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Interpreting Differential Equations of Transport Phenomena 

 

There are a number of techniques generally useful in interpreting and simplifying the 

mathematical description of physical problems. Here we introduce several of them that we will 

encounter when solving transport problems. 

 

1). Estimating magnitudes of terms in a differential equation. Transport problems can be 

mathematically challenging, being described by nonlinear, coupled partial differential equations. 

In these instances, it may be possible to simplify the description by using physical reasoning and 

approximate estimates to decide whether some of the terms in a differential equation are small in 

magnitude compared to the others. If so, it may be possible to neglect those terms altogether and 

work with the simplified equation which, although an approximation, still captures the physical 

behavior sufficiently accurately. Most often one encounters the need to estimate the magnitude 

of first or second order derivatives.  

 Taking a dependent variable g and an independent variable x, an order of magnitude 

estimate of a first order derivative can be obtained as follows: 
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where ∆g is the maximum difference in g expected over the range ∆x of x.  

 For example, imagine you are given a flow in which fluid flows through a cylindrical 

pipe of radius R = 0.2 m with an average velocity of V = 5 m/s. You want to estimate the 

derivative of the velocity v with respect to the radial coordinate r, ∂v/∂r. You use your physical 

intuition by recognizing that, at the pipe wall, the fluid would be expected to have zero velocity 

if the no-slip boundary condition holds, v(r = R) = 0. Therefore, you may approximate that  
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Next, let's estimate the second order derivative ∂2
g/∂x

2
. To do so, it is often customary to assume 

that the first order derivative ranges from 0 to ∂g/∂x ~ ∆g/∆x. With this assumption we get,  

 

 
22

2

)(

0

~
x

g

x

x

g

x

g

∆

∆
=

∆

−
∆

∆

∂

∂
        (2) 

 

In the preceding example of flow through a pipe, we would estimate 
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. The  assumption of 0 as the lower limit on ∂g/∂x will usually overestimate the second 

derivative. The overestimate, however, is not a serious problem if the goal is to decide whether a 

second order derivative term is sufficiently small to be dropped from an equation, since in this 

case the overestimation simply imposes a stricter criteria for the elimination of the term. 
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 Estimates based on equations 1 and 2 can be tremendously useful in simplifying an 

intractable problem by deciding which terms may be dropped from an equation. However, it is 

important to note that the above approximations work best when the change in g with x is 

monotonic and smooth. For example, the estimates will be unreliable when dealing with 

problems in which the derivative of g with x changes in sign over the x-domain of interest, or in 

which sudden changes in g with x occur over parts of the domain while elsewhere g depends 

only weakly on x. 

 

 

2). Pseudo steady-state approximation. Often, the boundary conditions in a transport problem 

are independent of time. This simple situation, however, does not always apply. In fact, there are 

many interesting cases in which the boundary conditions themselves change with time. In such a 

scenario we have time-dependent boundary conditions. The additional time dependence can 

greatly complicate the mathematics, making it difficult to solve the problem. Fortunately, in 

some instances, it may be possible to avoid this complexity by solving the problem as if the 

boundary conditions were constant; i.e. independent of time. Such a simplification is possible 

when the boundary conditions change "sufficiently slowly." The boundary conditions are said to 

change "sufficiently slowly" if their rate of change is much more gradual than the response of the 

system. To put this another way, if the system responds very quickly to a perturbation in 

boundary conditions, so fast that during this time the boundary conditions hardly change, then 

the problem can be solved as if the boundary conditions were fixed.  

