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Potential Flow 

 

Part I. Theoretical Background.  

 

Potential Flow. Potential flow is irrotational flow. Irrotational flows are often characterized by 

negligible viscosity effects. Viscous effects become negligible, for example, for flows at high Reynolds 

number that are dominated by convective transport of momentum. Thus potential flow is often useful 

for analyzing external flows over solid surfaces or objects at high Re, provided the flows still remain 

laminar. Moreover, when the flow over a surface is rapid (high Re), the viscous boundary layer region 

(within which potential flow would be a bad assumption) that forms next to the solid body is very thin. 

Then, to a very good approximation, the presence of the boundary layer can be neglected when 

analyzing the potential flow region. That is, the potential flow can be assumed to follow the contours of 

the solid surface, as if the boundary layer was not present.  

 

When the thickness of the boundary layer is small compared to the dimensions of the object over which 

the potential flow is occurring, we can proceed as follows to analyze the total (potential flow + 

boundary layer flow) problem: 

 i). First, determine the velocities and pressure distribution in the potential flow region, assuming 

that the potential flow extends all the way to any solid surfaces present (ie. neglecting the presence of 

the boundary layer). 

 ii). Solve the flow inside the boundary layer using the pressure distribution obtained from the 

potential flow solution (i) as input. In other words, the potential flow imposes the pressure on the 

boundary layer (see the earlier discussion of boundary layers). At the edge of the boundary layer, the 

velocities are matched with those obtained from the potential flow solution (i) through the use of 

appropriate boundary conditions.  

 

 

The Velocity Potential. In potential flow the velocity field v is irrotational. This means that 

 

  vorticity =  =   v = 0        (1) 

 

When   v = 0 the rate of rotation of an infinitesimal element of fluid is zero. From vector calculus 

(see the first handout on vector analysis) we know that if a velocity field is irrotational then it can be 

expressed as the gradient of a "scalar potential" : 

 

  v =  -  (irrotational flow)      (2) 

 

In equation (2),  is the "velocity potential." Using the definition of the  operator, in cartesian 

coordinates: 

 

  v1 = -
1x


  v2 = -

2x


  v3 = -

3x


    (2a) 

 

In cylindrical coordinates: 

  vr = -
r


  v = -



Φ

r

1
  vz = -

z

Φ




    (2b) 
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In spherical coordinates: 

  vr = -
r

Φ




  v = -



Φ

r

1
  v = -





 



sin

1

r
   (2c) 

 

 

If, in addition, the flow is incompressible, then 

 

  •v = 0   • = 0 what is equivalent to   

 

  2 = 0  (irrotational, incompressible flow)    (3) 

 

 

The Stream Function. The stream function  can be defined for any two-dimensional flow, whether 

the flow is irrotational or not, compressible or incompressible. Two-dimensional means that at least one 

of the velocity components is zero (in other words, at most two of the velocity components are 

nonzero). Some flow types for which the stream function is useful, and the accompanying definitions of 

the stream function, are: 

 

Flow in Cartesian coordinates, with v3 = 0: 

  v1 = 






x
2

  v2 = 






x
1

       (4a) 

Flow in cylindrical coordinates with vZ = 0: 

  vr = - 








r

1
  v = 

r


       (4b) 

 

Flow in cylindrical coordinates with v = 0: 

  vr = 
zr 

1
  vZ = - 

rr 

1
       (4c) 

 

Flow in spherical coordinates with v = 0: 

  vr =  - 




 



sin

1
2r

  v =  
rr 



sin

1
     (4d) 

 

The definitions (4a) through (4d) are joined by the requirement that the stream function automatically 

satisfy the equation of continuity for an incompressible fluid, •v = 0. The divergence •v will 

automatically equal zero because of the equivalence of the mixed second derivatives of the stream 

function. For instance, for incompressible flow in Cartesian coordinates with v3 = 0 

 

  •v = 0
12

2

21

2

2

2

1

1 



















xxxxx

v

x

v 
      (5) 

After the second equal sign in equation (5), the definitions (4a) of the stream function were used. The 

equality to zero comes about because the mixed second derivatives of  are equal.  
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The stream function is constant along a streamline. The change d in the stream function due to an 

infinitesimal displacement ds along a streamline can be written as 

 

  d =  • ds =  • vdt = tv
x

tv
x

dd 2

2

1

1 






 
     (6) 

 

In equation (6), the displacement ds along a streamline was expressed as v dt (t is time). Because the 

streamline is everywhere tangent to the velocity field v, ds and v must point in the same direction. Both 

vectors are infinitesimally small, and it is then justified to take ds as equal to vdt. Inserting equations 

(4a) into (6),  

 

  d = (v2v1 - v1v2) dt = 0        (7) 

 

Since the change d in the stream function arising from a displacement along a streamline is zero, the 

stream function must be constant along a streamline. 

