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Examples of Laminar Flows

In laminar flows the fluid moves in "layers" or laminae, in contrast to the apparently chaotic motion of
turbulent flow. Laminar flows in many different geometries have been investigated with the help of
transport models; here we consider just a few well known examples. We also take this opportunity to
introduce the use of integral equation models and of the method of combination of variables to solve
transport problems. In general, when setting up a problem you will need to address several questions:

The 1st question to ask is: What are we trying to find out about the flow (i.e. velocities, pressure, etc)?
In other words, what are the unknowns that we are after?

The 2nd question to ask is: What equations do we use? Recall that we need as many equations as we
have unknowns, together with any boundary conditions and possibly also relations between intensive
thermodynamic variables (such as equations of state).

The 3rd step is to solve the equations for the unknowns (i.e. velocities, pressure) of interest. This can
be a long process, and often requires that we make certain approximations along the way, in addition to
a fair amount of mathematical manipulations.

Internal Flows

Internal flows are those that occur within a channel or pipe. The fluid body is of finite dimensions and
is confined by the channel or pipe walls. At the entry region to a channel, the fluid develops a boundary
layer next to the channel walls, while the central "core" of the fluid may remain as a uniform flow
(Figure 1). Within the boundary layer, viscous stresses are very prominent, slowing down the fluid due
to its friction with the channel walls. This slowdown propagates away from the walls: as the fluid
enters the channel the fluid particles immediately next to the walls are slowed down, these particles
then viscously interact with and slow down those in the second layer from the wall, and so on.
Downstream, the boundary layers therefore thicken and eventually come together, eliminating the
central core. Eventually, the velocity assumes some average profile across the channel which is no
longer influenced by any edge effects arising from the entrance region. At this point, the flow no longer
depends on what has occurred at the channel entrance, and we could solve for its properties (such as
the velocity profile) without including an entrance region in the calculations. At this stage, we say that
the flow has become "fully developed."
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For flow in a pipe, Boussinesq has estimated that the distance X1 needed for the flow to become fully
developed can be approximated by

XL =0.03ReD (1)

where

Re = pVD/u 2)

Re is the "Reynold's number," D is the pipe diameter, p is the fluid density, # s the fluid viscosity, and
V is the average velocity of the fluid in the pipe (V = volumetric flowrate / cross-sectional area of pipe).
When Re is less than about 2300, the flow in a pipe will in general be laminar. In laminar flow, the
values of velocity, pressure, and other quantities at a point in space do not fluctuate randomly with
time. In laminar flow, fluid flows smoothly. Above Re = 2300 the flow will usually become turbulent,
and thus be characterized by sudden fluctuations in the values of the velocity components, pressure and
other variables characterizing the flow. In turbulent flow, the motion of fluid is chaotic and apparently
unpredictable. Later we will consider how to apply the differential conservation laws when turbulence
is present. For now, we will focus on describing laminar, fully developed flows.

1). Steady-state, laminar flow between stationary, parallel plates. This simple example of an
internal, laminar flow is illustrated in Figure 2. We want to develop an expression for the fluid velocity
profile v; (what independent variables does v; depend on?) From the Cartesian version of the
differential equation of motion for a Newtonian fluid with constant p and x (equations 14 in Handout
8),

0 = - dp/dx; + u(d*v,/dx,%) 3)
Note that body forces were assumed to act perpendicular to the direction of flow, and so do not appear
in equation (3). Also, the pressure gradient dp/dx; is taken to have a constant value. Applying the no-

slip boundary conditions v; = 0 at x, = & and at x, = -h, (or applying one of these conditions in
conjunction with the condition that dv,/dx, = 0 at the midpoint of the gap between the plates) we find

vi = 1/Q2u) dp/dx, (x,” - h®) 4)
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Therefore, the velocity profile is parabolic as depicted in Figure 2. Note that the flow is entirely driven
by the presence of a pressure gradient. If dp/dx; = 0, then v; = 0 and there is no flow. For a more
viscous fluid, a greater pressure gradient is required to achieve a given rate of flow.
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Figure 2

2). Steady-state, laminar flow between two parallel surfaces in relative motion (Couette Flow).
When one of the surfaces in Figure 2 is in motion, the flow is often termed "Couette Flow." The
solution for the velocity profile follows the same protocol as for example 1, except that one of the
surfaces moves at a speed V relative to the other (Figure 3). In general, a nonzero pressure gradient in
the direction of flow may be present (the pressure gradient is again assumed to be constant). If body
forces do not contribute to the flow, the Cartesian differential equation of motion for a Newtonian fluid
with constant p and ¢ may be written as,