 For example, imagine that heat is conducted down a metal rod one end of which, at an 

initial time t0, is placed into a reservoir at a temperature of 30 
o
C and the other end is placed into 

a reservoir at a temperature of 20 
o
C. After 1 minute, the temperature distribution in the rod is 

calculated to reach steady state; i.e. after 1 min, further changes in the T profile in the rod are 

negligible. The T distribution in the rod is determined by the energy balance and the reservoir 

temperatures. Now, imagine that the temperature of the hotter reservoir is instead slowly 

increased so that, over 1 year, it rises from 30 
o
C to 31 

o
C. The rate at which this boundary 

condition changes is much slower than the 1 minute required to establish a steady-state T 

distribution. In this example, therefore, we may suspect that it is acceptable to solve for the 

temperature profile in the rod as if the hotter reservoir was at a constant temperature TH. Once 

this pseudo steady-state solution is obtained under the assumption of a constant TH, the 

temperature distribution in the rod at any time t during the year can be found by substituting into 

the solution the value of TH at that time. Thus, when we make a pseudo steady-state 

approximation, we are treating time-dependent boundary conditions as constant, because we 

suspect that they will not change significantly during the time needed by the system to reach 

steady state.  

 How can we tell when a pseudo steady-state approximation is justified? We need two 

pieces of information: one that represents the time required by the system to reach steady state 

(assuming constant boundary conditions), and the second that compares this time to how fast the 

boundary conditions are changing. We illustrate this for the example of flow between a moving 

and a stationary plate, depicted in Fig. 1. Here, the upper plate is uniformly accelerating with 

time such that its velocity V in the x1 direction is given by V(t) = at, where a is the acceleration 

and t is time. Moreover, the fluid is assumed to be Newtonian, to be incompressible with a 

constant density ρ, and to possess a constant viscosity µ. The plates are assumed to be infinite in 

size. In solving for the unknown velocity v1 between the plates we want to decide under what 
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conditions we can assume that V is constant; i.e. when is it acceptable to invoke the pseudo 

steady-state approximation. 

 

Figure 1 
 

The flow of Newtonian fluids with constant ρ and µ is governed by the momentum balance as 

given in equations 14 and 15 of Handout 8, 
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2µ   (incompressible, constant µ Newtonian fluids) (3) 

 

The forces applied by the plates act along the x1 direction; therefore, to analyze their influence on 

the flow we need to use the x1 component of the momentum balance. Taking the x1 component 

and expanding the material derivative and Laplacian terms leads to 
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The flow is two-dimensional in x1 and x2. There is no flow along x3 so that v3 = 0; also, all 

derivatives with respect to x3 must vanish, 
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Moreover, we take gravity to point downward along the x2 direction, thus B1 = 0, and assume that 

there are no pressure gradients so that ∂p/∂x1 = 0 (with these assumptions the flow is purely 

driven by the forces imposed by the plates). We also recognize that v2 = 0 since we do not expect 

any flow to arise perpendicular to the plates. Finally, we stipulate that v1 depends on t and x2 but 

not on x1, noting that two fluid elements at the same x2 position but at different x1 positions will 

experience the same forces, thus they will accelerate at the same rate, and have the same 

velocity. These considerations simplify equation 5 to  
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Next, we want to estimate the time τ  required for the velocity v1 to reach steady state. We can 

obtain this estimate as follows. A velocity disturbance ∆v1 (say of magnitude w) imposed at the 

moving plate will have propagated, after a time ∆t, a distance δ into the fluid. The propagation 

occurs because fluid particles accelerated by the moving plate accelerate fluid particles further 

away from the plate, which in turn accelerate particles even further into the gap. Approximating 

the differential terms in equation 6 according to equations 1 and 2 yields 
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In equation 7, ∆t is the time required for the velocity disturbance to propagate a distance δ (note 

δ < d) into the gap. Steady state will be reached once the velocity disturbance had sufficient time 

to cross the entire gap between the plates, i.e. once δ becomes equal to d. Therefore, using 

equation 7, the time τ required to reach steady state is 

 

 τ  ~ (ρ /µ) d 
2
           (8)  

 

We now have a first important piece of information: an estimate for the time required by the 

system to reach steady state. For a psedo steady-state approximation to be valid, it is further 

required that the plate velocity V does not change significantly during the period τ. In other 

words, we want ∆V << V, where ∆V is the change in V over the duration τ. If the change ∆V is 

much smaller than V itself, then it is acceptable to regard V as nearly constant. This requirement 

leads to 

∆V << V 

 

V(time = t + τ) - V(time = t) << V(time = t) 

 

at + aτ  - at  << at 

 

aτ  << at 

 