 

 

The change in the stream function between a pair of streamlines equals the volumetric flowrate 

between those two streamlines. Consider the flow in Figure 1. We will define flowrate from right to 

left as positive. We wish to calculate the volumetric flowrate Q' (per unit width into the page) that 

occurs between streamlines 1 and 2. To calculate Q', we will integrate the rate at which fluid flows 

across the curve that connects points 1 and 2 in the figure. The flowrate Q' is given by  

 

  Q' = -  

2

1

dlnv = -   

2

1

2211 dlnvnv        (8) 

where dl is an infinitesimal displacement along the curve and n is a unit normal to the curve pointing 

opposite to the fluid flow (see Figure 1). n1 is the component of n along the x1 direction, v1 is the 

velocity component along the x1 direction, etc.  

 

Figure 1 

 

From figure 1,  

 

 n1dl = n cos dl = n dx2 = dx2         (9) 
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In equation (9), we first set n1 = n cos, where n is the magnitude of n and  is as indicated in Figure 1. 

Second, we observed that cos dl equals the displacement dx2 that occurs in the x2 direction when 

position along the curve changes by dl; thus, we substituted cos dl = dx2.  Finally, the magnitude n of n 

was set equal to 1 since n is a unit vector. Similarly, it can be shown that 

 

 n2dl = n sin dl = - n dx1 = - dx1        (10) 

 

In equation (10), we used dx1 = -sin dl. The minus sign must be included because the displacement dx1 

that occurs in the x1 direction when position along the curve shifts by dl is negative, although sin dl 

evaluates to a positive number. Inserting equations (9) and (10) into (8), 

 

 Q' =  









2

1

1

1

2

2

12

2

1

21 )dd()dd( x
x

x
x

xvxv


  

 

 Q' = 
12

2

1

d             (11) 

In arriving at equation (11), we used the fact that d = (/x1)dx1 + (/x2)dx2. Equation (11) states 

that the volumetric flowrate Q', per unit width into the page, between streamlines 1 and 2 equals the 

difference in the stream function. Note that Q' will be positive for flow from right to left, and negative 

for flow from left to right.  

 

 

Lines of constant  (streamlines) are perpendicular to lines of constant  (velocity potential 

lines). On a streamline,  is constant, so that 

 

 d =  • ds = 0dd 2

2

1

1










x

x
x

x


       (12) 

The stream function does not change (ie. d = 0) because the displacement ds = 1dx1 +  2dx2 is taken 

along a streamline. Making use of equations (4a), equation (12) becomes 

  

 v2dx1 - v1dx2 = 0     or, after rearrangement, 

 

 dx2 / dx1 = v2 / v1          (13) 

 

Equation (13) gives the slope of the streamline, as depicted in Figure 2.  

 

Figure 2. 

 

On a line of constant velocity potential,  is constant. Therefore, 
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 d =  • ds = 0dd 2

2

1

1










x

x

Φ
x

x

Φ
       (14) 

In equation (14), the displacement ds occurs along a line of constant velocity potential. Inserting 

equations (2a) into equation (14), 

 

 - v1dx1 - v2dx2 = 0   or, after rearrangement, 

 

 dx2 / dx1 = - v1 / v2          (15) 

 

Equation (15) gives the slope of a line of constant velocity potential. Since the slopes of a streamline 

(equation (13)) and of a line of constant velocity potential (equation (15)) are negative reciprocals of 

one another, streamlines and velocity potential lines must be mutually perpendicular.  

 

 

For irrotational, incompressible, two-dimensional flows, the stream function and the velocity 

potential obey the same differential equation. From equation (3) for irrotational, incompressible 

flow,  

   

 2 = 0  (irrotational, incompressible flow)     (3) 

 

The condition of irrotationality means that 

 

    v = ( 

1

2

x

v




 - 

2

1

x

v




) 3 = 0        (16) 

 

In equation (16), for convenience the two-dimensional flow was assumed to take place in the x1x2 plane, 

so that v3 = 0. Equation (16) requires that  

 

 

1

2

x

v




 - 

2

1

x

v




 =  0          (16b) 

 

Inserting the definitions of the velocities in terms of the stream function (equations (4a)) into equation 

(16b)  

 

 0
2

2

2

2

1

2











xx


 which is equivalent to   

  

 2 = 0  (2D, irrotational flow)       (17) 

 

Equations (3) and (17) show that for a two-dimensional, irrotational, incompressible flow, the velocity 

potential and the stream function both obey "Laplace's equation": 

 

 2 = 0  and 2 = 0         (18) 
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Functions that obey Laplace's equation are called "harmonic" functions. Therefore, under these 

conditions both the stream function and the velocity potential are harmonic.  

