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Interpreting Differential Equations of Transport Phenomena

There are a number of techniques generally useful in interpreting and simplifying the
mathematical description of physical problems. Here we introduce several of them that we will
encounter when solving transport problems.

1). Estimating magnitudes of terms in a differential equation. Transport problems can be
mathematically challenging, being described by nonlinear, coupled partial differential equations.
In these instances, it may be possible to simplify the description by using physical reasoning and
approximate estimates to decide whether some of the terms in a differential equation are small in
magnitude compared to the others. If so, it may be possible to neglect those terms altogether and
work with the simplified equation which, although an approximation, still captures the physical
behavior sufficiently accurately. Most often one encounters the need to estimate the magnitude
of first or second order derivatives.

Taking a dependent variable g and an independent variable x, an order of magnitude
estimate of a first order derivative can be obtained as follows:
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where Ag is the maximum difference in g expected over the range Ax of x.

For example, imagine you are given a flow in which fluid flows through a cylindrical
pipe of radius R = 0.2 m with an average velocity of V =5 m/s. You want to estimate the
derivative of the velocity v with respect to the radial coordinate r, dv/dr. You use your physical
intuition by recognizing that, at the pipe wall, the fluid would be expected to have zero velocity
if the no-slip boundary condition holds, v(r = R) = 0. Therefore, you may approximate that
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Next, let's estimate the second order derivative 82g/8x2. To do so, it is often customary to assume
that the first order derivative ranges from 0 to dg/dx ~ Ag/Ax. With this assumption we get,
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In the preceding example of flow through a pipe, we would estimate o LAy = >0 =
or*  (Ar)* (0.2-0)?
125 m’'s™". The assumption of 0 as the lower limit on dg/dx will usually overestimate the second
derivative. The overestimate, however, is not a serious problem if the goal is to decide whether a
second order derivative term is sufficiently small to be dropped from an equation, since in this
case the overestimation simply imposes a stricter criteria for the elimination of the term.
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Estimates based on equations 1 and 2 can be tremendously useful in simplifying an
intractable problem by deciding which terms may be dropped from an equation. However, it is
important to note that the above approximations work best when the change in g with x is
monotonic and smooth. For example, the estimates will be unreliable when dealing with
problems in which the derivative of g with x changes in sign over the x-domain of interest, or in
which sudden changes in g with x occur over parts of the domain while elsewhere g depends
only weakly on x.

2). Pseudo steady-state approximation. Often, the boundary conditions in a transport problem
are independent of time. This simple situation, however, does not always apply. In fact, there are
many interesting cases in which the boundary conditions themselves change with time. In such a
scenario we have time-dependent boundary conditions. The additional time dependence can
greatly complicate the mathematics, making it difficult to solve the problem. Fortunately, in
some instances, it may be possible to avoid this complexity by solving the problem as if the
boundary conditions were constant; i.e. independent of time. Such a simplification is possible
when the boundary conditions change "sufficiently slowly." The boundary conditions are said to
change "sufficiently slowly" if their rate of change is much more gradual than the response of the
system. To put this another way, if the system responds very quickly to a perturbation in
boundary conditions, so fast that during this time the boundary conditions hardly change, then
the problem can be solved as if the boundary conditions were fixed.

For example, imagine that heat is conducted down a metal rod one end of which, at an
initial time 7y, is placed into a reservoir at a temperature of 30 °C and the other end is placed into
a reservoir at a temperature of 20 °C. After 1 minute, the temperature distribution in the rod is
calculated to reach steady state; i.e. after 1 min, further changes in the 7 profile in the rod are
negligible. The T distribution in the rod is determined by the energy balance and the reservoir
temperatures. Now, imagine that the temperature of the hotter reservoir is instead slowly
increased so that, over 1 year, it rises from 30 °C to 31 °C. The rate at which this boundary
condition changes is much slower than the 1 minute required to establish a steady-state T
distribution. In this example, therefore, we may suspect that it is acceptable to solve for the
temperature profile in the rod as if the hotter reservoir was at a constant temperature 7. Once
this pseudo steady-state solution is obtained under the assumption of a constant Ty, the
temperature distribution in the rod at any time ¢ during the year can be found by substituting into
the solution the value of Ty at that time. Thus, when we make a pseudo steady-state
approximation, we are treating time-dependent boundary conditions as constant, because we
suspect that they will not change significantly during the time needed by the system to reach
steady state.