0 = - dp/dx; + u(d*v,/dx,%)

which is same as equation (3). However, now the boundary conditions are v = Vj at x, = h and v; =0 at
x> = 0. The resultant velocity profile is easily found to be

V1= 1/(2/[1) dp/dx1 (X22 - ]/lXQ) + Vl)Cz/ h &)
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Figure 3. The velocity profile on the left is observed when the pressure gradient in the gap is zero. The
velocity profile on the right corresponds to a decreasing pressure in the direction of flow, i.e. dp/dx; <
0.

Equation 5 shows that the velocity profile is a combination of parabolic (1st term on the right) and
linear (2nd term on the right) flows. Note that the parabolic contribution is entirely driven by the
presence of a pressure gradient, while the linear contribution arises from the fact that the top plate is
moving at a velocity V;. Figure 3 shows what the velocity profile may look like when just the linear or
both linear and parabolic contributions are present. Integrating the velocity profile (5) across the gap
gives the volumetric flow rate Q' per unit depth of flow into the page,
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3). Steady-state, laminar flow in a cylindrical pipe (Poiseuille flow). This flow is illustrated in
Figure 4. Again, we are after an expression for the velocity profile in the pipe. What independent
variables does the velocity profile depend on, and why? From the cylindrical version of the differential
equation of motion for a Newtonian fluid with constant p and g, with no body forces in the z direction,

0 =-dp/dz + w/r d/dr (rdvz/dr) 7
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Figure 4.

Assuming that the pressure gradient dp/dz is constant, and applying the boundary conditions v; =0 at r
=R, and dvz/dr = 0 at r = 0 (since the flow is symmetric about r, the slope of vz with respect to r at r =
0 must be zero) we get

vz = 1/(44) dp/dz (- R) (8)

Therefore, as for the case of flow between parallel plates, the velocity profile is parabolic. Again, the
flow is entirely driven by the presence of a pressure gradient. Note that for a given pressure gradient
and distance from the center of the flow, the pipe flow, equation 8, predicts lower velocities than the
flow in the gap between parallel plates, equation 4. This is evident because the prefactor 1/44 in
equation 8 is smaller than the prefactor 1/24 in equation 4. From a physical perspective, why should
this be?

Integration of equation 8 over the cross-sectional area of the pipe gives the volumetric flow rate Q,

R 2T nR4 dp
O=1[ [v,rd0dr=—-——-— 9)
00 8u dz
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External Flows

External flow occurs when a fluid flows over an object. The flow is perturbed due to interaction with
the object in its path. Figure 5 illustrates the flow of fluid around a sphere, an example of external flow.
Air flow over a house or around a plane is another example of external flow. Often, external flows are
turbulent although, for now, we will restrict our attention to laminar external flows. We will discuss
external flow around a sphere as our first example.

laminar Figure 5.

ow
1). Creeping Flow Around a Sphere. The general problem

X3 of flow around a sphere, Fig. 5, is difficult to treat and an

0N analytical solution cannot be found. For the case of so-called
"creeping flow", however, an analytical solution is possible.
"Creeping" refers to the situation of very small Re, when the
0 ' convective transfer of momentum is insignificant compared
sphere i to the viscous transfer of momentum. For flow around a

‘ / sphere Re is defined as Re = pV,D/u where V, is the fluid

P }" velocity in the x3 direction far from the sphere, and D is the

XN — sphere diameter. Small Re means that the flow is slow; hence
the terminology "creeping."

X1 A famous result that emerges from the solution of the
creeping flow around a sphere is that the total force Fp on the
sphere due the fluid flowing around it is given by

Fp = 6TuRV, (10)

where # is the fluid viscosity, R is the radius of the sphere, and V,, is the free stream velocity of the
flowing fluid. "Free stream" refers to those parts of the flow that are far from the sphere and are not
perturbed by its presence. Equation 10 actually consists of two contributions, the first of which is called
the "form drag" Fp and is given by

Fp =2muRV, (11)

