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Examples of Laminar Flows 

 

 

In laminar flows the fluid moves in "layers" or laminae, in contrast to the apparently chaotic motion of 

turbulent flow. Laminar flows in many different geometries have been investigated with the help of 

transport models; here we consider just a few well known examples. We also take this opportunity to 

introduce the use of integral equation models and of the method of combination of variables to solve 

transport problems. In general, when setting up a problem you will need to address several questions: 

 

The 1st question to ask is: What are we trying to find out about the flow (i.e. velocities, pressure, etc)? 

In other words, what are the unknowns that we are after?  

 

The 2nd question to ask is: What equations do we use? Recall that we need as many equations as we 

have unknowns, together with any boundary conditions and possibly also relations between intensive 

thermodynamic variables (such as equations of state).  

 

The 3rd step is to solve the equations for the unknowns (i.e. velocities, pressure) of interest. This can 

be a long process, and often requires that we make certain approximations along the way, in addition to 

a fair amount of mathematical manipulations.  

 

 

 

 

Internal Flows 
 

 

Internal flows are those that occur within a channel or pipe. The fluid body is of finite dimensions and 

is confined by the channel or pipe walls. At the entry region to a channel, the fluid develops a boundary 

layer next to the channel walls, while the central "core" of the fluid may remain as a uniform flow 

(Figure 1). Within the boundary layer, viscous stresses are very prominent, slowing down the fluid due 

to its friction with the channel walls. This slowdown propagates away from the walls: as the fluid 

enters the channel the fluid particles immediately next to the walls are slowed down, these particles 

then viscously interact with and slow down those in the second layer from the wall, and so on. 

Downstream, the boundary layers therefore thicken and eventually come together, eliminating the 

central core. Eventually, the velocity assumes some average profile across the channel which is no 

longer influenced by any edge effects arising from the entrance region. At this point, the flow no longer 

depends on what has occurred at the channel entrance, and we could solve for its properties (such as 

the velocity profile) without including an entrance region in the calculations. At this stage, we say that 

the flow has become "fully developed."  
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UNIFORM  

FLOW 

 
Figure 1. 

 

For flow in a pipe, Boussinesq has estimated that the distance XL needed for the flow to become fully 

developed can be approximated by  

 

   XL = 0.03ReD        (1) 

where  

   Re = ρVD/µ          (2) 

 

Re is the "Reynold's number," D is the pipe diameter, ρ is the fluid density, µ is the fluid viscosity, and 

V is the average velocity of the fluid in the pipe (V = volumetric flowrate / cross-sectional area of pipe). 

When Re is less than about 2300, the flow in a pipe will in general be laminar. In laminar flow, the 

values of velocity, pressure, and other quantities at a point in space do not fluctuate randomly with 

time. In laminar flow, fluid flows smoothly. Above Re ≈ 2300 the flow will usually become turbulent, 

and thus be characterized by sudden fluctuations in the values of the velocity components, pressure and 

other variables characterizing the flow. In turbulent flow, the motion of fluid is chaotic and apparently 

unpredictable. Later we will consider how to apply the differential conservation laws when turbulence 

is present. For now, we will focus on describing laminar, fully developed flows.  

 

1). Steady-state, laminar flow between stationary, parallel plates. This simple example of an 

internal, laminar flow is illustrated in Figure 2. We want to develop an expression for the fluid velocity 

profile v1 (what independent variables does v1 depend on?) From the Cartesian version of the 

differential equation of motion for a Newtonian fluid with constant ρ and µ (equations 14 in Handout 

8), 

 

   0 = - dp/dx1 + µ(d
2
v1/dx2

2
)      (3) 

 

Note that body forces were assumed to act perpendicular to the direction of flow, and so do not appear 

in equation (3). Also, the pressure gradient dp/dx1 is taken to have a constant value. Applying the no-

slip boundary conditions v1 = 0 at x2 = h and at x2 = -h, (or applying one of these conditions in 

conjunction with the condition that dv1/dx2 = 0 at the midpoint of the gap between the plates) we find  

 

   v1 = 1/(2µ) dp/dx1 (x2
2
 - h

2
)      (4) 
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Therefore, the velocity profile is parabolic as depicted in Figure 2. Note that the flow is entirely driven 

by the presence of a pressure gradient. If dp/dx1 = 0, then v1 = 0 and there is no flow. For a more 

viscous fluid, a greater pressure gradient is required to achieve a given rate of flow. 

 

Figure 2 

 

2). Steady-state, laminar flow between two parallel surfaces in relative motion (Couette Flow). 