How can we tell when a pseudo steady-state approximation is justified? We need two
pieces of information: one that represents the time required by the system to reach steady state
(assuming constant boundary conditions), and the second that compares this time to how fast the
boundary conditions are changing. We illustrate this for the example of flow between a moving
and a stationary plate, depicted in Fig. 1. Here, the upper plate is uniformly accelerating with
time such that its velocity V in the x; direction is given by V(f) = at, where a is the acceleration
and ¢ is time. Moreover, the fluid is assumed to be Newtonian, to be incompressible with a
constant density o, and to possess a constant viscosity & The plates are assumed to be infinite in
size. In solving for the unknown velocity v; between the plates we want to decide under what
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conditions we can assume that V is constant; i.e. when is it acceptable to invoke the pseudo
steady-state approximation.

moving plate

I - — > Wt) = at

stationary plate Figure 1

The flow of Newtonian fluids with constant p and g is governed by the momentum balance as
given in equations 14 and 15 of Handout 8,
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p—=B-Vp+uV-v
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(incompressible, constant 4 Newtonian fluids) 3)

The forces applied by the plates act along the x; direction; therefore, to analyze their influence on
the flow we need to use the x; component of the momentum balance. Taking the x; component
and expanding the material derivative and Laplacian terms leads to
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The flow is two-dimensional in x; and x,. There is no flow along x; so that v; = 0; also, all
derivatives with respect to x; must vanish,
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Moreover, we take gravity to point downward along the x, direction, thus B; = 0, and assume that
there are no pressure gradients so that dp/dx; = 0 (with these assumptions the flow is purely
driven by the forces imposed by the plates). We also recognize that v, = 0 since we do not expect
any flow to arise perpendicular to the plates. Finally, we stipulate that v; depends on ¢ and x, but
not on x;, noting that two fluid elements at the same x; position but at different x; positions will
experience the same forces, thus they will accelerate at the same rate, and have the same
velocity. These considerations simplify equation 5 to

v 2
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Next, we want to estimate the time 7 required for the velocity v; to reach steady state. We can
obtain this estimate as follows. A velocity disturbance Av; (say of magnitude w) imposed at the
moving plate will have propagated, after a time At, a distance d'into the fluid. The propagation
occurs because fluid particles accelerated by the moving plate accelerate fluid particles further
away from the plate, which in turn accelerate particles even further into the gap. Approximating
the differential terms in equation 6 according to equations 1 and 2 yields

W w
,O(EJ ~ U y or At~ (p /1) S* (7)

In equation 7, At is the time required for the velocity disturbance to propagate a distance J (note
0< d) into the gap. Steady state will be reached once the velocity disturbance had sufficient time
to cross the entire gap between the plates, i.e. once dbecomes equal to d. Therefore, using
equation 7, the time zrequired to reach steady state is

T ~(plyyd? (®)

We now have a first important piece of information: an estimate for the time required by the
system to reach steady state. For a psedo steady-state approximation to be valid, it is further
required that the plate velocity V does not change significantly during the period 7. In other
words, we want AV << V, where AV is the change in V over the duration 7. If the change AV is
much smaller than V itself, then it is acceptable to regard V as nearly constant. This requirement
leads to

AV<<V

V(time =t + 7) - V(time = t) << V(time = 1)
at+at -at <<at
at << at

Thus, pseudo steady-state approximation will be valid if

1>>7 or t>>(ply)d? 9)
The result in equation 9 is informative. Initially, when the upper plate has just started to
accelerate from rest and ¢ is less than or comparable to (p/u) d 2 invoking the pseudo steady-
state approximation is expected to produce errors in the calculated v; profile because inequality 9
is not satisfied. However, for times ¢t >> (p /1) d ?_ the pseudo steady-state approximation is

justified. For these times, solving the problem under the assumption that V is constant should
produce accurate results for v;.
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Can you physically motivate the above conclusions? How would you mathematically setup this
problem for short and long times?

The specification of conditions under which a pseudo steady-state approximation may be
invoked depends on using physical intuition to analyze the problem being considered. However,
in general it is necessary to compare the rapidity of response of the system, i.e. the time scale
needed by the system to realize steady state, to the rate at which the boundary conditions are
changing.