The form drag arises because the normal stress on the backside (downstream) of the sphere is less than
the normal stress on the front side (upstream) of the sphere. The truth of this statement can be directly
verified by obtaining the stress distribution from the differential equations of fluid mechanics. The
reason why the normal stress is less on the backside of the sphere is in part due to the fact that viscous
stresses need to be overcome as the fluid flows from the front to the rear of the sphere; overcoming
these viscous stresses is accompanied by a decrease in pressure which results in a decreased normal
stress on the backside of the sphere. The important point is that form drag arises from changes in the
normal stress attributable to the motion of a viscous fluid around the form of a body (i.e. the change in
normal stress does not arise from gravity or some other body force).
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non

The second contribution to the total drag force is termed the "viscous", "skin", or "friction"
drag Fy

Fy = 4TURV, (12)

and is due to the force exerted on the sphere by viscous shear stresses acting at the sphere/fluid
interface. The sum of the form and friction drags, equations 11 and 12, results in the total drag on the
sphere due to the motion of the fluid (equation 10).

Form drag can be reduced by gradually tapering the rear portion of a body (streamlining). An
airplane wing is a good example of a streamlined body. However, streamlining increases the surface
area of the body, contributing to an increase in its skin friction or viscous drag. Eventually, a decrease
in form drag will be more than offset by an increase in viscous drag. The minimization of the total drag
force reflects a compromise between these two competing requirements.

2). Boundary Layer Flow over a Flat Plate.

The concept of a boundary layer is extremely important in many applications, both for internal and
external flows. Here we introduce it in the context of external flow over a plate, but as discussed at the
beginning of this handout boundary layers also play a role in internal flows (i.e. as part of the entry
transition region in the pipe flow depicted in Figure 1).

The concept of a boundary layer is useful when discussing flows that may be subdivided into a
thin region next to a surface in which viscous effects are important (this region is the "boundary
layer"), and an external region in which viscous effects may be neglected (the so-called "potential
flow" region). See figure 6. In the potential flow region, viscous effects may be negligible, even if the
fluid viscosity is considerable, because the velocity gradients are so small that there is little friction
acting between different parts of the fluid. The precise delineation between the boundary layer and the
potential flow region is subject to convention; often, the boundary layer thickness is defined by the
requirement that the fluid velocity parallel to the surface is equal to 99% of the free stream velocity V..
At distances further from the surface than this thickness the flow is viewed as potential flow, while
closer to the plate the flow is viewed as boundary layer flow. If the pressure decreases in the direction
of the flow (i.e. in Fig. 6, dp/dx; < 0), so that the pressure gradient favors flow along the surface, the
thickness of the boundary layer grows more slowly than if the pressure gradient opposes the flow
(dp/dx; > 0). If the pressure gradient opposes the flow, it may cause the fluid velocity near the surface
to reverse direction, and a "separation” of the boundary layer will then occur.

VO
>
—> .
vV, x, potential flow v, =099V,
> boundary layer
—>,
41/ |
—>
plate
—>

Figure 6.
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The "von-Karman'' Momentum Integral Equation. We will examine two approaches to analyzing
boundary layer flow. The first approach is an example of an integral approximation method. The
typical purpose of this method is to find a solution for a profile of interest; for example, a velocity
profile, a temperature profile, a pressure profile, or a concentration profile. In other words, the usual
goal is to determine how velocities, temperature, pressure, or concentrations vary with position or time.
Normally, as we know from prior discussion, this objective would be pursued by solving the
differential balance laws subject to the appropriate boundary and initial conditions. By solving the
differential equations, we would find that profile of interest that satisfies the physical laws underlying
the equations (i.e. mass, energy, momentum conservation) at every point. An integral approximation
method, however, adopts a different viewpoint. Instead, as you might have guessed from its name, the
conservation laws are applied to a control volume; i.e. the solution to the problem will satisfy the
conservation laws for a control volume, rather than for every point. This methodology does not enforce
the conservation laws at all points inside the control volume and the solution found will not, in general,
exactly satisfy momentum, energy, or mass conservation at a particular point.

Why use an integral approximation method? The main reason is that it can greatly simplify the
mathematics, and still produce reasonably accurate results if applied properly. In the integral
approximation method, a trial function is assumed for the profile of interest (e.g. the velocity or
temperature profile may be assumed to be a 3rd order polynomial). This function will have unknown
parameters in it which are determined in the course of solving the problem by requiring that the trial
function satisfy the applicable conservation laws for the control volume, and any additional physical
constraints (e.g. boundary conditions) that one wishes to enforce. Therefore, the accuracy of the
integral approximation approach hinges to a great deal on correct intuition in identifying what physical
constraints are most important to satisfy. The mathematics are greatly simplified because, since a trial
function is assumed, it is not necessary to derive the functional form of the solution from the
differential conservation equations. However, a weakness of integral approximation methods is that it
is not always obvious how to check the accuracy of the found solution, which may strongly depend on
selection of the trial function and decisions as to which physical constraints are enforced.