When one of the surfaces in Figure 2 is in motion, the flow is often termed "Couette Flow." The 

solution for the velocity profile follows the same protocol as for example 1, except that one of the 

surfaces moves at a speed V1 relative to the other (Figure 3). In general, a nonzero pressure gradient in 

the direction of flow may be present (the pressure gradient is again assumed to be constant). If body 

forces do not contribute to the flow, the Cartesian differential equation of motion for a Newtonian fluid 

with constant ρ and µ may be written as, 

 

   0 = - dp/dx1 + µ(d
2
v1/dx2

2
)      

  

which is same as equation (3). However, now the boundary conditions are v1 = V1 at x2 = h and v1 = 0 at 

x2 = 0. The resultant velocity profile is easily found to be  

 

   v1 = 1/(2µ) dp/dx1 (x2
2
 - hx2) +  V1x2 / h    (5) 

 

 

 
Figure 3. The velocity profile on the left is observed when the pressure gradient in the gap is zero. The 

velocity profile on the right corresponds to a decreasing pressure in the direction of flow, i.e. dp/dx1 < 

0.  

 

Equation 5 shows that the velocity profile is a combination of parabolic (1st term on the right) and 

linear (2nd term on the right) flows. Note that the parabolic contribution is entirely driven by the 

presence of a pressure gradient, while the linear contribution arises from the fact that the top plate is 

moving at a velocity V1.  Figure 3 shows what the velocity profile may look like when just the linear or 

both linear and parabolic contributions are present. Integrating the velocity profile (5) across the gap 

gives the volumetric flow rate Q' per unit depth of flow into the page, 
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      (6) 

 

 

3). Steady-state, laminar flow in a cylindrical pipe (Poiseuille flow). This flow is illustrated in 

Figure 4. Again, we are after an expression for the velocity profile in the pipe. What independent 

variables does the velocity profile depend on, and why? From the cylindrical version of the differential 

equation of motion for a Newtonian fluid with constant ρ and µ, with no body forces in the z direction, 

 

   0 = - dp/dz + µ/r d/dr (rdvZ/dr)      (7) 

 

 

Figure 4. 

 

 

Assuming that the pressure gradient dp/dz is constant, and applying the boundary conditions v1 = 0 at r 

= R, and dvZ/dr = 0 at r = 0 (since the flow is symmetric about r, the slope of vZ with respect to r at r = 

0 must be zero) we get  

 

   vZ = 1/(4µ) dp/dz (r
2
 - R

2
)      (8) 

 

Therefore, as for the case of flow between parallel plates, the velocity profile is parabolic. Again, the 

flow is entirely driven by the presence of a pressure gradient. Note that for a given pressure gradient 

and distance from the center of the flow, the pipe flow, equation 8, predicts lower velocities than the 

flow in the gap between parallel plates, equation 4. This is evident because the prefactor 1/4µ in 

equation 8 is smaller than the prefactor 1/2µ in equation 4. From a physical perspective, why should 

this be? 

 

Integration of equation 8 over the cross-sectional area of the pipe gives the volumetric flow rate Q, 

 

  Q = v

R

r r
R p

z
z

0

2

0

d d
d

d

π
θ

π

µ
∫∫ = −

4

8
        (9) 
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External Flows 

 

External flow occurs when a fluid flows over an object. The flow is perturbed due to interaction with 

the object in its path. Figure 5 illustrates the flow of fluid around a sphere, an example of external flow. 

Air flow over a house or around a plane is another example of external flow. Often, external flows are 

turbulent although, for now, we will restrict our attention to laminar external flows. We will discuss 

external flow around a sphere as our first example. 

 

 

 

Figure 5. 

 

1). Creeping Flow Around a Sphere. The general problem 

of flow around a sphere, Fig. 5, is difficult to treat and an 

analytical solution cannot be found. For the case of so-called 

"creeping flow", however, an analytical solution is possible. 

"Creeping"  refers to the situation of very small Re, when the 

convective transfer of momentum is insignificant compared 

to the viscous transfer of momentum. For flow around a 

sphere Re is defined as Re = ρVoD/µ where Vo is the fluid 

velocity in the x3 direction far from the sphere, and D is the 

sphere diameter. Small Re means that the flow is slow; hence 

the terminology "creeping."  

 

A famous result that emerges from the solution of the 

creeping flow around a sphere is that the total force FD on the 

sphere due the fluid flowing around it is given by 

 

FD = 6πµRVo      (10) 

 

where µ is the fluid viscosity, R is the radius of the sphere, and Vo is the free stream velocity of the 

flowing fluid. "Free stream" refers to those parts of the flow that are far from the sphere and are not 

perturbed by its presence. Equation 10 actually consists of two contributions, the first of which is called 

the "form drag" FP and is given by 

   

  FP = 2πµRVo          (11) 

 

