
14.	Black	Hole	Entropy	as	TD	Entropy	
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-	 Prunkl	&	Timpson	(2019)

•	 Bekenstein's	motivations:
-	The	laws	of	black	hole	mechanics	are	formally	
similar	to	the	laws	of	thermodynamics.
-	 If	we	don't	identify	the	TD	entropy	of	a	black	hole	
with	its	event	horizon,	then	the	2nd	Law	is	violated. Only persuasive for 

reversible processes.

Only establishes an analogy.

1.	 Motivations
2.	 Problem:	Negative	Heat	Capacity
3.	 A	Black	Hole	Carnot	Cycle

𝑆!" = 𝐴/4	
The surface area 𝐴 of the 
event horizon of the black hole.

𝑆#$ 𝜎% ≡ )
&!

&" 𝛿𝑄'
𝑇

+ 𝑆(
The ratio of the change in heat to 
temperature of a reversible process that 
connects an initial state to a final state.

1.	Motivations

What's needed:
An explicit demonstration that a black hole can undergo a reversible process.

Is 𝑆BH	=	𝑆TD? Is the thermodynamic entropy of a black hole 
proportional to the surface area of its event horizon?
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•	 Recall:	A	reversible	process	is	a	process	that	takes	an	initial	equilibrium	
state	to	a	final	equilibrium	state.

2.	Problem:	Negative	Heat	Capacity

•	 So:	If	a	black	hole	can	undergo	a	reversible	process	(and	thus	be	ascribed	𝑆TD),	
it	must	be	able	to	be	in	an	equilibrium	state	with	its	environment.

Problem: A black hole has a negative heat capacity!

Heat	capacity	𝐶	=	 amount	of	absorbed	heat	𝛿𝑄	needed	
to	change	temperature	by	𝑑𝑇:

	 𝐶	=	𝛿𝑄/𝑑𝑇

Claim:	If	𝑆BH	=	𝑆TD	and	𝑇	=	(1/2𝜋)𝜅,	then	a		black	hole	has	negative	𝐶.

-	 So:	 𝑆BH	=	𝐴/4	=	4𝜋𝑀2	 or	 𝑑𝑆BH	=	8𝜋𝑀𝑑𝑀
-	 And:	 𝑇	=	(1/2𝜋)𝜅	=	1/8𝜋𝑀	 or	 𝑑𝑇	=	−(1/8𝜋𝑀2)𝑑𝑀
-	 Suppose:	 𝑆BH	=	𝑆TD
-	 Then:	 𝛿𝑄	=	𝑇𝑑𝑆TD	=	𝑇𝑑𝑆BH	=	𝑑𝑀
-	 Thus:	 𝐶	=	𝛿𝑄/𝑑𝑇	=	−8𝜋𝑀2

Proof:	For	a	Schwarzschild	black	hole,	𝑅	=	2𝑀,	𝐴	=	4𝜋𝑅2,	𝜅	=	1/4𝑀
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•	 Recall:	A	reversible	process	is	a	process	that	takes	an	initial	equilibrium	
state	to	a	final	equilibrium	state.

2.	Problem:	Negative	Heat	Capacity

•	 So:	If	a	black	hole	can	undergo	a	reversible	process	(and	thus	be	ascribed	𝑆TD),	
it	must	be	able	to	be	in	an	equilibrium	state	with	its	environment.

Problem: A black hole has a negative heat capacity!

Heat	capacity	𝐶	=	 amount	of	absorbed	heat	𝛿𝑄	needed	
to	change	temperature	by	𝑑𝑇:

	 𝐶	=	𝛿𝑄/𝑑𝑇

•	 If	𝐶	is	negative,	then	when	heat	is	absorbed,	temperature	decreases!

•	 This	is	a	problem:	How	can	a	black	hole	be	in	a	stable	equilibrium	state	
with	another	physical	system	with	positive	heat	capacity?

As that system cools, it emits heat, 
which is absorbed by the black 
hole, which also cools as a result.

The black hole and the other system 
can never reach an equilibrium state!
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Hawking's	response:			(Hawking	1976)
-	𝑆BH	must	be	statistical	mechanical	microcanonical	entropy.

"A	black	hole	of	given	mass,	angular	momentum,	and	charge	can	have	a	
large	number	of	different	unobservable	internal	configurations	which	
reflect	the	possible	internal	configurations	of	the	matter	which	collapsed	
to	produce	the	hole.	The	logarithm	of	this	number	can	be	regarded	as	the	
entropy	of	the	black	hole	and	is	a	measure	of	the	amount	of	information	
about	the	initial	state	which	was	lost	in	the	formation	of	the	black	hole."	

"The	fact	that	the	temperature	of	a	black	hole	decreases	as	the	mass	
increases	means	that	black	holes	cannot	be	in	stable	thermal	equilibrium	
in	the	situations	in	which	there	is	an	indefinitely	large	amount	of	energy	
available...	[T]his	implies	that	the	normal	statistical	mechanical	canonical	
ensemble	cannot	be	applied	to	gravitating	systems.	Instead	one	has	to	
use	microcanonical	ensembles	in	which	one	considers	all	the	possible	
configurations	of	a	system	with	a	given	energy."	

𝑆BH	=	𝑆Gibbs(𝜌mc)	=	𝑘lnΩ(𝐸) - The number of microstates of the black hole?
- The information "about the initial state which 

was lost in the formation of the black hole"?
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Prunkl	&	Timpson's	response:
-	 "Even	though	black	holes	cannot	be	in	stable	equilibrium	with	an	infinite	heat	
bath,	they	can	be	in	stable	equilibrium	with	a	photon	gas	and	enclosed	in	a	box,	
for	a	certain	range	of	parameters."