 

Important: Since  and  obey the same differential equation (for 2D, irrotational, 

incompressible flow), a solution to one potential flow problem can be directly used to generate a 

solution to a second potential flow by interchanging  and . Specifically, if 1 and 1 represent 

potential flow 1, then the interchange 2 = 1 and 2 = -1 will represent some other potential flow 2. 

The minus sign in 2 = -1 is needed to ensure consistency in the sign of the velocity components 

derived from  and  (see examples below). 

 

 

Different potential flows can be added together to generate new potential flows (the Principle of 

Superposition). Laplace's equation (equation (18)) is linear. The linear property means that if the 

stream function and velocity potential are known for two different flows, say flows 1 and 2, then the 

sum of flows 1 and 2 will also be a solution to Laplace's equation. By "solution to Laplace's equation" 

we mean that, if  

 

 21 = 0  and   22 = 0  then 

 

 2(1 + 2) = 21 + 22 = 0        (19) 

 

Here, 1 is the stream function for flow 1 and 2 is the stream function for flow 2. Equation (19) shows 

that the sum of the stream functions for flows 1 and 2 is also a solution to Laplace's equation. Same 

comments apply to the sum of the velocity potentials, 1 + 2, for flows 1 and 2.  

 

Now, if  and  of a potential flow equal the sum of the stream functions and velocity potentials of two 

other flows 1 and 2, so that  = 1 + 2 and  = 1 + 2, then the velocity field of that flow will equal 

the sum of the velocity fields of flows 1 and 2. This statement can be easily verified. For example, in 

terms of the stream functions (equivalently, we could have used the velocity potentials), and using a 

single prime to indicate velocities for flow 1 and double prime those for flow 2, 

 

 Flow 1 (stream function 1):  v1' = 

2

1

x





  v2' = 

1

1

x


   (20) 

 

 Flow 2 (stream function 2):  v1'' = 

2

2

x





  v2'' = 

1

2

x


   (21) 

 

 Flow 1 + Flow 2 (stream function  = 1 + 2): 

 

  v1 = ''
1

'
1

2

2

2

1

2

)
21

(

2

vv
xxxx























    (22) 

  v2 =  ''
2

'
2

1

2

1

1

1

)
21

(

1

vv
xxxx



















 
     (23) 
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Equations (22) and (23) show that if the stream functions from flows 1 and 2 are added to create a new 

flow, then the velocity field of the new flow will equal the sum of the velocity fields of the two 

constituent flows. We thus see that the addition of stream functions or velocity potentials physically 

results in the superposition (addition) of the flows represented by those stream functions and velocity 

potentials. This superposition principle is a powerful way to generate solutions to potential flow 

problems. We will look at an example of superposition in the next section.  

 

 

Part II. Applications.  

 

Uniform Potential Flow. Figure 3 depicts the case of uniform flow in the x1 direction. For this uniform 

flow, 

 

  v1 = Vo  v2 = 0 

Therefore, 

 

  -






x
Vo

1

     = - Vox1 + f(x2)      (24) 

The derivative of  with respect to x2 is zero,  / x2 = - v2 = 0. Therefore, the function of integration 

f(x2) in equation (24) can at most be a constant. Since a constant of integration would not influence the 

velocities obtained from , the value of the constant is arbitrary. For simplicity, we set the constant 

equal to 0 so that equation (24) becomes 

 

    = -Vox1          (25a) 

 
Figure 3.      Figure 4. 

 

By using equations (4a), it is straightforward to show that the stream function is 

 

   = -Vox2          (25b) 
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Figure 4 plots the lines of constant  and constant . As discussed earlier, since lines of constant  are 

streamlines, they point along the flow direction. Also, as pointed out earlier, the streamlines and lines of 

constant  are mutually orthogonal. If we choose the streamlines for x2 = 1 and x2 = 3 in Figure 4, 

according to equation (11) the volumetric flowrate between the streamlines is, 

 

  Q' = 3 - 1 = -3Vo - (-Vo) = -2 Vo        (26) 

 

Recall that Q' is the volumetric flowrate per unit width into the page. Because the flow occurs from left 

to right, according to our earlier convention Q' comes out to a negative number.  