The form drag arises because the normal stress on the backside (downstream) of the sphere is less than 

the normal stress on the front side (upstream) of the sphere. The truth of this statement can be directly 

verified by obtaining the stress distribution from the differential equations of fluid mechanics. The 

reason why the normal stress is less on the backside of the sphere is in part due to the fact that viscous 

stresses need to be overcome as the fluid flows from the front to the rear of the sphere; overcoming 

these viscous stresses is accompanied by a decrease in pressure which results in a decreased normal 

stress on the backside of the sphere. The important point is that form drag arises from changes in the 

normal stress attributable to the motion of a viscous fluid around the form of a body (i.e. the change in 

normal stress does not arise from gravity or some other body force).  

laminar 
flow

sphere

r

x1

x2

x3
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 The second contribution to the total drag force is termed the "viscous", "skin", or "friction" 

drag Ff' 

 

  Ff = 4πµRVo           (12) 

 

and is due to the force exerted on the sphere by viscous shear stresses acting at the sphere/fluid 

interface. The sum of the form and friction drags, equations 11 and 12, results in the total drag on the 

sphere due to the motion of the fluid (equation 10).  

 Form drag can be reduced by gradually tapering the rear portion of a body (streamlining). An 

airplane wing is a good example of a streamlined body. However, streamlining increases the surface 

area of the body, contributing to an increase in its skin friction or viscous drag. Eventually, a decrease 

in form drag will be more than offset by an increase in viscous drag. The minimization of the total drag 

force reflects a compromise between these two competing requirements. 

 

 

2). Boundary Layer Flow over a Flat Plate.  

The concept of a boundary layer is extremely important in many applications, both for internal and 

external flows. Here we introduce it in the context of external flow over a plate, but as discussed at the 

beginning of this handout boundary layers also play a role in internal flows (i.e. as part of the entry 

transition region in the pipe flow depicted in Figure 1).  

 The concept of a boundary layer is useful when discussing flows that may be subdivided into a 

thin region next to a surface in which viscous effects are important (this region is the "boundary 

layer"), and an external region in which viscous effects may be neglected (the so-called "potential 

flow" region). See figure 6. In the potential flow region, viscous effects may be negligible, even if the 

fluid viscosity is considerable, because the velocity gradients are so small that there is little friction 

acting between different parts of the fluid. The precise delineation between the boundary layer and the 

potential flow region is subject to convention; often, the boundary layer thickness is defined by the 

requirement that the fluid velocity parallel to the surface is equal to 99% of the free stream velocity Vo. 

At distances further from the surface than this thickness the flow is viewed as potential flow, while 

closer to the plate the flow is viewed as boundary layer flow. If the pressure decreases in the direction 

of the flow (i.e. in Fig. 6, dp/dx1 < 0), so that the pressure gradient favors flow along the surface, the 

thickness of the boundary layer grows more slowly than if the pressure gradient opposes the flow 

(dp/dx1 > 0). If the pressure gradient opposes the flow, it may cause the fluid velocity near the surface 

to reverse direction, and a "separation" of the boundary layer will then occur.  

 

Figure 6. 
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The "von-Karman" Momentum Integral Equation. We will examine two approaches to analyzing 

boundary layer flow. The first approach is an example of an integral approximation method. The 

typical purpose of this method is to find a solution for a profile of interest; for example, a velocity 

profile, a temperature profile, a pressure profile, or a concentration profile. In other words, the usual 

goal is to determine how velocities, temperature, pressure, or concentrations vary with position or time. 

Normally, as we know from prior discussion, this objective would be pursued by solving the 

differential balance laws subject to the appropriate boundary and initial conditions. By solving the 

differential equations, we would find that profile of interest that satisfies the physical laws underlying 

the equations (i.e. mass, energy, momentum conservation) at every point. An integral approximation 

method, however, adopts a different viewpoint. Instead, as you might have guessed from its name, the 

conservation laws are applied to a control volume; i.e. the solution to the problem will satisfy the 

conservation laws for a control volume, rather than for every point. This methodology does not enforce 

the conservation laws at all points inside the control volume and the solution found will not, in general, 

exactly satisfy momentum, energy, or mass conservation at a particular point.  

 Why use an integral approximation method? The main reason is that it can greatly simplify the 

mathematics, and still produce reasonably accurate results if applied properly. In the integral 

approximation method, a trial function is assumed for the profile of interest (e.g. the velocity or 

temperature profile may be assumed to be a 3rd order polynomial). This function will have unknown 

parameters in it which are determined in the course of solving the problem by requiring that the trial 

function satisfy the applicable conservation laws for the control volume, and any additional physical 

constraints (e.g. boundary conditions) that one wishes to enforce. Therefore, the accuracy of the 

integral approximation approach hinges to a great deal on correct intuition in identifying what physical 

constraints are most important to satisfy. The mathematics are greatly simplified because, since a trial 

function is assumed, it is not necessary to derive the functional form of the solution from the 

differential conservation equations. However, a weakness of integral approximation methods is that it 

is not always obvious how to check the accuracy of the found solution, which may strongly depend on 

selection of the trial function and decisions as to which physical constraints are enforced. 