"Similarity"

Another powerful tool in mathematical and engineering analysis is based on the concept of
"similarity." Consider two fluid flows that are similar in geometry. For example, they may both
involve a fluid flowing through a cylindrical pipe. While the flow geometry is similar, the values
of parameters such as viscosity and density, pipe size, flow velocity etc. may be different. Is it
possible to measure properties of interest for just one of the pipe flows, and then use those results
to predict the same properties for the other flow without remeasuring them? Likewise, can a
small model of a chemical reactor be used to determine performance of a more expensive large
reactor before building it? In this handout we will see that, under certain conditions, experiments
or measurements on a model can indeed be used to predict how well the real machine or device
will work.

Derivation of Dimensionless Similarity Parameters From Fundamental Equations.

If the behavior of one system is to be used for predicting the behavior of a second system, it must
be true that the physical laws and the mathematical descriptions governing the two systems are
closely related. Therefore, in establishing whether two systems are indeed "similar," what we are
really asking is whether the physical statements describing them are similar. These statements
may include conservation laws, constitutive relations, boundary conditions, and other
information necessary to specifying the system behavior.

Such a comparison of similarity is best accomplished using a "dimensionless"
description, reasons for which will become clear below. Although the concept of similarity is
general and applicable to a wide variety of problems, for illustrative purposes we will initially
specialize to an incompressible, constant viscosity, Newtonian flow. The only body force present
will be assumed to be gravitational, B = - pV i, where Wis the gravitational potential gh with h
the height in the gravitational field. In Cartesian coordinates, the equation of continuity then
becomes

avl sz 8v3

=24 D=0 (10)
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and the ith component of the Navier-Stokes equations is



CBE 6333, Levicky

2 2 2
a’+1za’+1za’+vav":la ﬁav+avi+avi—a'//
ot 18x 2 ax 3 8x3 P ai Y 8x12 ax§ ax32 axl.

(11

The above equations are made dimensionless by dividing each variable (i.e. quantities that vary
with position or time) that possesses units by a reference, constant value with the same units. For
instance, we divide all coordinates by a constant reference length, all pressures by a constant
reference pressure, all velocities by a constant reference velocity, etc. We will denote the
reference quantities by a subscript "0". The choice of the reference quantities is to some extent
arbitrary. However, the reference quantity must be related to the problem at hand. For example,
for pipe flow, the reference velocity V, could be the average velocity of the fluid in that pipe (V,
= volumetric flowrate / pipe cross-sectional area), or it could be the velocity of the fluid in the
center of the pipe, or some other choice as long as it describes the pipe flow. It cannot be a
velocity that has nothing to do with the flow; e.g. the velocity of the Moon orbiting the Earth.
This is because the reference quantity serves to normalize the scale of the system; this can only
happen if the quantity itself is derived from the system. Also, historically, certain conventions
have been adopted. For example, for pipe flow V, is usually the average velocity, while for flow
around a sphere V, is the free stream velocity.

In this manner, a set of reference quantities is chosen so that we can write

v¥*=w/lV, x*=xilL,¢ p*=plpo t*=t (Vo/ Ly) vt =y/ gL, (12)
Here L, is a reference length, p, a reference pressure, and L,/V, a reference time (L, / V,
represents the time it takes to traverse distance L, when moving with a speed V,,). The resultant

dimensionless variables are denoted with an asterisk. To convert back to dimensioned (regular)
variables, equations 12 can be rearranged to

vi=w* V, xi=x;% L, P =p* po t=r*(Ly/V,) v=y* gL, (13)

Inserting expressions 13 into the equations of continuity and the Navier-Stokes equations and
slightly rearranging yields

avi“ av; av;“
st w Tt % =0 (14)
axl 8x2 8x3
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I *av* " PN *avik P 3%y 9%t 82\/?< gLy’
i i i i __ Yo op H i i ST oY
>x<+V1 *+v2 >l<+v3 ¥ 3 =T >x<2+ *2+ *2 2 o
ot axl 8x2 8x3 pVv; ox; PV, L, ax ax ax v axl.
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Every term in equations 14 and 15 is dimensionless. Furthermore, three dimensionless
combinations (also called dimensionless groups or dimensionless numbers) have appeared in
equation 15, each of which has a unique name:

Reynolds Number: Re = pV, Lo/ (16)
Froude Number: Fr=Vy/(gLo) (17)
Euler Number: Eu=po! (pVs) (18)