We will use the integral approximation method to estimate the velocity profile v; in the
boundary layer over a flat plate, Fig. 6. In turn, the velocity profile will be used to calculate the shear
stress exerted on the plate and the thickness of the boundary layer. We start by writing an integral
momentum balance for a control volume that encloses a piece of the boundary layer as shown in Fig. 7.
The value of v; outside of the boundary layer is taken to equal V,. In other words, we assume that v,
reaches the exact value V, of the undisturbed flow at x, = &x;), where Xx;) is the thickness of the
boundary layer as a function of the distance x; along the plate. In addition to determining a trial
function for vy, we want to develop expressions for the thickness &x;) and the shear stress G1p(x1)
exerted by the fluid on the plate at x, = 0 (the subscript "p" indicates that the stress is to be evaluated at
the plate).

Considering the control volume in Figure 7, it is evident that we will need the mass flowrates
into the control volume across its left, right, and top sides. The flowrates will be needed for writing the
integral momentum balance on the control volume. The control volume is chosen to be very thin, of
width dxi, in the x; direction. The mass flowrate m™* across the left side of the control volume (located
at x; = xr) is given by
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control volume
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i X Figure 7.
W o o
m¥ = | (j)pvldxzdx3 - W (j)pvldxz (13)
0

where W is the width (into the page, i.e. in the x3 direction) of the control volume. The mass flowrate
m*g across the right side of the control volume is

p )
m*R = - (m*L + (Im*1/ox;) dx;) = -m*L- W —| [ pv.dx, |dx (14)
ox 172 1
1L0
Note that the term (dm*/dx)dx, is simply the change in the mass flowrate m* that occurs over the
distance dx;. Therefore, the flow rate out of the control volume at x; = xg is given by - m*y_ (the value at
x1 = x) plus the term - (dm*1/dx;)dx; due to the change in mass flowrate between x; = x and x; = xg.
Now, from the integral equation of mass conservation for steady state, there can be no net
accumulation of mass in the control volume; therefore, the sum of all the mass flowrates must be zero,

m*gr + m*, + m*r=0 (15)

where m*r is the mass flowrate through the top of the control volume. Inserting equations (13) and (14)
into equation (15) and rearranging,

)
m*T:+Wai{jpvldx2}dxl (16)
X Lo

Below, we will use the integral mass balance, equation 16, to simplify the integral momentum balance.
Since we are interested in shear stress 0z;p acting on the plate in the x; direction, we need the x;-
component of the momentum balance (note that steady state applies),

O:ML1+MR1+MT1+F1 (17)

where My, M, and Mt are x;-momentum convection terms through the left, right, and top sides of
the control volume, and F is the total force acting on the control volume in the x; direction. Since at
steady state there is no accumulation of momentum inside the control volume, the sum of the terms in
equation 17 equals zero. The convection terms are:

o
My, = W(j)pvzdxz (18a)
1

g
Mgy =— (M1 + (OMy1/0x)) dx;) = - My - W g{jpvzdxz} dx, (18b)
Lo 1
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)
My, = Vo m*r = VOWi [pv,dx, |dx (18¢)
ax | o172 |7

The right hand side of equation (18b) is the value of the x;-momentum convection out of the control
volume at x; = xg. In equation (18c), the x;-component of the velocity at the top side of the control
volume is equal to V,, since the top side borders the potential flow region (Figure 7). The product of
Vo, which is momentum per mass, with the mass flowrate m*y (mass / time) is the rate of momentum
convection across the top side of the control volume.