 We will use the integral approximation method to estimate the velocity profile v1 in the 

boundary layer over a flat plate, Fig. 6. In turn, the velocity profile will be used to calculate the shear 

stress exerted on the plate and the thickness of the boundary layer. We start by writing an integral 

momentum balance for a control volume that encloses a piece of the boundary layer as shown in Fig. 7. 

The value of v1 outside of the boundary layer is taken to equal Vo.  In other words, we assume that v1 

reaches the exact value Vo of the undisturbed flow at x2 = δ(x1), where δ(x1) is the thickness of the 

boundary layer as a function of the distance x1 along the plate. In addition to determining a trial 

function for v1, we want to develop expressions for the thickness δ(x1) and the shear stress σ21P(x1) 

exerted by the fluid on the plate at x2 = 0 (the subscript "p" indicates that the stress is to be evaluated at 

the plate).  

 Considering the control volume in Figure 7, it is evident that we will need the mass flowrates 

into the control volume across its left, right, and top sides. The flowrates will be needed for writing the 

integral momentum balance on the control volume. The control volume is chosen to be very thin, of 

width dx1, in the x1 direction. The mass flowrate m*L across the left side of the control volume (located 

at x1 = xL) is given by  
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Figure 7. 

 

 m*L = ∫∫
δ

ρ
0 3

d
2

d
1

0

xxv
W

 = W ∫
δ

ρ
0 2

d
1

xv        (13) 

 

where W is the width (into the page, i.e. in the x3 direction) of the control volume. The mass flowrate 

m*R across the right side of the control volume is  

 

 m*R = - (m*L + (∂m*L/∂x1) dx1) =  - m*L -  W 
1

d

0
2

d
1

1

xxv
x 











∫

∂

∂ δ
ρ     (14) 

Note that the term (∂m*L/∂x1)dx1 is simply the change in the mass flowrate m*L that occurs over the 

distance dx1. Therefore, the flow rate out of the control volume at x1 = xR is given by - m*L (the value at 

x1 = xL) plus the term - (∂m*L/∂x1)dx1 due to the change in mass flowrate between x1 = xL and x1 = xR. 

Now, from the integral equation of mass conservation for steady state, there can be no net 

accumulation of mass in the control volume; therefore, the sum of all the mass flowrates must be zero, 

 

  m*R + m*L + m*T = 0         (15) 

 

where m*T is the mass flowrate through the top of the control volume. Inserting equations (13) and (14) 

into equation (15) and rearranging, 

 

  m*T = + W 
1

d

0
2

d
1

1

xxv
x 











∫

∂

∂ δ
ρ        (16) 

 

Below, we will use the integral mass balance, equation 16, to simplify the integral momentum balance. 

Since we are interested in shear stress σ21P acting on the plate in the x1 direction, we need the x1-

component of the momentum balance (note that steady state applies), 

 

  0 = ML1 + MR1 + MT1 + F1        (17) 

 

where ML1, MR1, and MT1 are x1-momentum convection terms through the left, right, and top sides of 

the control volume, and F1 is the total force acting on the control volume in the x1 direction. Since at 

steady state there is no accumulation of momentum inside the control volume, the sum of the terms in 

equation 17 equals zero. The convection terms are:  

  ML1 = ∫
δ

ρ
0 2

d2

1

xvW          (18a) 

  MR1 = − (ML1 + (∂ML1/∂x1) dx1) =  - ML1 - W 
1

d

0
2

d2

11

xxv
x 











∫

∂

∂ δ
ρ    (18b) 
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  MT1 = Vo m*T =  Vo W 
1

d

0
2

d
1

1

xxv
x 











∫

∂

∂ δ
ρ        (18c) 

 

The right hand side of equation (18b) is the value of the x1-momentum convection out of the control 

volume at x1 = xR. In equation (18c), the x1-component of the velocity at the top side of the control 

volume is equal to Vo, since the top side borders the potential flow region (Figure 7).  The product of 

Vo, which is momentum per mass, with the mass flowrate m*T (mass / time) is the rate of momentum 

convection across the top side of the control volume.  

 The complete the integral momentum balance, equation 17, we also need to evaluate the forces 

acting on the control volume along the x1-direction. These forces include pressure forces plus the shear 

force between the plate and the fluid (why is there no shear force at the top side of the control 

volume?). At this stage, an additional assumption is invoked. In particular, it is assumed that the 

pressure inside the boundary layer is imposed by that existing in the potential flow region just outside 

the boundary layer. In other words, the pressure inside the boundary layer is assumed to be independent 

of x2, so that  

 

  pB(x1) = pP(x1)          (19) 

 

where pB is the pressure inside the boundary layer and pP is the pressure in the potential flow region. 

