17. A Resolution of the Page Time Paradox?

• <u>*Recall*</u>: The Page Time Paradox is a disagreement over how the entanglement entropy of Hawking radiation $S_{vN}^{R}(t)$ behaves:

- 1. Set-Up
- RT Formula Predictions
 An Explanation of the
 - Page Curve?

During early stage: Page and Hawking agree:

Early stage radiation R-modes are in thermal states, and are entangled with black hole B-modes; so as more and more R-modes are emitted, $S_{vN}^{R}(t)$ increases.

During late stage: Page and Hawking disagree:

- *Hawking*: Late stage R-modes are still in thermal states, so $S_{vN}^{R}(t)$ continues to increase.
- *Page*: Late stage R-modes are max. entangled with early stage R-modes; so they cannot be in thermal states; and as more and more B-modes become late stage R-modes, $S_{vN}^{R}(t)$ decreases.

The "Page curve" according to Page (1993) and statistical mechanics: Info is not lost!

Hawking's (1995) prediction according to quantum field theory: Info is lost!

Claim: The Page curve can be derived using the RT formula from the AdS/CFT correspondence.

Penington (2020); Almheiri et al. (2020)

1. Set-Up

RT Formula
(boundary) =
spacetime of
quantum systemsurface of cylinder
(boundary) =
spacetime of
quantum systeminterior of cylinder
(bulk) = spacetime
of gravity systemA and
$$\gamma_A$$
 have the same
boundary, and hence enclose
a bulk surface (grey region)The entanglement entropy of a boundary quantum
subsystem on A with respect to a subsystem on \overline{A}
is given by the area of the minimal area bulk
surface γ_A that has the same boundary as A.interior of cylinder
(bulk) = spacetime
of gravity systemA and γ_A have the same
boundary, and hence enclose
a bulk surface (grey region)

Black Hole Entropy

 $S_{\rm BH} = Area(event horizon)/4$

The entanglement entropy of a subsystem far from the event horizon with respect to a subsystem inside the event horizon?

A and γ_A have the same boundary (the empty set!) and enclose a bulk surface (grey region)

Α

 γ_A

Subsystem far from the horizon = Hawking radiation? Subsystem inside horizon = black hole degrees of freedom?

Suggests: We can use the RT formula to calculate the entanglement entropy of Hawking radiation!

- <u>Note</u>: The RT formula gives the entanglement entropy of one subsystem \mathcal{H}_A of a bipartite quantum system $\mathcal{H}_A \otimes \mathcal{H}_{\overline{A}}$ located on the boundary $A \cup \overline{A}$ of a bulk spacetime.
- <u>Page's Model</u>: An evaporating black hole is a bipartite quantum system $\mathcal{H}_{B} \otimes \mathcal{H}_{R}$ of black hole \mathcal{H}_{B} and radiation \mathcal{H}_{R} .
 - <u>But</u>: In what sense are the \mathcal{H}_B and \mathcal{H}_R subsystems localized on the boundary of a bulk spacetime?
 - <u>And</u>: Can the bulk spacetime be identified as an evaporating black hole spacetime?

- <u>Initial Problem</u>: AdS spacetimes are spatially closed: Any radiation that makes it to the boundary gets reflected back into the bulk!
- *Solution*: Two bulk spacetimes with separate boundaries:
 - Evaporating black hole AdS bulk spacetime that corresponds (under AdS/CFT) to a boundary quantum system $\mathcal{H}_{\rm B}$ located on the entire boundary B.
 - Auxiliary radiation bulk spacetime that corresponds (under AdS/CFT) to a boundary quantum system \mathcal{H}_R located on the entire boundary R.

2. RT Formula Predictions

Claim 1. For $0 < t < t_{Page}$, the "minimal area" bulk surface with the same boundary as R is the empty surface $\gamma_{R} = \emptyset$.

Claim 2. For $t_{Page} < t < t_{evap}$, the "minimal area" bulk surface with the same boundary as R is a closed surface just inside the event horizon.

Reproduces the

Page Curve!

(decreases) for $t_{Page} < t < t_{evap}!$

3. An Explanation of the Page Curve?

 $\frac{RT Formula}{S_{vN}(\rho_A)} = \operatorname{Area}(\gamma_A)/4$

Entanglement Wedge Reconstruction (EWR) Physical quantities defined on a boundary region A correspond to bulk quantities in the "entanglement wedge" $W[A] \equiv D_{\text{bulk}}[\Sigma_A]$ of A.