Thus, pseudo steady-state approximation will be valid if 

 

 t >> τ   or   t >> (ρ /µ) d 
2
      (9) 

 

The result in equation 9 is informative. Initially, when the upper plate has just started to 

accelerate from rest and t is less than or comparable to (ρ /µ) d 
2
, invoking the pseudo steady-

state approximation is expected to produce errors in the calculated v1 profile because inequality 9 

is not satisfied. However, for times t >> (ρ /µ) d 
2
, the pseudo steady-state approximation is 

justified. For these times, solving the problem under the assumption that V is constant should 

produce accurate results for v1.  
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Can you physically motivate the above conclusions? How would you mathematically setup this 

problem for short and long times?  

 

The specification of conditions under which a pseudo steady-state approximation may be 

invoked depends on using physical intuition to analyze the problem being considered. However, 

in general it is necessary to compare the rapidity of response of the system, i.e. the time scale 

needed by the system to realize steady state, to the rate at which the boundary conditions are 

changing. 

 

 

"Similarity" 
 

Another powerful tool in mathematical and engineering analysis is based on the concept of 

"similarity." Consider two fluid flows that are similar in geometry. For example, they may both 

involve a fluid flowing through a cylindrical pipe. While the flow geometry is similar, the values 

of parameters such as viscosity and density, pipe size, flow velocity etc. may be different. Is it 

possible to measure properties of interest for just one of the pipe flows, and then use those results 

to predict the same properties for the other flow without remeasuring them? Likewise, can a 

small model of a chemical reactor be used to determine performance of a more expensive large 

reactor before building it? In this handout we will see that, under certain conditions, experiments 

or measurements on a model can indeed be used to predict how well the real machine or device 

will work.  

 

Derivation of Dimensionless Similarity Parameters From Fundamental Equations.  
If the behavior of one system is to be used for predicting the behavior of a second system, it must 

be true that the physical laws and the mathematical descriptions governing the two systems are 

closely related. Therefore, in establishing whether two systems are indeed "similar," what we are 

really asking is whether the physical statements describing them are similar. These statements 

may include conservation laws, constitutive relations, boundary conditions, and other 

information necessary to specifying the system behavior.  

 Such a comparison of similarity is best accomplished using a "dimensionless" 

description, reasons for which will become clear below. Although the concept of similarity is 

general and applicable to a wide variety of problems, for illustrative purposes we will initially 

specialize to an incompressible, constant viscosity, Newtonian flow. The only body force present 

will be assumed to be gravitational, B = - ρ∇∇∇∇ψ , where ψ is the gravitational potential gh with h 

the height in the gravitational field. In Cartesian coordinates, the equation of continuity then 

becomes 
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and the ith component of the Navier-Stokes equations is 
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The above equations are made dimensionless by dividing each variable (i.e. quantities that vary 

with position or time) that possesses units by a reference, constant value with the same units. For 

instance, we divide all coordinates by a constant reference length, all pressures by a constant 

reference pressure, all velocities by a constant reference velocity, etc. We will denote the 

reference quantities by a subscript "o". The choice of the reference quantities is to some extent 

arbitrary. However, the reference quantity must be related to the problem at hand. For example, 

for pipe flow, the reference velocity Vo could be the average velocity of the fluid in that pipe (Vo 

= volumetric flowrate / pipe cross-sectional area), or it could be the velocity of the fluid in the 

center of the pipe, or some other choice as long as it describes the pipe flow. It cannot be a 

velocity that has nothing to do with the flow; e.g. the velocity of the Moon orbiting the Earth. 

This is because the reference quantity serves to normalize the scale of the system; this can only 

happen if the quantity itself is derived from the system. Also, historically, certain conventions 

have been adopted. For example, for pipe flow Vo is usually the average velocity, while for flow 

around a sphere Vo is the free stream velocity.  