Equation 19 can be justified by writing out the x2-component of the differential momentum balance for 

flow inside the boundary layer. In this differential balance, the velocity component v2 can be 

approximated as equal to zero because this velocity component is very small. With v2 = 0, the x2-

component of the differential momentum equation reduces to (you may want to confirm this for 

yourself) 

 

  0 = - ∂p/∂x2          (19b) 

 

 In equation 19b, in addition to taking v2 = 0 we have also neglected body forces which is an 

appropriate approximation if the boundary layer is thin. If ∂p/∂x2 = 0 then the pressure inside the 

boundary layer must be independent of x2, and equation 19b leads directly to equation 19. 

 In addition, we assume that the pressure in the potential region is constant and so independent 

of x1. Equation 19 reduces to  

 

  pB = pP = constant (everywhere inside the boundary layer)   (19c) 

 

Equation 19c implies that there is no net force, due to pressure, that acts on the control volume in the x1 

direction since the pressure force pushing "right" on the control volume will be exactly 

counterbalanced by pressure force pushing "left" on the control volume. Then the only contribution to 

the force F1 on the control volume is the shear stress against the plate,  

 

  F1 = - σ21pWdx1          (20) 

 

where Wdx1 equals the area of the bottom side of the control volume. Note that the shear force exerted 

by the plate on the control volume is in the negative x1 direction. Inserting equations 20 and 18a to 18c 

into equation 17 completes the integral momentum balance, which simplifies to  
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  σ21p = − 











∫
δ

ρ
0

2
d2

11

xv
dx

d
+ Vo 












∫
δ

ρ
0

2
d

1
1

xv
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d
     (21) 

Combining terms,  

  σ21p = ( )











∫ −
δ

ρ
0

2
d

11
1

xvv
o

V
dx

d
       (22) 

 

Equation 22 is a statement of momentum conservation, applied to the control volume in Fig. 7. To 

proceed further (e.g. to evaluate the integral so that the shear stress on the plate can be estimated) we 

now need to select a trial function for v1(x2). The trial function is assumed to be represented by a 

polynomial: 

 

  v1/Vo = a + b(x2/δ) + c(x2/δ)
2
 + d(x2/δ)

3
       (23) 

 

In the case of boundary layer flow over a flat plate, the suitability of equation 23 has been verified by 

experiment and by more detailed calculations (see next section). The four constants a, b, c, and d in 

equation 23 are fixed by imposing four physical constraints: 

 

i). v1
 
= 0 at x2 = 0  ii). v1

 
= Vo at x2 = δ   iii). ∂v1/∂x2 = 0 at x2 = δ  

 

iv). ∂2
v1/∂x2

2
 = 0 at x2 = 0          (24) 

 

Boundary condition (iii) equates the slope of the velocity at the edge of the boundary layer to that in the 

potential flow region. Boundary condition (iv) is obtained directly from the differential momentum 

balance for the x1 direction (see equation 14a in handout 8 -  dropping out all terms that equal zero at 

the plate surface leads to boundary condition iv). Applying boundary conditions 24 to equation 23 

yields four equations in the four unknowns a, b, c, and d. The solution is a = c = 0, b = 3/2 and d = -

1/2, so that 

  

  v1/Vo =  3/2 (x2/δ) - 1/2 (x2/δ)
3
        (25) 

 

Higher order polynomials than equation 23 could also have been used to represent the velocity, 

supplemented by additional boundary conditions (for instance, requiring continuity of higher order 

derivatives of v1 at x2 = δ). However, for the present purposes equation 25 will be sufficient.  

 Recall that we want to derive expressions for two quantities, σ21p and δ. By definition of the 

stress tensor for a Newtonian fluid  

 

  σ21p = [µ dv1/dx2] x2 = 0 = 3/2 (µVo/δ)       (26) 

 

Equation 25 was used in arriving at equation 26. Equation 26 is a constitutive relation which, however, 

still has two unknowns (σ21p and δ) and so cannot be solved. We therefore supplement equation 26 

with the integral momentum balance, equation 22, what leads to two equations in the two unknowns 

σ21p and δ. Inserting equation 25 into equation 22 and performing the integration results in 
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  σ21p = 
d

dx
Vo

1

39

280

2ρ δ






  

 

Equating this result to that from equation 26,  

 3/2 (µVo/δ) = 
39

280

2

1

ρ
δ

Vo

d

dx
    � 420/39 (µVo)/ρVo

2
  dx1  =  δ dδ  (27) 

 

Integrating equation 27 (after using the condition δ = 0 at x1 = 0) leads to 

 

 δ /x1 = 4.64/(ρVox1/µ)
1/2

 = 4.64/Rex1
1/2

       (28) 

 

where Rex1 is the Reynold's number defined in terms of the distance x1 from the plate's leading edge, 

 

 Rex1 = ρVox1/µ           (29) 

 

Equation 28 states that the boundary layer thickness δ is proportional to x1
1/2

, and is the first of the 

results we were after. To evaluate σ21p, we insert expression 28 into equation 26 

 

 σ21p = 3/2 (µVo / 4.64 x1) Rex1
1/2

 = 0.323ρVo
2
 / Rex1

1/2
     (30) 

 

Equation 30 is the second result we wanted, namely an expression for σ21p. Together with equation 28, 

it represents the key results of the integral approximation method applied to boundary layer flow over a 

flat plate.  