Note that some texts define the Froude number as V, / (gLO)” 2. All three of these numbers are
dimensionless. Using equations 16 to 18, the momentum balance can be rewritten

S *avik *avik *avik ap* 1 P CA Y 1 al//*
L4y L4y L4y, L =—Fy T _+ — +—L+ L |——
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(19)
In tensor form, the dimensionless Navier-Stokes equations are
av* $ % % * % 1 %0 % 1 % %
~tv Vv =—EuV p +—V vy -——Vy (20)
ot Re Fr

When using differential equations to solve a problem, we recall from previous discussion that
integration constants need to be specified using boundary conditions. For example, we may have

Vi = Vip at filxi, x2, x3) =0
P=Db at folxt, x2, x3) =0 (1)

where the subscript "b" indicates the value of a variable at a boundary, and the boundary is
specified by the function f{x], x2, x3) = 0 (ex. for a surface located at x; =5, fwould be x; - 5 =
0). Other boundary conditions could involve the derivatives of velocity and pressure, or employ
temperature if the differential internal energy balance is being solved. If dimensionless
differential equations are used to solve a problem, the boundary conditions also need to be
rewritten in a dimensionless form by dividing all quantities with units by their reference values.
For example, equations 21 would become

vi¥ = vp* at fiGer®, 0%, x3%) =0
p* =pp* at L, x0*, x3%) =0 (22)
and so on.

We are now ready to define similarity more concretely, in terms of geometric and dynamic
similarity.
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Geometric Similarity = Two systems are geometrically similar if they have identical boundary
(and initial) conditions and obey the exactly same differential equations when expressed in
dimensionless form (ex. two flows in different pipes, two flows around different sized spheres,
etc.)

Dynamic Similarity = Two systems are dynamically similar if, in addition to geometric
similarity, they are characterized by identical values of all applicable dimensionless numbers
(Re, Fr, Eu, etc.). Note that the choices for the reference quantities in the two systems must be
consistent; for example, if pipe diameter is used as the reference length L, for one of the systems,
then it must also be used as the reference length in the other system.

Geometric and Dynamic Similarity = It two systems, call them Flow #1 and Flow # 2, are
geometrically and dynamically similar, then the dimensionless differential balance equations and
boundary conditions that govern the two problems are identical. Therefore, the solutions to the
dimensionless problems will be identical for Flow #1 and Flow #2. These solutions present
dependent dimensionless variables such as vi*, p*, T* as functions of independent dimensionless
variables (the independent variables are typically the position variables x;* and time #*) and
dimensionless groups (Re, Fr, Eu, etc.). Although these dimensionless solutions will be in terms
of dimensionless variables and parameters, they can be readily converted to dimensioned
solutions by using equations 13

vi=w* V, xi=x;% L, P =p* po t=r*(Ly/ V) v=y* gL, (13)

In equations 13, the values of the reference quantities (V,, L, etc.) are for the specific problem
under consideration - that is, Flow #1 or Flow #2; i.e. using the values of these parameters for
Flow #1 will produce the dimensioned solution for Flow #1.

It is important to recognize that the solutions that describe a flow problem do not have to be
calculated, but can be also obtained experimentally. Indeed, this is more often the approach for
complex, real world situations. For instance, rather than calculating velocity and pressure
profiles, these quantities could be directly measured in an experiment on a model system. An
experimental procedure might go as follows:

1). measurement of dependent experimental variables (velocities, pressures, etc.) on a "model”
system under a variety of conditions

i1). presentation of the measured dependent variables in dimensionless form as functions of
dimensionless independent variables and dimensionless groups that characterize the system
iii). application of the measurements to predict the behavior of geometrically and dynamically
similar systems.

Complications. It may not be possible to ensure dynamic similarity between two systems. We
illustrate this for the specific case of the Navier Stokes equations, as expressed in equation 19.
Because gravitational field cannot be easily adjusted, achieving dynamic similarity for two
systems in the Froude number would require that VO2 / L, is same for both. In turn, fixing this
ratio limits the ways in which the Reynolds number can be adjusted. Still, it is usually possible to
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ensure dynamic similarity in at least one of the dimensionless quantities. Often, such "less than
perfect similarity" is sufficient. For example, in many problems the absolute value of pressure
does not strongly influence the flow and only pressure gradients, or differences in pressure, are
important. In such flows, it is common to simply set p, = p V,? so that the Euler number
becomes unity. If Euler number is set to one, then only two dimensionless numbers are left in the
Navier-Stokes equation 19: Re and Fr. However, there are circumstances when the reference
pressure p, must be chosen carefully and the Euler number cannot be set to unity. Such situations
occur when the absolute pressure of the flow is important. One example is that of "cavitation."
Cavitation refers to the formation of vapor cavities (bubbles) that occurs when the absolute
pressure in a liquid falls below the liquid's vapor pressure. We will not go into details regarding
such complications, but nevertheless should be aware of their existence.