 In this manner, a set of reference quantities is chosen so that we can write 

 

vi* = vi / Vo  xi* = xi / Lo   p* = p / po  t* = t  (Vo / Lo)  ψ* = ψ / gLo  (12) 

 

Here Lo is a reference length, po a reference pressure, and Lo/Vo a reference time (Lo / Vo 

represents the time it takes to traverse distance Lo when moving with a speed Vo). The resultant 

dimensionless variables are denoted with an asterisk. To convert back to dimensioned (regular) 

variables, equations 12 can be rearranged to 

 

vi = vi* Vo  xi = xi* Lo  p = p* po  t = t* (Lo / Vo)  ψ = ψ*  gLo  (13) 

 

Inserting expressions 13 into the equations of continuity and the Navier-Stokes equations and 

slightly rearranging yields  
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Every term in equations 14 and 15 is dimensionless. Furthermore, three dimensionless 

combinations (also called dimensionless groups or dimensionless numbers) have appeared in 

equation 15, each of which has a unique name: 

 

Reynolds Number:   Re = ρVoLo/µ       (16) 

 

Froude Number:  Fr = Vo
2
 / (gLo)

 
     (17) 

 

Euler Number:   Eu = po / (ρVo
2
)      (18) 

 

Note that some texts define the Froude number as Vo / (gLo)
1/2

. All three of these numbers are 

dimensionless. Using equations 16 to 18, the momentum balance can be rewritten 
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In tensor form, the dimensionless Navier-Stokes equations are  

 

**1*2*1*****
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When using differential equations to solve a problem, we recall from previous discussion that 

integration constants need to be specified using boundary conditions. For example, we may have 

 

  vi = vib  at  f1(x1, x2, x3) = 0  

  p = pb   at  f2(x1, x2, x3) = 0      (21) 

 

where the subscript "b" indicates the value of a variable at a boundary, and the boundary is 

specified by the function f(x1, x2, x3) = 0 (ex. for a surface located at x1 = 5,  f would be x1 - 5 = 

0). Other boundary conditions could involve the derivatives of velocity and pressure, or employ 

temperature if the differential internal energy balance is being solved. If dimensionless 

differential equations are used to solve a problem, the boundary conditions also need to be 

rewritten in a dimensionless form by dividing all quantities with units by their reference values. 

For example, equations 21 would become  

 

 vi* = vib*  at  f1(x1*, x2*, x3*) = 0 

  p* = pb*   at  f2(x1*, x2*, x3*) = 0      (22) 

 

and so on. 

 

We are now ready to define similarity more concretely, in terms of geometric and dynamic 

similarity. 
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Geometric Similarity � Two systems are geometrically similar if they have identical boundary 

(and initial) conditions and obey the exactly same differential equations when expressed in 

dimensionless form (ex. two flows in different pipes, two flows around different sized spheres, 

etc.) 

 

Dynamic Similarity � Two systems are dynamically similar if, in addition to geometric 

similarity, they are characterized by identical values of all applicable dimensionless numbers 

(Re, Fr, Eu, etc.). Note that the choices for the reference quantities in the two systems must be 

consistent; for example, if pipe diameter is used as the reference length Lo for one of the systems, 

then it must also be used as the reference length in the other system.  

 

Geometric and Dynamic Similarity � It two systems, call them Flow #1 and Flow # 2, are 

geometrically and dynamically similar, then the dimensionless differential balance equations and 

boundary conditions that govern the two problems are identical. Therefore, the solutions to the 

dimensionless problems will be identical for Flow #1 and Flow #2. These solutions present 

dependent dimensionless variables such as vi*, p*, T* as functions of independent dimensionless 

variables (the independent variables are typically the position variables xi* and time t*) and 

dimensionless groups (Re, Fr, Eu, etc.). Although these dimensionless solutions will be in terms 

of dimensionless variables and parameters, they can be readily converted to dimensioned 

solutions by using equations 13 

 

vi = vi* Vo  xi = xi* Lo p = p* po  t = t* (Lo / Vo)  ψ = ψ*  gLo  (13) 

 

In equations 13, the values of the reference quantities (Vo, Lo etc.) are for the specific problem 

under consideration - that is, Flow #1 or Flow #2; i.e. using the values of these parameters for 

Flow #1 will produce the dimensioned solution for Flow #1.  