 

Drag Coefficient. It is customary to define drag coefficients CD for external flows over various 

objects, including plates. For a particular object, the drag coefficient is defined by  

 

  CD = 

2

2
oV

A

FD

ρ
          (31) 

 

where FD is the total drag force on the object due to viscous stresses and A is an area associated with 

the object (exact definition of A depends on the type of object). For the case of the plate, A is defined to 

be the total surface area of one side of the plate, so that A = WL where W is the width and L is the 

length of the plate. If fluid flows both above and below the plate (so that there is a boundary layer both 

on the top and bottom sides of the plate), the total drag force FD of the fluid on the plate is: 

 

  FD = 
3

d
0 0

1
d2

21
x

W L
x

p∫ ∫σ  = 2W 0 1
0

.323
o
2

x1

d
ρV

Re
x

L

∫ = 0.646WL ρVo
2
 / ReL

1/2
   (32) 
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In equation 32, ReL = ρVoL / µ. The factor 2 is present because the fluid exerts drag both on top and 

bottom sides of the plate. Applying the definition of the drag coefficient (equation 31) and using A = 

WL: 

 

  CD = 1.29 / ReL
1/2

         (33) 

 

Equation 33 gives the drag coefficient for a flat plate of length L, oriented parallel to the direction of 

flow, with fluid flowing both above and below the plate. The equation rests on the assumptions of the 

integral approximation treatment (we will present an alternate derivation in the next section), which 

include the somewhat arbitrary choice of a polynomial trial function for the velocity profile in the 

boundary layer. Finally, it is important to keep in mind that we are dealing with flows that are 

everywhere laminar. As will be seen later, the above expressions change when turbulence is present.  

 

The Blasius Solution for Boundary Layer Flow over a Flat Plate. In contrast to the integral 

approximation approach, the Blasius solution for a laminar boundary layer flow over a flat plate does 

not make use of integral balances. Rather, it obtains the velocity profile directly from the differential 

equations of momentum and mass conservation. The assumption of a polynomial form for the velocity 

profile is thus avoided. We will derive the Blasius solution, and then compare its results to those 

obtained via the integral approximation approach.  

 The solution will require us to solve a partial differential equation. In doing so, we will 

introduce the method of combination of variables (also known as the "similarity transform method") 

to convert the partial differential equation (which will be in two independent variables) into an ordinary 

differential equation (which will, of course, be in a single independent variable). Combination of 

variables is often successful when the profile of interest (e.g. of velocity, temperature, pressure, or 

other field) is to be solved in a semi-infinite medium (i.e. geometrical effects are absent) AND when 

the profiles at the different positions and/or times of interest are expected to have the "same" shape; i.e. 

to be self-similar. By self-similarity we mean that the profiles could be superimposed on each other by 

rescaling (i.e. "stretching" or "compressing") the position and/or time variables that the profiles depend 

on by a characteristic length and/or period. 

 As in the integral approximation analysis, we will invoke the approximation that the pressure in 

the boundary layer is imposed by that in the potential flow, using the same justification as described 

following equation 19. Furthermore, the pressure in the potential flow is again taken to be constant, so 

that the pressure in the boundary layer is the same everywhere. It can be shown that this approximation 

holds reasonably well for Rex1 = ρVox1/µ > 10000. The x1-component of the Navier-Stokes equations 

for incompressible, constant viscosity flow becomes (again, we neglect body forces) 
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       (34) 

 

An additional simplification arises from stipulating that the dependence of v1 on x2 is much stronger 

than its dependence on x1. This is a reasonable supposition for a thin boundary layer, since v1 has to 

change from zero to the free stream value over the small distance corresponding to the thickness of the 

boundary layer. We can illustrate this better by estimating the magnitudes of the various terms in 

equation 34. For the estimates, we take the boundary layer length along x1 to be the length of the plate, 

thus ∆x1 = L, and its extent in x2 as its thickness, ∆x2 = δ. The change in v1 either along the plate (i.e. 



CBE 6333, R. Levicky   13 

from x1 = 0 to x1 = L) or across the boundary layer (i.e. from x2 = 0 to x2 = δ) is expected to be 

comparable to Vo. In particular, along the plate ∆v1 = - Vo, while across the boundary layer ∆v1 = Vo. 