A and γ_A have the same boundary, and hence enclose a bulk surface Σ_A

• *<u>Can Show</u>*: The RT formula holds *if and only if* EWR holds.

The bulk domain of dependence of Σ_A

• <u>And this means</u>: When the RT formula holds, physical quantities in the grey bulk region Σ_A can be represented by physical quantities in the blue boundary region A.

So...

- <u>According to EWR</u>: After t_{Page} , the radiation subsystem R corresponds to bulk quantities in the grey regions.
 - Everything in the bulk radiation spacetime ("far" from the black hole).
 - And degrees of freedom in the interior of the event horizon (inside the black hole)!

So...

Claim 1. For $0 < t < t_{Page}$, the "minimal
area" bulk surface with the same
boundary as R is the empty surface $\gamma_R = \emptyset$.Image: Claim 2. For $t_{Page} < t < t_{evap}$, the
"minimal area" bulk surface with the
same boundary as R is a closed surface
just inside the event horizon.Image: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t < t_{evap}, the
BImage: Claim 2. For t_{Page} < t_{evap}, the
B

- <u>According to EWR</u>: After t_{Page} , the radiation subsystem R corresponds to bulk quantities in the grey regions.
- *Possible interpretations*:
 - After t_{Page} , early stage R-modes (far from the black hole) represent/encode interior black hole degrees of freedom (i.e., "info" escapes the interior).
 - After t_{Page} , a wormhole connects regions far from the black hole to the black hole interior.

Bizzare, but suggested by one method of deriving the RT formula!

4. Recap: A Bestiary of Entropies in Contemporary Physics

Def. 1 (*Thermodynamic entropy*). The **thermodynamic entropy** $S_{TD}(\sigma_2)$ of a state σ_2 of a physical system is the ratio of the change in heat δQ_R to temperature *T* of a reversible process that connects an initial state σ_1 to σ_2 :

 $S_{\rm TD}(\sigma_2) \equiv \int_{\sigma_1}^{\sigma_2} \frac{\delta Q_R}{T} + {\rm const.}$

Def. 2 (*Boltzmann entropy*). The **Boltzmann entropy** $S_{\text{Boltz}}(\Gamma_M)$ of a macrostate Γ_M of size $|\Gamma_M|$ is given by:

 $S_{\text{Boltz}}(\Gamma_M) \equiv \ln |\Gamma_M|$

Def. 3 (*Gibbs entropy*). The **Gibbs entropy** $S_{Gibbs}(\rho)$ of an ensemble distribution ρ is the ensemble average of the quantity $-\ln\rho$:

 $S_{\text{Gibbs}}(\rho) \equiv -k \int_{\Gamma} \rho(x) \ln \rho(x) dx$

Def. 4 (*Shannon entropy*). The **Shannon entropy** $S_{\text{Shan}}(X)$ of a random variable X with possible values $\{x_1, ..., x_\ell\}$ and probability distribution $\{p_1, ..., p_\ell\}$ is given by:

$$S_{\text{Shan}}(X) \equiv -\sum_{i} p_i \log_2 p_i$$

Def. 5 (*von Neuman entropy*). The **von Neumann entropy** $S_{vN}(\rho)$ of a density operator state ρ is given by:

 $S_{\rm vN}(\rho) \equiv -{\rm Tr}(\rho \ln \rho)$

Def. 6 (*Entanglement entropy*). The **entanglement entropy** S_A of a subsystem A of a bipartite system AB is defined as the von Neumann entropy of ρ_A :

 $S_A \equiv S(\rho_A) = -\operatorname{Tr}(\rho_A \ln \rho_A)$

Def. 7 (*Black hole entropy*). The **Bekenstein-Hawking entropy** of a black hole is given by

 $S_{\rm BH} \equiv {\rm Area(horizon)}/4$

Def. 8 (*RT Formula*). The entanglement entropy entropy S_A of of a subsystem localized on a boundary region A of an AdS spacetime is given by:

 $S_A \equiv \operatorname{Area}(\gamma_A)/4$

where is the minimal area bulk surface with the same boundary as *A*.