The complete the integral momentum balance, equation 17, we also need to evaluate the forces
acting on the control volume along the x;-direction. These forces include pressure forces plus the shear
force between the plate and the fluid (why is there no shear force at the top side of the control
volume?). At this stage, an additional assumption is invoked. In particular, it is assumed that the
pressure inside the boundary layer is imposed by that existing in the potential flow region just outside
the boundary layer. In other words, the pressure inside the boundary layer is assumed to be independent
of x,, so that

pB(x1) = pp(x1) (19)

where pg is the pressure inside the boundary layer and pp is the pressure in the potential flow region.
Equation 19 can be justified by writing out the x,-component of the differential momentum balance for
flow inside the boundary layer. In this differential balance, the velocity component v, can be
approximated as equal to zero because this velocity component is very small. With v, = 0, the x,-
component of the differential momentum equation reduces to (you may want to confirm this for
yourself)

0 = - Ip/ox (19b)

In equation 19b, in addition to taking v, = O we have also neglected body forces which is an
appropriate approximation if the boundary layer is thin. If dp/dx, = 0 then the pressure inside the
boundary layer must be independent of x,, and equation 19b leads directly to equation 19.

In addition, we assume that the pressure in the potential region is constant and so independent
of x;. Equation 19 reduces to

ps =pp=constant  (everywhere inside the boundary layer) (19¢)

Equation 19c implies that there is no net force, due to pressure, that acts on the control volume in the x;
direction since the pressure force pushing "right" on the control volume will be exactly
counterbalanced by pressure force pushing "left" on the control volume. Then the only contribution to
the force F; on the control volume is the shear stress against the plate,

Fi=- 031,Wdx; (20)
where Wdx; equals the area of the bottom side of the control volume. Note that the shear force exerted

by the plate on the control volume is in the negative x; direction. Inserting equations 20 and 18a to 18c
into equation 17 completes the integral momentum balance, which simplifies to
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d|9 5 d |9
621p=—d— [pv dx, +V°d_ j,ovldx2 (21)
“1lo 1 *1L0
Combining terms,
o
d

Equation 22 is a statement of momentum conservation, applied to the control volume in Fig. 7. To
proceed further (e.g. to evaluate the integral so that the shear stress on the plate can be estimated) we
now need to select a trial function for v;(x,). The trial function is assumed to be represented by a
polynomial:

vilVe = a + b(xal &) + c(xa/ &) + d(x2/ O)° (23)

In the case of boundary layer flow over a flat plate, the suitability of equation 23 has been verified by
experiment and by more detailed calculations (see next section). The four constants a, b, ¢, and d in
equation 23 are fixed by imposing four physical constraints:

1).vi=0atx, =0 i).vi=Voatx, =0 1i1). ovilox,=0atx, =9
iv). 0%v1/0x," = 0 at x, = 0 (24)

Boundary condition (iii) equates the slope of the velocity at the edge of the boundary layer to that in the
potential flow region. Boundary condition (iv) is obtained directly from the differential momentum
balance for the x; direction (see equation 14a in handout 8 - dropping out all terms that equal zero at
the plate surface leads to boundary condition iv). Applying boundary conditions 24 to equation 23
yields four equations in the four unknowns a, b, ¢, and d. The solutionisa=c=0,b=3/2and d = -
1/2, so that

vilVy = 312 (x2/6) - 1/2 (x2/ )} (25)

Higher order polynomials than equation 23 could also have been used to represent the velocity,
supplemented by additional boundary conditions (for instance, requiring continuity of higher order
derivatives of v; at x, = 8). However, for the present purposes equation 25 will be sufficient.

Recall that we want to derive expressions for two quantities, 031, and o. By definition of the
stress tensor for a Newtonian fluid

Oaip = [ dvi/dxz] xo =0 = 3/2 (UVo/ ) (26)

Equation 25 was used in arriving at equation 26. Equation 26 is a constitutive relation which, however,
still has two unknowns (03, and 6) and so cannot be solved. We therefore supplement equation 26
with the integral momentum balance, equation 22, what leads to two equations in the two unknowns
0»1p and O. Inserting equation 25 into equation 22 and performing the integration results in
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d (39 2)
Oy = ——| — pV 2§
" g \2g0”

Equating this result to that from equation 26,

39 o do 5
32 (V) = — pv = — > 42039 (WV)lpV.l dvi = 8dS @7)
0
280" 7 dxg

Integrating equation 27 (after using the condition 0= 0 at x; = 0) leads to
Slxy = 4.64/(pVexi/1h)"? = 4.64/Rey (28)

where Rey; is the Reynold's number defined in terms of the distance x; from the plate's leading edge,

Rey = pVoxl/,u (29)

Equation 28 states that the boundary layer thickness dis proportional to x;'2, and is the first of the
results we were after. To evaluate 0»1p, we insert expression 28 into equation 26

Oa1p = 312 (UV, | 4.64 x1) Reyy ™ = 0.323pV,” / Reyy ' (30)

Equation 30 is the second result we wanted, namely an expression for 03,. Together with equation 28,
it represents the key results of the integral approximation method applied to boundary layer flow over a
flat plate.

