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The Bernoulli Equation 
 

Useful Definitions 

 

Streamline: a line that is tangent to velocity v at each point at a given instant in time. 

 

 
 

Path Lines: lines traced out by fluid particles moving with the flow. At steady state, streamlines 

and path lines are equal. 

 

 

Recall: differential equation of momentum: 
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Equation 1 can be modified as follows: 

 

i) Use the identity:  
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  (equation 30h in the handout on vector analysis) 

 

 

ii) Assume that only gravitational body force is present, so that       where  is the 

gravitational potential (  = gz where z is the height in the gravitational field).  

 

iii) Represent  as ij =  pij + ij,other, where -pij is nonfrictional normal stress (i.e. 

thermodynamic pressure) and ij,other represents all other contributions to the stress tensor, 

including viscous and/or other stresses. For example, for a Newtonian fluid ij,other ( • v) ij 
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+ 2 eij (see equations 20 and 24 in Handout 7); note, however, that we are not necessarily 

assuming a Newtonian fluid.  

 

With modifications (i) through (iii), equation 1 becomes: 
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All the terms in equation 4 have the units of force per unit mass (ex. lbf / slug). Now, 
1


 other 

represents force acting at a point in space due to stresses other than thermodynamic pressure. We 

now assume that 
1


 other only includes viscous frictional forces exerted by the surrounding 

fluid, f F  (units force/mass), and "shaft" forces due to moving machinery fS,  
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Equation 5 will be used to derive the so-called "Extended Bernoulli Equation." 

 

 

The Extended Bernoulli Equation ("EBE") 
The EBE is derived by integrating equation 5 between points 1 and 2 on a streamline: 

 

 
 

Along the streamline, ds is used to represent a differential displacement: 
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Taking the dot product of equation 5 with ds and integrating between 1 and 2: 
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The following facts will be useful: 

 

i). From our review of vector analysis, the dot product of a gradient of a scalar field with a 

differential displacement is equal to the differential change in the scalar (i.e. S  dr = dS). In 

equation 6, the differential displacement dr is represented by ds. 

 

ii). The vector v  (  v) is perpendicular to v and therefore to ds, since ds points along the 

streamline. Thus, [v  (  v)]  ds 0 . 

 

iii). The term f dsF
1

2

    is force times displacement and represents the work performed, per unit 

mass of fluid, by frictional forces acting between fluid particles as the fluid flows from point 1 to 

2. This term can therefore be written as the "frictional work" wF: 

 

f dsF F
1

2

   w       (wF is frictional work performed by the streamline fluid on the surrounding  

  fluid) 

 

iv). Similarly, the term dsf 
2

1

S   is shaft work performed per unit mass of fluid flowing from point 

1 to point 2. This term will be written as wS: 

 

S

2

1

S w dsf       (wS is shaft work performed by fluid on the surroundings) 

 

 

Applying considerations (i) – (iv), equation 6 becomes: 
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Assuming steady (




v

t
= 0 ), incompressible (  = constant) flow, equation 7 can be integrated to 

give 
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Since  is the gravitational potential gz, 
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Equation 9 is the Extended Bernoulli Equation, and holds for steady, incompressible flow along a 

streamline. 

 

 

Notes regarding the EBE: 

 

i). ALL the terms are in units of energy or work per unit mass of flowing fluid. 

 

ii). The terms on the left of equation 9 are the change in kinetic energy, gravitational potential 

energy, and flow work performed per unit mass of fluid, as fluid flows from point 1 to point 2. 

 

iii). wF is work done by the flowing fluid against retarding frictional forces between points 1 and 2.  

wF > 0 for flows of real fluids. wF < 0 is unphysical.  

 

 wF is often rewritten as: 

  

 w gHF L   g:  gravitational acceleration constant    (10) 

    HL:  called “head loss”, with units of length.  