Moreover, the magnitude of v1 at most points in the boundary layer is expected to be similar to Vo. The 

magnitude of v2 is expected to be small, close to 0 (since the incoming flow has no x2 component), but 

not exactly zero. In fact, v2 will be positive because, when the fluid hits the plate and is forced to 

decelerate, there must be a net upward displacement of the flow to satisfy the constraint of 

incompressibility (for the same reason that we obtain a positive value of m*T in equation 16). From the 

equation of continuity for an incompressible fluid we have 
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Estimating the terms in equation 34b (also see equation 1 in Handout 9), 
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Therefore, in the boundary layer v2 ~ δ Vo/L. With the above discussion and the help of equation 34c, 

we can now estimate the magnitude of each of the terms in the momentum balance, equation 34 
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From equations 34d we see that the estimated magnitudes of the two terms on the left of equation 34 

are comparable; therefore, we need to keep both of them. On the other hand, the second derivative of v1 

with respect to x2 is expected to be much greater than its second order derivative with respect to x1, 

since δ << L. Therefore, it should be justifiable to drop the 
2
1

1
2

x

v

∂

∂
 term on the right of equation 34, what 

leads to 
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Equation 35 is referred to as the "boundary layer equation." In addition to this momentum balance, the 

solution for the velocity profile in the boundary layer must also satisfy the equation of continuity for an 

incompressible fluid,  
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Finally, we have the boundary conditions, 
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i). v1 = 0  at  x2 = 0 

ii).  v2 = 0   at  x2 = 0 

iii). v1 = Vo  at  x2 = ∞          (37) 

 

The two equations 35 and 36, together with boundary conditions 37, comprise the complete 

mathematical formulation needed to solve for the two unknowns v1 and v2. Before solving for the 

velocities, it is helpful to introduce the so-called stream function ψ, defined as follows: 

 

  v1 = −
∂

∂

ψ

x
2

          (38a) 

  v2 = 
∂

∂

ψ

x
1

          (38b) 

The stream function is introduced for mathematical convenience, and can be defined for any two-

dimensional flow. A two-dimensional flow is one in which two components of the velocity are 

nonzero, with no flow in the third direction. By defining the velocities in terms of the stream function 

as in equations 38, the equation of continuity (equation 36) is automatically satisfied since mixed 

second derivatives of the stream function are equal.  

 Blasius conjectured that the velocity v1 depends on x1 and x2 through a "combined" variable η 

only, defined by 

 

  η = C x2/ x1
n
          (39) 

 

where C and n are constants. As mentioned earlier, the combination of variables method applies when 

the profile of interest has a self-similar shape. If v1 is only a function of η, then the stream function 

must obey 

 

  ψ = C' x1
n
F(η)         (40) 

 

where C' is another constant and F is an unknown function of η that needs to be determined. Equation 

40 follows from equations 38a, 39, and the requirement that v1 is only a function of η. We can confirm 

this last requirement by inserting equation 40 into 38a and applying the chain rule of differentiation,  

 

 v1 = −
∂

∂

ψ

x
2

= −
∂

∂

∂

∂ 2

ψ

η

η

x
= – C' x1

n 
dF/dη   C / x1

n
  = – C' C dF/dη   (41a) 

 

As was stipulated, with the definition 40 for the stream function v1 depends only on η (note: dF/dη is a 

function of η only). We can now also see that the reason for including x1
n
 in equation 40 was to bring 

about the cancellation of the x1
n
 terms in equation 41a. An expression for v2 can be derived using 

equations 40 and 38b, 

 

 v2 = n C' x1
n - 1

 F  – n C'C  dF/dη  x2/ x1      (41b) 
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Note that v2 was not postulated to be self-similar; hence it is not a function of η only. In addition,  
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Inserting equations 41a to 41e into the momentum balance equation 35, and simplifying,  

 

 – n(C' / C) F d
2
F/dη2

 = – ν / x1
2n - 1

 d
3
F/dη3

      (42) 
 

where ν = µ/ρ is the "kinematic" viscosity.  

 We have not yet specified the values of n and the constants C and C'. At this stage these 

parameters are arbitrary, and it makes sense to choose values that will simplify the solution of equation 

42. For n we choose  

 

 n = 1/2            (43) 

 

since that will eliminate the x1 dependence in equation 42, a desirable simplification. The values 

chosen for C and C' are also arbitrary; a possible choice is  

 

 C = (Vo/ν)
1/2

 and C' = – (Voν)
1/2

        (44) 

 

With these choices,  

 

 η = (Vo/ν)
1/2

  x2/ x1
1/2

 and  ψ = – (Voν)
1/2

 x1
1/2 

F(η)   (45) 
 

Also, the momentum balance 42 is rewritten as 

 

 F d
2
F/dη2

 = - 2 d
3
F/dη3

         (46) 