Drag Coefficient. It is customary to define drag coefficients Cp, for external flows over various
objects, including plates. For a particular object, the drag coefficient is defined by

FD
2
PVo
2

Cp =

€1V
A

where Fp is the total drag force on the object due to viscous stresses and A is an area associated with
the object (exact definition of A depends on the type of object). For the case of the plate, A is defined to
be the total surface area of one side of the plate, so that A = WL where W is the width and L is the
length of the plate. If fluid flows both above and below the plate (so that there is a boundary layer both
on the top and bottom sides of the plate), the total drag force Fp of the fluid on the plate is:

WL L pv?2
Fo=2] oy, dydey =2W [0323

0 \ Rexq

dx; = 0.646WL pV,” / Rer ' (32)
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In equation 32, Re;, = pV,L / i. The factor 2 is present because the fluid exerts drag both on top and
bottom sides of the plate. Applying the definition of the drag coefficient (equation 31) and using A =
WL:

Cp=129/Re ' (33)

Equation 33 gives the drag coefficient for a flat plate of length L, oriented parallel to the direction of
flow, with fluid flowing both above and below the plate. The equation rests on the assumptions of the
integral approximation treatment (we will present an alternate derivation in the next section), which
include the somewhat arbitrary choice of a polynomial trial function for the velocity profile in the
boundary layer. Finally, it is important to keep in mind that we are dealing with flows that are
everywhere laminar. As will be seen later, the above expressions change when turbulence is present.

The Blasius Solution for Boundary Layer Flow over a Flat Plate. In contrast to the integral
approximation approach, the Blasius solution for a laminar boundary layer flow over a flat plate does
not make use of integral balances. Rather, it obtains the velocity profile directly from the differential
equations of momentum and mass conservation. The assumption of a polynomial form for the velocity
profile is thus avoided. We will derive the Blasius solution, and then compare its results to those
obtained via the integral approximation approach.

The solution will require us to solve a partial differential equation. In doing so, we will
introduce the method of combination of variables (also known as the "similarity transform method")
to convert the partial differential equation (which will be in two independent variables) into an ordinary
differential equation (which will, of course, be in a single independent variable). Combination of
variables is often successful when the profile of interest (e.g. of velocity, temperature, pressure, or
other field) is to be solved in a semi-infinite medium (i.e. geometrical effects are absent) AND when
the profiles at the different positions and/or times of interest are expected to have the "same" shape; i.e.
to be self-similar. By self-similarity we mean that the profiles could be superimposed on each other by
rescaling (i.e. "stretching" or "compressing") the position and/or time variables that the profiles depend
on by a characteristic length and/or period.

As in the integral approximation analysis, we will invoke the approximation that the pressure in
the boundary layer is imposed by that in the potential flow, using the same justification as described
following equation 19. Furthermore, the pressure in the potential flow is again taken to be constant, so
that the pressure in the boundary layer is the same everywhere. It can be shown that this approximation
holds reasonably well for Rex; = pVoxi1/u > 10000. The x;-component of the Navier-Stokes equations
for incompressible, constant viscosity flow becomes (again, we neglect body forces)

2 2
y 8v1+v avlzﬁ a v1+a V1 (34)
1 2 ) )
dx;  Tdxp  ploxy  oxd

An additional simplification arises from stipulating that the dependence of v, on x; is much stronger
than its dependence on x;. This is a reasonable supposition for a thin boundary layer, since v; has to
change from zero to the free stream value over the small distance corresponding to the thickness of the
boundary layer. We can illustrate this better by estimating the magnitudes of the various terms in
equation 34. For the estimates, we take the boundary layer length along x; to be the length of the plate,
thus Ax; = L, and its extent in x, as its thickness, Ax, = o. The change in v, either along the plate (i.e.
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from x; = 0 to x; = L) or across the boundary layer (i.e. from x, = 0 to x, = J) is expected to be
comparable to V,. In particular, along the plate Av; = - V,,, while across the boundary layer Av, = V,,.
Moreover, the magnitude of v; at most points in the boundary layer is expected to be similar to V,. The
magnitude of v, is expected to be small, close to O (since the incoming flow has no x, component), but
not exactly zero. In fact, v, will be positive because, when the fluid hits the plate and is forced to
decelerate, there must be a net upward displacement of the flow to satisfy the constraint of
incompressibility (for the same reason that we obtain a positive value of m*r in equation 16). From the
equation of continuity for an incompressible fluid we have