 

Equation 10 defines HL. For example, consider the following situation where fluid flows from 

point 1 to point 2 inside a pipe: 
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If the flow is steady and incompressible, and z1 = z2, v1 = v2, and wS = 0, then equation 9 becomes: 

 

 p = p2 – p1 = - gHL 

 

iv). The shaft work wS is positive, wS > 0, if work is done by the fluid (on a turbine, for instance). 

wS < 0 if work is done ON the fluid (ex. by a pump). 

 

In terms of head loss, the EBE is written:  
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(steady, incompressible flow, points 1 and 2 are on the same streamline) 

 

 

Special Cases of the EBE: 

 

1. Frictionless flow with no shaft work. Then HL = 0, wS = 0, and the EBE becomes:  
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Equation 12 applies to steady, incompressible, frictionless flow with zero shaft work, where 

points 1 and 2 are on the same streamline. Equation 12 is known simply as the Bernoulli 

Equation. 

 

 

2. Irrotational Flow: Then   v = 0. Therefore, if the derivation of the Extended Bernoulli 

Equation was repeated from equation 6, for irrotational flow we would not need to invoke the 

condition that points 1 and 2 are on the same streamline in order to drop the     v v ds   

1

2

 

term (see equation 6). Thus, for irrotational flow, the EBE (equation 9) holds between any two 
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points 1 and 2 in the flow, where 1 and 2 do not have to lie on the same streamline. The flow still 

has to be steady and incompressible, however.  

 

3. The EBE (equation 9) can be integrated over the cross-section of a pipe or other control 

volume. For instance, we could have a control volume like that shown below: 

 

 
 

Designating the entry port as port "1" and the exit port as port "2", we want to sum equation 9 

for all streamlines passing through these ports. The contribution of each streamline to the sum 

must be weighed by the rate at which fluid mass passes along it through the control volume. This 

rate of mass flow is  v n , where n is the unit normal to the surface of the control volume. 

Integrating each term in equation 9 over all streamlines (i.e. over the areas of the ports), equation 

9 becomes 
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         (steady, incompressible flow) 

 

In equation 13, dWF/dt = w Af
A

( )v n d
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 is the rate of work against retarding frictional forces in 

the control volume. This term includes work done along all streamlines, not just along a particular 

streamline. Similarly, dWS/dt = w As
A

( )v n d

2

 is the rate of shaft work performed in the control 

volume, inclusive of contributions from all streamlines. If v, z, and p can be regarded as uniform 

over the areas A1 and A2, then equation 13 simplifies to: 
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    (steady, incompressible flow; uniform properties over A1 and A2 ) 
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Here  m* =   ( )v n dA

A1

 =  ( )v n dA

A2

  is the mass flowrate of fluid through the ports. 

Since steady state was assumed, mass flow rate "in" equals mass flow rate "out."  

 

 Equation 13 can be compared with the integral version of the total energy balance. The 

total energy balance was derived in the handout on integral balance equations. For steady, 

incompressible flow through a control volume containing an entry port 1 and an exit port 2, the 

total energy balance becomes 
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  internal energy per unit mass of fluid  

 

 

Subtracting equation 13 from equation 15 yields  
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Here, U means "internal energy." Equation 17 states that the internal energy of the fluid flowing 

out of the control volume at port 2 equals the internal energy flowing into the control volume at 

port 1, plus the heat added and work done against frictional resistances as the fluid passes through 

the control volume. In particular, we see that the work of friction WF is dissipated to internal 

energy. Equation 17 is a specialized form of the 1st Law of Thermodynamics. Note that a term 

due to compression/expansion of the system (often referred to as "PV work") is not present since 

steady state conditions, assumed in equations 13 and 15, imply that the control volume does not 

change.   

 

 

Calculating Power:   
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Since the shaft work wS is work performed per unit mass of flowing fluid, the power P, which is 

shaft work performed per unit time, is  

 

 P = m*wS          (18) 

 

where m* is the mass flowrate of fluid (mass/time).  

 

Common units of power are:  1 watt (W) = 1 Joule/s  

      

     1
lbf ft

sec
horsepower (hp)

1

550
 = 1.356 watt 

 

  

 