It can also be shown that if the problem does not possess a boundary condition influenced by
gravity (such a boundary could be a free surface of a liquid, such as the surface of a river or the
ocean, for example) then the requirement of dynamic similarity in the Froude number can be
usually neglected. Therefore, for flows that do not possess a free surface (ex. flow in a pipe when
the pipe is fully filled with fluid; or the flow of an infinite body of fluid past an object) the
Reynolds number is the only similarity parameter of interest in equation 19. If a free surface is
present and its shape depends on gravity, then in general the Froude number must also be
considered. Some problems for which the Froude number becomes important include flows in
open channels, propagation of waves, drainage of tanks under the action of gravity, and design of
marine vessels.

In summary: To achieve dynamic similarity for two geometrically similar, incompressible,

constant viscosity Newtonian flows:

¢ In general Re, Fr, and Eu must be same for both flows

e [f absolute pressure does not matter, Eu = 1. Re and Fr must be same for both flows.

e [f there are no free surfaces whose shape is subject to gravitational action, Fr may be
disregarded. Re is the only relevant parameter for dynamic similarity.

Finally, it should be emphasized that all of the above discussion presumed that the fluid density
and viscosity were constant. Furthermore, forces due to additional possible effects such as
surface tension or electromagnetic fields are not included in the Navier-Stokes equations. If such
forces were present, they would have to be added to the momentum balance or its boundary
conditions and these terms would give rise to additional dimensionless groups. Briefly, some
other dimensionless groups one may encounter are:

e [f surface tension exerts a strong influence on the flow: Weber number: We = pVozLo/ T
(here T is surface tension, not temperature)

e [f the flow is compressible: Mach number: Ma = V,/Vs (Vs is the speed of sound under
specified reference conditions)

e If the differential energy balance is made dimensionless: Prandtl number: Pr =y Cy/k (C,
is the heat capacity at constant pressure, and x'is the heat conductivity)

e [f the flow is subject to "free convection" due to thermally-induced density gradients:

Grashof number: Gr=g /0(,2 B(T,-T,) L(,3/,u2 (B1is called the temperature coefficient of

volume expansion, and (7 - T,) is a characteristic temperature difference for the problem)
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There are many, many additional dimensionless groups that have been defined in transport
phenomena, and the above are just a few examples.

Dynamic Similarity When the Governing Equations are Unknown. The safest way to derive
the dimensionless groups governing dynamic similarity is from the differential balance equations
and boundary conditions. The dimensionless numbers arise naturally during the non-
dimensionalization of these equations, as seen previously in the context of the Navier Stokes
equations. However, what if the problem is so complex that it is not clear what equations should
be used or what boundary conditions apply? For example, the stirring of an open, baffled tank
becomes a challenging problem to describe mathematically. In such situations, we can still apply
the concepts of similarity, but the approach is a little different. For example, imagine we want to
determine the power needed to propel a ship. We can built an exact prototype of the ship on a
smaller scale, to enforce geometric similarity. Next, we need to identify the dimensionless
groups that govern dynamic similarity for ship design. For example, say that we (somehow...see
below) determine that equivalency of Re and Fr numbers is all that is needed to ensure dynamic
similarity between measurements with the prototype and what would be observed using the full
size ship. We can then measure the power needed for the prototype under conditions of dynamic
similarity; i.e. for the same values of Re and Fr that will apply to the operation of the full size
vessel. The power, once determined on the prototype setup, can then be scaled using the
appropriate reference quantities to estimate the power needed to drive the full scale ship.

In order to apply the above method we must first identify the groups that govern dynamic
similarity. When the mathemetical description is too complex to allow this, it is common to rely
on the "Buckingham pi theorem."

Buckingham Pi Theorem: "From a set of P variables and parameters that involve a total of U
fundamental units (i.e. mass, length, time, temperature, charge), the total number of independent
dimensionless groups that can be formed is P - U." A dimensionless group is said to be
"independent” if it cannot be expressed in terms of the other dimensionless groups.