 

It is important to recognize that the solutions that describe a flow problem do not have to be 

calculated, but can be also obtained experimentally. Indeed, this is more often the approach for 

complex, real world situations. For instance, rather than calculating velocity and pressure 

profiles, these quantities could be directly measured in an experiment on a model system. An 

experimental procedure might go as follows: 

  

i). measurement of dependent experimental variables (velocities, pressures, etc.) on a "model" 

system under a variety of conditions 

ii). presentation of the measured dependent variables in dimensionless form as functions of 

dimensionless independent variables and dimensionless groups that characterize the system 

iii). application of the measurements to predict the behavior of geometrically and dynamically 

similar systems. 

 

 

Complications. It may not be possible to ensure dynamic similarity between two systems. We 

illustrate this for the specific case of the Navier Stokes equations, as expressed in equation 19. 

Because gravitational field cannot be easily adjusted,  achieving dynamic similarity for two 

systems in the Froude number would require that Vo
2
 / Lo is same for both. In turn, fixing this 

ratio limits the ways in which the Reynolds number can be adjusted. Still, it is usually possible to 
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ensure dynamic similarity in at least one of the dimensionless quantities. Often, such "less than 

perfect similarity" is sufficient. For example, in many problems the absolute value of pressure 

does not strongly influence the flow and only pressure gradients, or differences in pressure, are 

important.  In such flows, it is common to simply set po = ρ Vo
2
 so that the Euler number 

becomes unity. If Euler number is set to one, then only two dimensionless numbers are left in the 

Navier-Stokes equation 19: Re and Fr. However, there are circumstances when the reference 

pressure po must be chosen carefully and the Euler number cannot be set to unity. Such situations 

occur when the absolute pressure of the flow is important. One example is that of "cavitation." 

Cavitation refers to the formation of vapor cavities (bubbles) that occurs when the absolute 

pressure in a liquid falls below the liquid's vapor pressure. We will not go into details regarding 

such complications, but nevertheless should be aware of their existence.  

 

It can also be shown that if the problem does not possess a boundary condition influenced by 

gravity (such a boundary could be a free surface of a liquid, such as the surface of a river or the 

ocean, for example) then the requirement of dynamic similarity in the Froude number can be 

usually neglected. Therefore, for flows that do not possess a free surface (ex. flow in a pipe when 

the pipe is fully filled with fluid; or the flow of an infinite body of fluid past an object) the 

Reynolds number is the only similarity parameter of interest in equation 19. If a free surface is 

present and its shape depends on gravity, then in general the Froude number must also be 

considered. Some problems for which the Froude number becomes important include flows in 

open channels, propagation of waves, drainage of tanks under the action of gravity, and design of 

marine vessels.  

 

In summary: To achieve dynamic similarity for two geometrically similar, incompressible, 

constant viscosity Newtonian flows: 

• In general Re, Fr, and Eu must be same for both flows 

• If absolute pressure does not matter, Eu = 1. Re and Fr must be same for both flows. 

• If there are no free surfaces whose shape is subject to gravitational action, Fr may be 

disregarded. Re is the only relevant parameter for dynamic similarity. 

 

Finally, it should be emphasized that all of the above discussion presumed that the fluid density 

and viscosity were constant. Furthermore, forces due to additional possible effects such as 

surface tension or electromagnetic fields are not included in the Navier-Stokes equations. If such 

forces were present, they would have to be added to the momentum balance or its boundary 

conditions and these terms would give rise to additional dimensionless groups. Briefly, some 

other dimensionless groups one may encounter are: 

 

• If surface tension exerts a strong influence on the flow:  Weber number: We = ρVo
2
Lo/T  

(here T is surface tension, not temperature) 

• If the flow is compressible:  Mach number: Ma = Vo/VS  (VS is the speed of sound under 

specified reference conditions) 

• If the differential energy balance is made dimensionless:  Prandtl number: Pr = µ Cp/κ   (Cp 

is the heat capacity at constant pressure, and κ is the heat conductivity) 

• If the flow is subject to "free convection" due to thermally-induced density gradients:

 Grashof number: Gr = g ρo
2
 β (T1 - To) Lo

3
/µ2

   (β is called the temperature coefficient of 

volume expansion, and (T1 - To) is a characteristic temperature difference for the problem) 
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There are many, many additional dimensionless groups that have been defined in transport 

phenomena, and the above are just a few examples.  