dv, v
MM o therefore 122 (34b)
ax;  Ixy axl axz
Estimating the terms in equation 34b (also see equation 1 in Handout 9),
V., Ay, Vv
-2~ Av, =v,—0=v, ~0—~ 34
I 5 or 2 2 2 I (34¢)

Therefore, in the boundary layer v, ~ 0 V,/L. With the above discussion and the help of equation 34c,
we can now estimate the magnitude of each of the terms in the momentum balance, equation 34

) v, v, ) W, V, _v v v, V, v, V,
fox, ‘L ox, L & ‘L ox; L ox; O’

(34d)

From equations 34d we see that the estimated magnitudes of the two terms on the left of equation 34
are comparable; therefore, we need to keep both of them. On the other hand, the second derivative of v;
with respect to x; is expected to be much greater than its second order derivative with respect to x;,

2
since << L. Therefore, it should be justifiable to drop the O™V term on the right of equation 34, what

2
axl

leads to

2
v v 07y
- 1+v2 1 _H 21 (35)
x| oxy p ox)
Equation 35 is referred to as the "boundary layer equation." In addition to this momentum balance, the
solution for the velocity profile in the boundary layer must also satisfy the equation of continuity for an
incompressible fluid,

M, (36)
ox];  oxo

Finally, we have the boundary conditions,
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1). V) = 0 at Xy = 0
ii). Vy = 0 at Xy = 0
iii),. v;=V, at x,=o0 37)

The two equations 35 and 36, together with boundary conditions 37, comprise the complete
mathematical formulation needed to solve for the two unknowns v; and v,. Before solving for the
velocities, it is helpful to introduce the so-called stream function y; defined as follows:

0
V= — —l// (38a)
8x2
0
vy = —W (38b)
axl

The stream function is introduced for mathematical convenience, and can be defined for any two-
dimensional flow. A two-dimensional flow is one in which two components of the velocity are
nonzero, with no flow in the third direction. By defining the velocities in terms of the stream function
as in equations 38, the equation of continuity (equation 36) is automatically satisfied since mixed
second derivatives of the stream function are equal.

Blasius conjectured that the velocity v; depends on x; and x; through a "combined" variable 77
only, defined by

n=Cxf x" (39)
where C and n are constants. As mentioned earlier, the combination of variables method applies when

the profile of interest has a self-similar shape. If v, is only a function of 7, then the stream function
must obey

y=C'x,"F(1) (40)

where C'is another constant and F'is an unknown function of 7 that needs to be determined. Equation
40 follows from equations 38a, 39, and the requirement that v; is only a function of 7. We can confirm
this last requirement by inserting equation 40 into 38a and applying the chain rule of differentiation,

oy oy I
0x, dn ox,

C'x"dF/dn C/x" =-C'CdF/dn (41a)

V=

As was stipulated, with the definition 40 for the stream function v, depends only on 77 (note: dF/dnis a
function of 77 only). We can now also see that the reason for including x," in equation 40 was to bring
about the cancellation of the x;" terms in equation 41a. An expression for v, can be derived using
equations 40 and 38b,

vm=nC'x" ' F —n C'C dF/dn x,/ x, (41b)
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Note that v, was not postulated to be self-similar; hence it is not a function of 7 only. In addition,

J
P _ ¢ x" &F (41c)
aX2
J
M CC xof x PFIA T (41d)
axl
82\/

L__cc'/x>™ PFriarn (41e)
8x§

Inserting equations 41a to 41e into the momentum balance equation 35, and simplifying,

-n(C'/C) F &F[d =- v/ x> ' d°Fldip (42)
where v = t/pis the "kinematic" viscosity.