How do we generate dimensionless groups using the Buckingham pi theorem?

(1). Make a list of all dependent variables (ex. velocity, pressure), independent variables (ex.
time, position), and parameters (ex. density, viscosity) that you think are relevant to a problem.
This is the most tricky step - if an important variable or parameter is missed it will not be
possible to deduce all the relevant dimensionless groups. On the other hand, including irrelevant
parameters or variables can lead to extra dimensionless groups that are not needed to characterize
the problem.

Example. Steady state, isothermal pipe flow perpendicular to a gravitational field (Figure 1):

(i) Dependent variable of interest: shear stress 0°rz at the pipe wall
(ii) Independent variables on which the dependent variable depends (an educated guess): none
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We expect 0°rz to be the same everywhere on the pipe surface, therefore it does not depend on
position. Also, if the pipe surface and fluid flow are not changing with time, then 6°gz will not
change with time.

(iii) Other parameters on which the dependent variable depends (another educated guess; if we
wish, we could also have lumped these with the independent variables): D (pipe diameter), 1
(fluid viscosity), p (fluid density), e (length characterizing average roughness of pipe surface), V,
(average fluid velocity through the pipe).

surface roughness e

Fluid Flow / TD/Z —> ’}
> > 4
W =

Figure 1

(2). Identify the units of all the variables and parameters in terms of fundamental dimensions
(mass M, length L, time t, temperature T, charge C):

GORZ > M L-1 '[_2

D >L

U >ML't¢!
D >ML?

e > L

Vo Lt

We have 6 variables and parameters in total, 3 fundamental units (M, L, t). According to the
Buckingham Pi Theorem, there will be 6 - 3 = 3 independent dimensionless groups.

(3). Choose U parameters (preferably not including dependent variables) from the list that can
represent the U different fundamental units in the problem. These are called the "repeating
parameters."

Could choose:
D - length
L = mass

V, = time

(4). Construct dimensionless versions of all the non-repeating variables and parameters by
grouping each with the U repeating variables, so that all units cancel. Below, "*" signifies that a
quantity is dimensionless, and the exponents a, b and ¢ are constants to be determined.

D). O°rz* = Oz DY V.0 ====> M’L%°=M'L"t* L* M°L¥ L t*
mass: O0=1+5b 2>b=-1
time: 0=-2-¢ 2>c=-2
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length:0=-1+a-3b+c¢ 2a=0

Therefore, 0 °rz* = 0z / (P Voz) is one way to make o °gz dimensionless. Note that, if
different parameters had been selected, this dimensionless shear stress would be defined
differently.

i), k= u D V.S ====> ML’ =M'L"'¢'L* M"L?"L ¢
mass: 0=1+b >b=-1
time: 0=-1-c¢ 2c=-1

length: 0=-1+a-3b+c 2a=-1

therefore, 1% =t/ (p V, D) is one way to make £ dimensionless (note that this is just the
Reynolds number).

iii). e* = e D°p V,© ====> M'L’"=L' L* ML L°¢*
mass: 0=0 2>b=0
time: O=c 2c¢=0

length:0=1+a-3b+c 2a=-1

therefore, e* = e / D is one way to make the surface roughness dimensionless.

(5). The dimensionless dependent variables are functions of the other dimensionless groups that
have been determined (these other groups should not involve dependent variables). In our
example, the only dimensionless dependent variable is o °rz*, and there are two other
dimensionless groups - the Reynolds number Re = pV,D/u and e* = e/D. Therefore,

0 rz* = f(Re, e*) (23)

where f'is a function to be determined. f could, in principle, be calculated by solving differential
dimensionless equations supplemented with appropriate boundary conditions. In practice, that is
usually too difficult and it is easier to simply measure f by experimentally obtaining o °rz* as a

function of Re and e*.

Usefulness of Dimensional Analysis

(1). Dimensionless representation avoids repeating mathematical solutions or experimental
measurements for geometrically and dynamically similar systems. In other words, having
obtained a mathematical or an experimental solution for a model system, the results can then be
applied to other systems that are geometrically and dynamically similar. The solutions for the
model system will be in dimensionless form - for instance, presenting o °rz* as a function of Re
and e*. However, these solutions can be easily converted to dimensioned form by multiplying by
the appropriate reference quantities as in equations 13. For example, let's say that we have made
measurements on pipe flow on a model system, which we call system # 1, and as a result we
determined the function
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o °rz* = f(Rey, e*1) (24)

where
2
0%rz* = 0°rz1 1 (01 Vor?)