 

 

Dynamic Similarity When the Governing Equations are Unknown. The safest way to derive 

the dimensionless groups governing dynamic similarity is from the differential balance equations 

and boundary conditions. The dimensionless numbers arise naturally during the non-

dimensionalization of these equations, as seen previously in the context of the Navier Stokes 

equations. However, what if the problem is so complex that it is not clear what equations should 

be used or what boundary conditions apply? For example, the stirring of an open, baffled tank 

becomes a challenging problem to describe mathematically. In such situations, we can still apply 

the concepts of similarity, but the approach is a little different. For example, imagine we want to 

determine the power needed to propel a ship. We can built an exact prototype of the ship on a 

smaller scale, to enforce geometric similarity. Next, we need to identify the dimensionless 

groups that govern dynamic similarity for ship design. For example, say that we (somehow…see 

below) determine that equivalency of Re and Fr numbers is all that is needed to ensure dynamic 

similarity between measurements with the prototype and what would be observed using the full 

size ship. We can then measure the power needed for the prototype under conditions of dynamic 

similarity; i.e. for the same values of Re and Fr that will apply to the operation of the full size 

vessel. The power, once determined on the prototype setup, can then be scaled using the 

appropriate reference quantities to estimate the power needed to drive the full scale ship.    

 

In order to apply the above method we must first identify the groups that govern dynamic 

similarity. When the mathemetical description is too complex to allow this, it is common to rely 

on the "Buckingham pi theorem."  

 

Buckingham Pi Theorem: "From a set of P variables and parameters that involve a total of U 

fundamental units (i.e. mass, length, time, temperature, charge), the total number of independent 

dimensionless groups that can be formed is P - U."  A dimensionless group is said to be 

"independent" if it cannot be expressed in terms of the other dimensionless groups.  

 

How do we generate dimensionless groups using the Buckingham pi theorem? 

 

(1). Make a list of all dependent variables (ex. velocity, pressure), independent variables (ex. 

time, position), and parameters (ex. density, viscosity) that you think are relevant to a problem. 

This is the most tricky step - if an important variable or parameter is missed it will not be 

possible to deduce all the relevant dimensionless groups. On the other hand, including irrelevant 

parameters or variables can lead to extra dimensionless groups that are not needed to characterize 

the problem. 

 

Example. Steady state, isothermal pipe flow perpendicular to a gravitational field (Figure 1): 

 

(i) Dependent variable of interest: shear stress σo
RZ at the pipe wall 

(ii) Independent variables on which the dependent variable depends (an educated guess): none  
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We expect σo
RZ to be the same everywhere on the pipe surface, therefore it does not depend on 

position. Also, if the pipe surface and fluid flow are not changing with time, then σo
RZ will not 

change with time. 

(iii) Other parameters on which the dependent variable depends (another educated guess; if we 

wish, we could also have lumped these with the  independent variables): D (pipe diameter), µ 

(fluid viscosity), ρ (fluid density), e (length characterizing average roughness of pipe surface), Vo 

(average fluid velocity through the pipe). 

 

Figure 1 

 

(2). Identify the units of all the variables and parameters in terms of fundamental dimensions 

(mass M, length L, time t, temperature T, charge C): 

 

σo
RZ  �  M L

-1
 t

-2
  

D � L 

µ � M L
-1

 t
-1

 

ρ � M L
-3

 

e � L 

Vo � L t
-1

  

 

We have 6 variables and parameters in total, 3 fundamental units (M, L, t). According to the 

Buckingham Pi Theorem, there will be 6 - 3 = 3 independent dimensionless groups. 

 

(3). Choose U parameters (preferably not including dependent variables) from the list that can 

represent the U different fundamental units in the problem. These are called the "repeating 

parameters." 