We have not yet specified the values of n and the constants C and C'. At this stage these

parameters are arbitrary, and it makes sense to choose values that will simplify the solution of equation
42. For n we choose

n=1/2 (43)

since that will eliminate the x; dependence in equation 42, a desirable simplification. The values
chosen for C and C" are also arbitrary; a possible choice is

C=(V/»*and C'=-(V,»)'* (44)
With these choices,
n= VW x/ x,'*  and y=-V,»'"x,"*F(n) 45)

Also, the momentum balance 42 is rewritten as
Fd°F/d =-2 dFrdn (46)

By defining the combined variable 77, we have transformed the original partial differential equation 35
into the ordinary differential equation 46, a great simplification. The highest order derivative in
equation 46 is third order; therefore, to fully specify the solution to equation 46 three boundary
conditions on F(7) are needed. These boundary conditions are derived from the original set of
boundary conditions listed in equation 37. Using equations 37, 39, 41, 43 and 44, the original boundary
conditions are rewritten in terms of F and 77 as

). dF/dn=0 at n=0
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ii). F=0a n=0

iii). dF/dnp=1 at p=o0 47
Equation 46, with the boundary conditions 47, can now be solved for F. Once F'is known, v; and v,
can be calculated using equations 41a and 41b. These equations, in terms of n=1/2, C = (V,/ W', and
C'=- (Vov)l/2 become
v, =V, dF/d7 (48)
12 _ -172
V2=-1/2 (VOV) X1 F +1/2 V, dF/dT] Xz/xl 49)

The nonlinear, third order differential equation 46 for F must be solved via numerical techniques. Still,
the above effort was not wasted as solving an ordinary differential equation is much easier than solving
a partial differential equation.

From the velocity profile vi(77) we can calculate the viscous shear stress 031, between the fluid
and the plate

Oaip = [ dvi/dxy] o0 = 1V, [ sz/dﬂz dn/dx; 12 =0
Oo1p = UV, | sz/dﬂz Ix2=0 (Vo/V)m/le
Oy1p = 0.332 (u/p Vo x1)'? p V. = 0.332 pV,> / Rey, ' (50)

where [ d2F/d772 ]1x2=0=0.332 is obtained from the numerical solution. The chain rule for
differentiation was used in the first line leading to equation 50.
Equation 50 can be compared to equation 30 obtained using the integral approximation method

O, = 0.323pV,>/ Rey'” (30)

The two expressions differ just by 2.8 %, due to the slight difference in the numerical prefactors.
Therefore, the assumption of a polynomial trial function for the velocity profile in the integral
approximation approach was remarkably effective in estimating the viscous drag between the fluid and
the plate. As before, we can integrate equation 50 over a plate of length L and width W to get the total
frictional drag on the plate,

L 2
WL pVO 2 172
Fp=2] j<521pdx1dx3 =2W [0.332 dx; =0.664WL pV," / Rey, D
O O 0 N Rexl

Recall that Fp, as given in expression 51, applies when fluid flows over both the top and bottom sides
of the plate. The drag coefficient, defined by equation 31, is

Cp=1.328/Re ' (52)
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Equation 52 can be compared to Cp =1.29 / Re;'"? obtained from the integral approximation approach.

These expressions for the drag coefficients assume that the flow is laminar over the entire length of the
plate. We will examine the effects of turbulence in a subsequent handout.

Displacement Thickness. The displacement thickness 3, multiplied by the free stream velocity V., is
defined as the decrease in fluid flow in the x; direction (i.e. parallel to the plate) due to the retarding
shear stress exerted by the plate on the flowing fluid. Specifically, d; is defined by

(o ] oo
Vo= [V,dxy — [vidxy (53)

0 0
The terms in equation 53 are volumetric flowrates per unit width (into the page) of the plate. The first
term on the right is the volumetric flow rate of fluid that would occur in the absence of the plate, and
the second term is the actual volumetric flowrate which is less because viscous interaction with the
plate retards the flow (i.e. vi < V,,). The difference between these two flowrates, divided by V,, gives
the displacement thickness,

(e o]
= — [(V, —v])dxp (54)
o0
Since v; varies with xj, the displacement thickness also varies with x;. In particular, d; increases
downstream along the plate as the boundary layer thickens. d; is occasionally used as an alternate
measure of boundary layer thickness.

Momentum Thickness. The momentum thickness dy is similar to the displacement thickness, except
that it is related to the decrease in the flow of momentum, rather than fluid volume, that arises due to
the retarding viscous interactions with the plate. dy is calculated from

1
=1
\%

o

[V, =v]) v de (55)
0

Oum is yet another possible measure of boundary layer thickness.