Rei = p1 Vo1 D1/ 1y
6*1 =€ /D1

The subscript "1" signifies that the above quantities refer to model system #1. Then for any other
geometrically similar pipe flow, call this flow #2, o °rz> can be obtained from the model data as
follows. First, calculate Re, and e*, for flow #2 (the subscript "2" signifies quantities pertaining
to this other pipe flow):

Re; = Voa Dol 1
6*2 =ée / Dz

Next, determine the dimensionless shear stress at the wall, using the known function f, equation
24, evaluated at Re; and e*5:

0 rz* = f(Rey, e*»)
Finally, convert the dimensionless value to the actual, dimensioned shear stress o °rzy:
2
0%rz2= 0rz* P2 Vo2

In summary,
0%rz2 = flRez, €%3) P Voo

where f'is the function determined from experiments on the model system #1.

(2). Another advantage of working in dimensionless form is that the total number of parameters
describing a system is reduced. For instance, for the example of pipe flow (see the above
discussion of the Buckingham pi theorem), we initially guessed that a total of 5 parameters
would be important in determining the shear stress at the interface between the pipe wall and the
fluid:

GORZ = GORZ(D’ ﬂ& ,0, 67 VO) (25)
In dimensionless form, we showed that the total number of relevant parameters is just two:

o rz* = UORZ*(RE, e*) (26)
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Therefore, the dimensionless form equation 26 shows that only Re and e* are needed to
characterize how o °gz changes with flow conditions and pipe roughness. If we have to perform
experiments or numerical calculations for each set of conditions to determine the corresponding
value of o °rz, working with equation 26, in which only two parameters need to be varied to
fully determine how ¢ °rz depends on experimental conditions, is much more efficient than
having to vary all five parameters as in equation 25. The reduction in the number of degrees of
freedom that have to be varied comes simply from imposing the constraint that the solution must
be dimensionally consistent.

(3). Dimensionless analysis also helps us identify how experimental results, or the results of
calculations, should be presented. In other words, it tells us how to correlate data. For instance,

in the pipe flow example we would present experimental measurements of o °rz* as a function of
Re and e*.

(4). The values of dimensionless groups that govern a problem can also help identify how the
mathematical description of that problem can be simplified. For example, let's consider the
dimensionless Navier-Stokes equation that was derived earlier,

&
aL>a<+v*-V>kv>l< =—Fu V*p*+LV>X<2V*—LV*W>l< (20)
ot Re Fr

We will compare the relative magnitude of two of the terms in equation 20 to see if one or the
other could be neglected and dropped from the differential equation. First, we recall that the term
v*.V*v* on the left hand side represents transport of momentum by convection, while the term
(1/Re)V** v* on the right represents transport of momentum by viscous forces (i.e. "friction”
between fluid elements). Therefore, the ratio of convective momentum transport to that due to
viscous forces is

Convective transport / viscous forces = Re (v*-V * v *)/V #2 y (27)

Equation 27 shows that, when Re is large, convective (sometimes called inertial) transport is
dominant over transport of momentum due to viscous forces. For this reason, the Reynolds
number Re can be thought of as representing the relative importance of convective to viscous
modes of momentum transport. When Re is very large, it will be a good approximation to neglect
the (1/Re)V*? v* term, representing momentum transport by viscous forces, in the dimensionless
Navier Stokes equation. This is because this term becomes negligible in the limit Re = oo in
comparison to the other terms. Thus, if we are only interested in the solution for high Re number
flows, we could solve a simplified equation 20, without the viscous term.

As we have seen, by taking the differential equation and/or boundary conditions for a
problem and making them dimensionless, as done above for the Navier Stokes equation,
dimensionless groups will be generated. An analysis can then be made to deduce the physical
interpretation of the dimensionless groups, as was just done above for the case of Re. Being
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familiar with such interpretations can be very helpful in using the magnitude of a dimensionless
group to decide which physical mechanisms (e.g. convective vs. viscous transport of momentum
in the example involving Re) are dominant. In turn, this information can be used to simplify the
mathematical modeling of the problem.