 

If  and  are interchanged, then   

   = Vox1          (27a) 

   = -Vox2          (27b) 

 

Note that, to preserve consistency of sign in the definition of the flow fields derived from  and , a 

minus sign was inserted in (27a). Equations (27) again describe a uniform potential flow, but now the 

flow field is (you can easily verify it) 

 

  v1 = 0  and   v2 = Vo 

 

The interchange of  and   thus resulted in a uniform flow in the x2 direction. In the context of Figure 

4, the streamlines and the lines of constant velocity potential were interchanged.  

 

 

Source and Sink Flows. In two dimensions, a source is a line (into the page) from which fluid flows 

outward, and a sink is a line at which fluid flows inward and is removed (Figure 5). For these flows,  

 

  v = 0  and   vr = Q'/(2r)      (28) 

 

Figure 5. 

 

In equation (28), Q' is the total volumetric flowrate outward from the source, per unit depth into the 

page. Q' > 0 for a source, Q' < 0 for a sink. Equation (28) for vr ensures that the total radial volumetric 

flowrate is constant. In other words, at each radial distance r from the source or sink the volumetric 

flowrate per unit depth, given by 2r vr, equals the constant Q'. This volumetric flowrate is the product 

of the area per unit depth into the page (ie. 2rW would be the area of flow if the extent of the source 

into the page is W), times the radial flow velocity vr.  

 

Using equations (2b) and proceeding as for the case of uniform flow, the velocity potential is found to 

be 
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  -
r


= vr = Q'/(2r)   = - Q'/(2)  lnr  + f()   = - Q'/(2)  lnr (29) 

 

In equation (29), the function of integration f() was set to zero since v = -


Φ

r

1
= 0 implies that at 

most f can be an arbitrary constant. Similarly, the stream function can be found using equations (4b) 

 

 - 








r

1
 = vr = Q'/(2r)   = - Q'/(2)   + f(r)    = - Q'/(2)  

 (30) 

 

where similar arguments can be made to set f(r) = 0. From equation (29), lines of constant  are 

equivalent to lines of constant r, while from equation (30) we see that streamlines (lines of constant ) 

coincide with lines of constant . The velocity potential lines and streamlines are illustrated in Figure 6. 

Again, we see that the curves of  and  are orthogonal, as required.  

 

Figure 6. 

 

 

Potential Vortex Flow. If the velocity potential and stream function for the source/sink flow are 

interchanged, we get a new flow for which 

 

  = Q'/(2)  lnr  and    = - Q'/(2)     (31) 

 

The velocities for this new flow can be derived from  and  by using equations (4b) or (2b).The result 

is 

 

 vr = 0  and  v = Q'/(2r)       (32) 

 

Equations (32) describe so-called "potential vortex" flow, a useful model for phenomena such as 

tornadoes and whirlpools. In a potential vortex, fluid moves in concentric circles with a velocity v that 

decreases as 1/r, where r is the radial distance from the center of the vortex. The diagram of streamlines 

and velocity potential lines for a potential vortex looks exactly like Figure 6, except that the streamlines 

and velocity potential lines are interchanged. When referring to potential vortex flow, it is customary to 
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use the symbol  instead of Q'.  / 2 is known as the "strength of the vortex."  is positive for 

counterclockwise vortex flow, and negative for clockwise vortex flow. From equation (32) it is clear 

that the higher  / 2 is, the greater the velocity v. In terms of , the potential vortex equations are 

 

 = /(2)  lnr   = - /(2)   v = /(2r)     (33) 

 

 

Superposition of Potential Flows. As an example of the superposition of two potential flows, we will 

superpose (add) a uniform and a potential vortex flow. The functions  and   become, 

 

  = -Vox2 + /(2)  lnr = -Vox2 + /(4)  ln(x1
2 + x2

2)     (34) 

 

  = -Vox1 - /(2)   = -Vox1 - /(2) tan-1(x2 / x1)      (35) 

 

In equations (34) and (35), the first term on the right comes from the uniform flow and the second from 

the potential vortex flow.  and  have been expressed in cartesian coordinates, and so can be used to 

calculate the CCS velocity components v1 and v2 directly. For instance, equations (4a) can be applied to 

the stream function to yield 

 

 v1 = Vo -  x2 /{2 (x1
2 + x2

2)}         (36) 

 

 v2 =  x1 /{2 (x1
2 + x2

2)}         (37) 

 

Setting Vo = 1 m/s and  / 2 = 2 m2/s, the resultant flow is depicted in Figure 7. At each point an arrow 

shows the direction of the local velocity field. The length of the arrows is fixed, and so does not 

represent the magnitude of the local velocity. There is a "stagnation point" on the top side of the 

vortex at the position (0,2). At a stagnation point, all velocity components are zero.  
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Figure 7. 