 

By defining the combined variable η, we have transformed the original partial differential equation 35 

into the ordinary differential equation 46, a great simplification. The highest order derivative in 

equation 46 is third order; therefore, to fully specify the solution to equation 46 three boundary 

conditions on F(η) are needed. These boundary conditions are derived from the original set of 

boundary conditions listed in equation 37. Using equations 37, 39, 41, 43 and 44, the original boundary 

conditions are rewritten in terms of F and η as 

 

i).  dF/dη = 0  at   η = 0 
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ii).  F = 0  at   η = 0 

iii). dF/dη = 1  at   η = ∞          (47) 

 

Equation 46, with the boundary conditions 47, can now be solved for F. Once F is known, v1 and v2 

can be calculated using equations 41a and 41b. These equations, in terms of  n = 1/2, C = (Vo/ν)
1/2

, and 

C' = – (Voν)
1/2 

 become 

 

 v1 = Vo dF/dη          (48) 

 

 v2 = -1/2 (Voν)
1/2

 x1
-1/2

 F  + 1/2 Vo dF/dη  x2/ x1     (49) 

 

The nonlinear, third order differential equation 46 for F must be solved via numerical techniques. Still, 

the above effort was not wasted as solving an ordinary differential equation is much easier than solving 

a partial differential equation.  

 From the velocity profile v1(η) we can calculate the viscous shear stress σ21p between the fluid 

and the plate  

 

 σ21p = [µ dv1/dx2] x2 = 0 = µVo [ d
2
F/dη2

 dη/dx2 ] x2 = 0     
  

 σ21p = µVo  [ d
2
F/dη2

 ] x2 = 0  (Vo/ν)
1/2 

/ x1
1/2

        

 

 σ21p = 0.332 (µ /ρ Vo x1)
1/2

 ρ Vo
2
 = 0.332 ρVo

2
 / Rex1

1/2
    (50) 

 
where [ d

2
F/dη2

 ] x2 = 0 = 0.332  is obtained from the numerical solution. The chain rule for 

differentiation was used in the first line leading to equation 50.  

 Equation 50 can be compared to equation 30 obtained using the integral approximation method 

 

 σ21p =  0.323ρVo
2
 / Rex1

1/2
        (30) 

 

The two expressions differ just by 2.8 %, due to the slight difference in the numerical prefactors. 

Therefore, the assumption of a polynomial trial function for the velocity profile in the integral 

approximation approach was remarkably effective in estimating the viscous drag between the fluid and 

the plate.  As before, we can integrate equation 50 over a plate of length L and width W to get the total 

frictional drag on the plate, 
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21
x
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p∫ ∫σ  = 2W 0 1
0
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o
2

x1

d
ρV
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x

L

∫ = 0.664WL ρVo
2
 / ReL

1/2
    (51) 

 

Recall that FD, as given in expression 51, applies when fluid flows over both the top and bottom sides 

of the plate. The drag coefficient, defined by equation 31, is 

 

 CD = 1.328 / ReL
1/2

          (52) 
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Equation 52 can be compared to CD = 1.29 / ReL
1/2

 obtained from the integral approximation approach. 

These expressions for the drag coefficients assume that the flow is laminar over the entire length of the 

plate. We will examine the effects of turbulence in a subsequent handout.  

 

Displacement Thickness. The displacement thickness δd, multiplied by the free stream velocity Vo, is 

defined as the decrease in fluid flow in the x1 direction (i.e. parallel to the plate) due to the retarding 

shear stress exerted by the plate on the flowing fluid. Specifically, δd is defined by 

 

 δd Vo = Vo x v xd 1d2
0

2
0

∞
∫ −

∞
∫         (53) 

The terms in equation 53 are volumetric flowrates per unit width (into the page) of the plate. The first 

term on the right is the volumetric flow rate of fluid that would occur in the absence of the plate, and 

the second term is the actual volumetric flowrate which is less because viscous interaction with the 

plate retards the flow (i.e. v1 < Vo). The difference between these two flowrates, divided by Vo, gives 

the displacement thickness, 

 

 δd = 
1

0
2

Vo

Vo v x(
∞
∫ − 1)d          (54) 

Since v1 varies with x1, the displacement thickness also varies with x1. In particular, δd increases 

downstream along the plate as the boundary layer thickens. δd is occasionally used as an alternate 

measure of boundary layer thickness.  

 

Momentum Thickness. The momentum thickness δM is similar to the displacement thickness, except 

that it is related to the decrease in the flow of momentum, rather than fluid volume, that arises due to 

the retarding viscous interactions with the plate. δM is calculated from 

 

 δM = 
1

2
0

2
Vo

Vo v v x(
∞
∫ − 1) 1 d         (55) 

 

δM is yet another possible measure of boundary layer thickness.  

 