 

Could choose: 

D � length 

ρ � mass 

Vo � time 

 

(4). Construct dimensionless versions of all the non-repeating variables and parameters by 

grouping each with the U repeating variables, so that all units cancel. Below, "*" signifies that a 

quantity is dimensionless, and the exponents a, b and c are constants to be determined.  

 

i). σo
RZ* = σo

RZ D
aρb

 Vo
c
   ====>  M

0
L

0
t
0
 = M

1
 L

-1
 t

-2
  L

a
  M

b
 L

-3b
 L

c
 t

-c
  

 mass: 0 = 1 + b   � b = -1 

 time: 0 = -2 - c   � c = -2 
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 length: 0 = -1 + a -3b + c � a = 0 

 

Therefore, σ 
o

RZ* = σ 
o
RZ / (ρ Vo

2
) is one way to make σ 

o
RZ dimensionless. Note that, if 

different parameters had been selected, this dimensionless shear stress would be defined 

differently.  

 

ii). µ* = µ D
aρb

 Vo
c
   ====>  M

0
L

0
t
0
 = M

1
 L

-1
 t

-1
 L

a
  M

b
 L

-3b
 L

c
 t

-c
  

 mass: 0 = 1 + b   � b = -1 

 time: 0 = -1 - c   � c = -1 

 length: 0 = -1 + a -3b + c � a = -1 

 

therefore, µ* = µ / (ρ Vo D) is one way to make µ dimensionless (note that this is just the 

Reynolds number). 

 

iii). e* = e D
aρb

 Vo
c
   ====>  M

0
L

0
t
0
 = L

1
  L

a
  M

b
 L

-3b
 L

c
 t

-c
 

 mass:  0 = b   � b = 0 

 time:  0 = c   � c = 0 

 length: 0 = 1 + a - 3b + c � a = -1 

 

therefore, e* = e / D is one way to make the surface roughness dimensionless. 

 

 

(5). The dimensionless dependent variables are functions of the other dimensionless groups that 

have been determined (these other groups should not involve dependent variables). In our 

example, the only dimensionless dependent variable is σ 
o
RZ*, and there are two other 

dimensionless groups - the Reynolds number Re = ρVoD/µ  and e* = e/D. Therefore,  

 

 σ 
o
RZ* = f(Re, e*)         (23) 

 

where f is a function to be determined. f could, in principle, be calculated by solving differential 

dimensionless equations supplemented with appropriate boundary conditions. In practice, that is 

usually too difficult and it is easier to simply measure f by experimentally obtaining σ 
o
RZ* as a 

function of Re and e*.  

 

 

Usefulness of Dimensional Analysis 
(1). Dimensionless representation avoids repeating mathematical solutions or experimental 

measurements for geometrically and dynamically similar systems. In other words, having 

obtained a mathematical or an experimental solution for a model system, the results can then be 

applied to other systems that are geometrically and dynamically similar. The solutions for the 

model system will be in dimensionless form - for instance, presenting σ 
o
RZ* as a function of Re 

and e*. However, these solutions can be easily converted to dimensioned form by multiplying by 

the appropriate reference quantities as in equations 13. For example, let's say that we have made 

measurements on pipe flow on a model system, which we call system # 1, and as a result we 

determined the function  
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  σ 
o
RZ* = f(Re1, e*1)        (24) 

 

where  

  σ 
o
RZ* = σ 

o
RZ1 / (ρ1 Vo1

2
) 

 

  Re1 = ρ1 Vo1 D1 / µ1 

 

  e*1 = e1 / D1  

 

The subscript "1" signifies that the above quantities refer to model system #1. Then for any other 

geometrically similar pipe flow, call this flow #2, σ 
o
RZ2 can be obtained from the model data as 

follows. First, calculate Re2 and e*2 for flow #2 (the subscript "2" signifies quantities pertaining 

to this other pipe flow): 

 

  Re2 = ρ2 Vo2 D2 / µ2 

 

  e*2 = e2 / D2  

 

Next, determine the dimensionless shear stress at the wall, using the known function f, equation 

24, evaluated at Re2 and e*2: 

 

  σ 
o
RZ* = f(Re2, e*2)  

 

Finally, convert the dimensionless value to the actual, dimensioned shear stress σ 
o
RZ2: 

 

  σ 
o
RZ2 = σ 

o
RZ*  ρ2 Vo2

2
 

 

In summary, 

  σ 
o
RZ2 = f(Re2, e*2) ρ2 Vo2

2
 

 

where f is the function determined from experiments on the model system #1. 