 

The Method of Images. At a solid boundary, the magnitude of potential flow perpendicular to the 

boundary must be zero (i.e. no fluid flow can occur across the solid surface). The previous statement is 

approximate in that the potential flow only extends to the outer edge of a boundary layer, where a small, 

perpendicular velocity component is typically present (e.g. as could be obtained from the numerical 

Blasius solution for the laminar boundary layer over a flat surface). However, if the rate of boundary 

layer growth along the surface is very slow, as will be true if the flow over the surface is sufficiently 

rapid, then the perpendicular velocity component will be small and so will the error introduced by 

neglecting it. Since no flow occurs across a streamline, a streamline meets the same stipulation as a solid 

boundary. Indeed, any streamline of a potential flow can be considered as a solid surface, with no 

resultant change to the flow pattern. Since fluid flows along a streamline, thinking of a streamline as 

a solid surface implies flow (i.e. slip) along that surface. This implication does not pose a physical 

paradox however since in reality potential flow does not extend all the way to a surface (it only extends 

to the outer edge of the boundary layer) and therefore is not subject to a no-slip boundary condition.  

 

The method of images is a technique by which streamlines representing solid surfaces can be generated 

in a systematic fashion. This approach takes advantage of the fact that there can be no flow across lines 

of symmetry separating identical flows. For instance, the left side of Figure 8 shows two identical 

sources; due to symmetry, it must be true that on the line of symmetry at x2 = 0 the velocity in the x2 

direction is zero. The line x2 = 0 is a streamline that is coincident with the x1 axis. According to the 

previous paragraph, this streamline can be thought of as a solid surface. Thus the flow resulting from 

the superposition of the two identical sources in Fig. 8 left will be a solution to the problem of a single 

source next to a solid wall, as illustrated in Fig. 8 right.  
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Figure 8. Left: A pair of identical sources, both of strength Q', located at x2 = a and x2 = -a. The sources are "images" of 

one another. Right: A single source next to a solid wall. 

 

 

From equation (29), the velocity potential for a single source centered at the origin is:  

 

  = - Q'/(2)  lnr = - Q'/(4)  ln(x1
2 + x2

2)       (38) 

 

If the source is centered at x2 = a, then 

 

  = - Q'/(4)  ln(x1
2 + (x2 - a)2)        (39) 

 

As indicated above, the velocity potential t for the case of a single source a distance a from a solid 

wall can be found from the superposition of two identical source flows, one located at x2 = a and the 

other at x2 = -a, 

 

  t = - Q'/(4)  ln(x1
2 + (x2 - a)2)  -  Q'/(4)  ln(x1

2 + (x2 + a)2)    (40) 

 

Equation (40) is the velocity potential for both of the flows depicted in Figure 8. Of course, for the 

single source next to a solid wall only the region x2 > 0 is relevant. The stream function can be obtained 

by identical procedures, and the velocities can be calculated from either the velocity potential or the 

stream function.  

 

The method of images works by superposing identical flows in order to create lines of symmetry across 

which there is no flow. This approach can be helpful in devising solutions for flows near solid surfaces 

when the location of the surfaces can be made coincident with the lines of symmetry. To repeat, since 

there is no flow across a streamline, any streamline for any potential flow can be viewed as a solid 

surface. This principle can be very powerful in analyzing potential flows even for rather complex 

geometries. 
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The Use of Bernoulli Equation in Potential Flow. By definition, potential flows are irrotational. If in 

addition the flow is incompressible, frictionless, and steady state, then the Extended Bernoulli Equation 

(EBE) becomes (for details, refer to the earlier handout on Bernoulli equation) 
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Since potential flow is irrotational, the Bernoulli equation holds between any two points 1 and 2, 

so that the points do not have to lie on the same streamline. We have already come across this fact 

during our previous derivation of the Bernoulli's equation. In contrast, if the vorticity is not zero, then 

points 1 and 2 must be located on the same streamline. In potential flow, Bernoulli's equation is most 

often used to compute the pressure distribution. Typically, the shaft work term will be zero. Then once 

the velocity field is calculated (perhaps using one of the methods described above), the pressure 

distribution p2 - p1 is obtained directly from equation (41).  

 


