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Homework Set 4 
 

1). How would you set up the problem of an accelerating plate, discussed on pages 3-5 of Handout 10, 

at short and long times? "Long times" means sufficiently long for a velocity perturbation, imposed at 

the plate, to propagate across the liquid in the gap. To "setup a problem" means the fully simplified 

differential equation, plus all boundary and initial conditions, from which the velocity profile in the 

liquid gap could be calculated. The problem only asks you to set up the problem; i.e. you do not need to 

solve it. 

 

2). When using similarity analysis to predict the performance of a liquid pump, the parameters that one 

wants to typically predict are the power consumed by the pump P, the pressure difference ∆ produced 

across the pump, and the efficiency η of the pump. For the pumping of an incompressible fluid using a 

centrifugal pump, you estimate that the performance is likely to depend on the fluid density ρ, angular 

velocity of the pump impeller ω, the mean diameter of the impeller D, the fluid viscosity µ, and the 

fluid volumetric flowrate Q. 

 

So, you start with the following set of relations, 

 

 P = f1(ρ, ω, D, Q, µ)  

 ∆ = f2(ρ, ω, D, Q, µ)  

 η = f3(ρ, ω, D, Q, µ)  

   

a). Apply the Buckingham Π  Theorem to the above expressions to convert them to a dimensionless 

form (i.e. to relations entirely expressed in terms of dimensionless groups).   

 

b). How would you adjust the dimensionless relations derived in a) if you are given, in addition, the 

following information: "Experimental data show that viscosity is not important to determining the 

performance of a centrifugal pump." 

 

 

3). A centrifugal pump tested at 1000 rpm delivers 5 ft
3
/s of incompressible water flow against a 

pressure difference of 12,490 lbf/ft
2
. The power necessary to run the pump under these conditions is 

200 hp.  

 

a). Calculate the efficiency of the pump. The efficiency is the actual power delivered to the fluid (you 

need to calculate this) divided by the total power supplied to the pump (200 hp).  

 

b). A geometrically similar pump of three times the diameter is made to run at 500 rpm. Find the flow 

rate, pressure difference, and power for the same efficiency.  

 

For this problem, assume that the pump behaves according to results of 2b). Note that the density of 

water is 1.94 slug/ft
3
.  

 

 

4). In designing a thermally insulated container unit, tests were made on a prototype model of 

dimensions 3 ft × 3 ft × 4 ft. Initially, the interior as well as the surroundings of the unit were at 70 
o
F. 
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Then, an incandescent light bulb heat source was placed inside the unit and used to generate a constant 

heat output. With the bulb turned on, and the external temperature maintained at 70 
o
F, the difference 

between the temperature of the inside surfaces of the unit and the outside temperature of 70 
o
F was 

measured as given below.  

 

Data: 

 

Time, hours 0 0.5 1.0 2.0 3.0 5.0 10 

Temperature difference, 
o
F 0 15.9 22.5 30.0 35.5 42.0 48.3 

 

Rate of heat generation by bulb, per unit area of wall = 6.09 BTU/(hr ft
2
) 

Thickness of insulation = 2 inches 

Thermal conductivity of insulation = 0.0209 BTU/(ft hr 
o
F) 

Thermal heat capacity of insulation = 4.85 BTU/(ft
3
 
o
F) 

 

 a). Plot the temperature difference as a function of time in terms of dimensionless groups so that the 

data can be applied to other problems of a similar nature. One group should contain the temperature 

rise but not the time, and the other should contain the time but not the temperature rise. 

 

b). Determine the temperature rise that would be observed at 15 minutes if the insulation was only 1 

inch thick (but all other settings were identical to those listed above). 

 

 

5).  A steady-state, laminar flow of an incompressible, 

constant viscosity Newtonian fluid occurs in the gap 

between two cylinders (see fig. at right). The flow is driven 

by the rotation of the external cylinder at an angular 

velocity ω  while the inner cylinder is stationary. Gravity 

points down (into the page).  

 

a). Find an expression for the velocity profile vθ. The 

following identity may prove useful: d/dr [1/r d(rvθ)/dr ] =  

d
2
vθ/dr

2
 + 1/r dvθ/dr - vθ/r

2
 . 

 

b). What is the expression for the torque per unit area 

exerted by the outer cylinder on the fluid? The torque is 

measured relative to the origin in the center of the inner 

cylinder. 

 

c). How could you use this device to measure viscosity?  

 

 

6). In problem 5, given that pressure at r = r1 equals p(r1, z) = po  - ρgz, what is the expression for the 

pressure p(r, z) at an arbitrary radial position r1 < r < r2? 
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7). A bubble of gas is situated at the tip of a small glass pipette (see the below figure). Surrounding the 

bubble is a constant viscosity, incompressible Newtonian liquid. The bubble is being slowly inflated 

through the pipette. The bubble radius is given by a known (i.e. measured) function R(t) where t is 

time.  

 

The bubble can be assumed to be perfectly spherical.  

All effects of gravity can be neglected.  

The pipette itself can be assumed not to affect the liquid flow in any way. 

The bubble center remains at the coordinate origin at all times.  

Since the bubble radius R is a function of time this is not a steady-state problem. 

 

a). Is there any buoyancy force on the bubble (why or why not)? 

b). Derive an expression for the velocity vr inside the liquid (i.e. we need an expression for vr when r > 

R(t)). Express vr as a function of r, R(t), and derivatives of R(t).  

Hint: what equations does vr appear in? Any of these may be helpful for solving for it.  

c). Derive an expression for the pressure p inside the liquid in terms of r, R(t), and derivatives of R(t). 

Note that at r = ∞, p = p∞. 

d). What is the physical reason why the pressure p in the liquid is different from p∞ in the vicinity of 

the bubble?  
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8). At time t = 0, solute A starts to diffuse across a membrane of thickness L from left to right (see 

figure below). Before that time, there is no A anywhere in the membrane. The partitioning coefficient, 

defined as the ratio of concentration of A in the membrane to that in the external solution, is K. D is the 

diffusion coefficient of A in the membrane. The concentrations of A in the external solutions are fixed 

at the values shown in the figure. Transport by virtue of bulk convection can be neglected, since A 

remains sufficiently dilute at all times and there is no forced or free convection. In addition, the total 

concentration of all species in the membrane and the diffusion coefficient are to be treated as constant. 

 

a). Perform an order-of-magnitude estimate of the time required for A to diffuse across the membrane.  
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b). Derive the solution to the concentration profile of A, CA(x,t), in the membrane for times much 

longer than the time scale estimated in part a). 

 

c). Using a "combination of variables" approach, derive CA(x,t) in the membrane for times much 

shorter than the time scale estimated in part a).  

 

 
 

 

 

 


