.  

 

 

v). Other Turbulent Flows. Turbulence can also occur when no solid surface or object is nearby. One 

example is a jet of fluid emerging into a quiescent reservoir. Another is the wake behind an object in 

external flow. Such "free turbulence" will not be discussed in detail here, except to state that many 
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types of turbulent flows continue to be experimentally and mathematically characterized. Specialized 

texts dealing with turbulent flows are available, e.g. P.S. Bernard and J.M. Wallace, Turbulent Flow: 

Analysis, Measurement and Prediction, Wiley, 2002.  

 