 

 

(2). Another advantage of working in dimensionless form is that the total number of parameters 

describing a system is reduced. For instance, for the example of pipe flow (see the above 

discussion of the Buckingham pi theorem), we initially guessed that a total of 5 parameters 

would be important in determining the shear stress at the interface between the pipe wall and the 

fluid:  

 

 σ 
o
RZ = σ 

o
RZ(D, µ, ρ, e, Vo)        (25) 

 

In dimensionless form, we showed that the total number of relevant parameters is just two:  

 

  σ 
o
RZ* = σ 

o
RZ*(Re, e*)        (26) 
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Therefore, the dimensionless form equation 26 shows that only Re and e* are needed to 

characterize how σ 
o
RZ changes with flow conditions and pipe roughness. If we have to perform 

experiments or numerical calculations for each set of conditions to determine the corresponding 

value of σ 
o
RZ, working with equation 26, in which only two parameters need to be varied to 

fully determine how σ 
o
RZ depends on experimental conditions, is much more efficient than 

having to vary all five parameters as in equation 25. The reduction in the number of degrees of 

freedom that have to be varied comes simply from imposing the constraint that the solution must 

be dimensionally consistent. 

 

 

(3). Dimensionless analysis also helps us identify how experimental results, or the results of 

calculations, should be presented. In other words, it tells us how to correlate data. For instance, 

in the pipe flow example we would present experimental measurements of σ 
o
RZ* as a function of 

Re and e*. 

 

  

(4). The values of dimensionless groups that govern a problem can also help identify how the 

mathematical description of that problem can be simplified. For example, let's consider the 

dimensionless Navier-Stokes equation that was derived earlier, 

 

 **1*2*1*****
*

*
ψ∇−∇+∇−=∇⋅+

∂

∂

FrRe
pEu

t
vvv

v
   (20) 

 

We will compare the relative magnitude of two of the terms in equation 20 to see if one or the 

other could be neglected and dropped from the differential equation. First, we recall that the term 

v*⋅∇∇∇∇*v* on the left hand side represents transport of momentum by convection, while the term 

(1/Re)∇∇∇∇*
2 

v* on the right represents transport of momentum by viscous forces (i.e. "friction" 

between fluid elements). Therefore, the ratio of convective momentum transport to that due to 

viscous forces is 

  

 Convective transport / viscous forces = Re ( ) **/*** 2 vvv ∇⋅∇    (27) 

 

Equation 27 shows that, when Re is large, convective (sometimes called inertial) transport is 

dominant over transport of momentum due to viscous forces. For this reason, the Reynolds 

number Re can be thought of as representing the relative importance of convective to viscous 

modes of momentum transport. When Re is very large, it will be a good approximation to neglect 

the (1/Re)∇∇∇∇*
2 

v* term, representing momentum transport by viscous forces, in the dimensionless 

Navier Stokes equation. This is because this term becomes negligible in the limit Re � ∞ in 

comparison to the other terms. Thus, if we are only interested in the solution for high Re number 

flows, we could solve a simplified equation 20, without the viscous term. 

 As we have seen, by taking the differential equation and/or boundary conditions for a 

problem and making them dimensionless, as done above for the Navier Stokes equation, 

dimensionless groups will be generated. An analysis can then be made to deduce the physical 

interpretation of the dimensionless groups, as was just done above for the case of Re. Being 



CBE 6333, Levicky 

familiar with such interpretations can be very helpful in using the magnitude of a dimensionless 

group to decide which physical mechanisms (e.g. convective vs. viscous transport of momentum 

in the example involving Re) are dominant. In turn, this information can be used to simplify the 

mathematical modeling of the problem.  

 