Specific	claim:	For	a	black	hole	of	mass	𝑀	in	a	photon	gas	of	volume	𝑉,	there	are	
values	of	𝑀	and	𝑉	that	make	the	equilibrium	condition	𝑇BH	=	𝑇gas	stable	against	
fluctuations	in	temperature,	in	the	sense:

𝑑𝑇!"
𝑑𝑀 <

𝑑𝑇)*+
𝑑𝑀

"The gas can react quickly enough 
to any fluctuations in the black hole." Black	hole	of	mass	𝑀	in	

photon	gas	of	volume	𝑉
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𝑇-./ =
𝐸010.2 −𝑀

3!
45𝑉

¼ 
-	 Now	solve	for	𝑇gas:
	 		

•	 First:	Rewrite	(1)	in	terms	of	𝑀:	 𝐸010.2 = 𝐸67 + 𝐸-./ = 𝑀 + 3!
45𝑉𝑇-./

8

Energy of photon gas 
from Planck's Law.

-	 Or: 𝑀8 𝑀 − 𝐸010.2 + 𝛽𝑉 = 0, 𝛽 = 4
45(:)"3!

Task:	Find	values	of	𝑀	and	𝑉	that	satisfy:
(1)	 𝑇BH	=	𝑇gas	

𝑑𝑇67
𝑑𝑀 <

𝑑𝑇-./
𝑑𝑀

(2)

To solve this for 𝑀, construct the graph of the function

 𝑓(𝑀)	=	𝑀4(𝑀	−	𝐸total)	+	𝛽𝑉

and see where it intersects the 𝑀 axis...

Black	hole	of	mass	𝑀	in	
photon	gas	of	volume	𝑉

-	 Now	substitute	into	(1)	
with	𝑇BH	=	1/8𝜋𝑀:

𝐸010.2 −𝑀
3!
45𝑉

¼ 
=

1
8𝜋𝑀 Assumes a black hole has 

a temperature given by 
Hawking radiation.
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•	 Let	𝑓(𝑀)	=	𝑀4(𝑀	−	𝐸total)	+	𝛽𝑉

-	Max/min	occur	at	values	of	𝑀	for	which	𝑑𝑓/𝑑𝑀	=	0:

𝑑𝑓/𝑑𝑀	=	5𝑀4	−	4𝑀3𝐸total	=	0			for			𝑀	=	0	and	𝑀	=	"#𝐸total

-	Note:			𝑓(𝑀)	→	−∞	as	𝑀	 →	−∞					and					𝑓(𝑀)	→	+∞	as	𝑀	→	+∞

- So 𝑀	=	$%𝐸tot must be a minimum!
- There are no max/mins to the right of 𝑀	
=	$%𝐸total, and 𝑓(𝑀) is increasing to +∞.

- So 𝑀	=	0	must be a maximum!
- There are no max/min's to the left of 𝑀	
=	0, and 𝑓(𝑀) is decreasing to −∞.

𝛽𝑉	>	0

𝑀	=	!"𝐸total

𝑀	=	0

𝑓(𝑀)

Two physically reasonable 
values of 𝑀 for which 𝑓(𝑀)	=	0!

Value of 𝑀 for which 𝑓(𝑀)	=	0!
- But: Unphysical since 𝑀 is negative.

-	Case	1:			𝑓("#𝐸total)	<	0

𝑀

𝑓(𝑀)	=	0 ⇔ 𝑇BH	=	𝑇gas
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•	 Let	𝑓(𝑀)	=	𝑀4(𝑀	−	𝐸total)	+	𝛽𝑉

-	Max/min	occur	at	values	of	𝑀	for	which	𝑑𝑓/𝑑𝑀	=	0:

𝑑𝑓/𝑑𝑀	=	5𝑀4	−	4𝑀3𝐸total	=	0			for			𝑀	=	0	and	𝑀	=	"#𝐸total

𝑀

𝛽𝑉	>	0

𝑀	=	!"𝐸total

𝑓(𝑀)

-	Case	2:			𝑓("#𝐸total)	=	0

Value of 𝑀 for which 𝑓(𝑀)	=	0!
- But: Unphysical since 𝑀 is negative.

One physically reasonable value 
of 𝑀 for which 𝑓(𝑀)	=	0!

𝑀	=	0

𝑓(𝑀)	=	0 ⇔ 𝑇BH	=	𝑇gas

-	Note:			𝑓(𝑀)	→	−∞	as	𝑀	 →	−∞					and					𝑓(𝑀)	→	+∞	as	𝑀	→	+∞

- So 𝑀	=	$%𝐸tot must be a minimum!
- There are no max/mins to the right of 𝑀	
=	$%𝐸total, and 𝑓(𝑀) is increasing to +∞.

- So 𝑀	=	0	must be a maximum!
- There are no max/min's to the left of 𝑀	
=	0, and 𝑓(𝑀) is decreasing to −∞.
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•	 Let	𝑓(𝑀)	=	𝑀4(𝑀	−	𝐸total)	+	𝛽𝑉

-	Max/min	occur	at	values	of	𝑀	for	which	𝑑𝑓/𝑑𝑀	=	0:

𝑑𝑓/𝑑𝑀	=	5𝑀4	−	4𝑀3𝐸total	=	0			for			𝑀	=	0	and	𝑀	=	"#𝐸total

𝑀

𝛽𝑉	>	0

𝑀	=	!"𝐸total

𝑓(𝑀)

-	Case	3:			𝑓("#𝐸total)	>	0

Value of 𝑀 for which 𝑓(𝑀)	=	0!
- But: Unphysical since 𝑀 is negative.

𝑀	=	0

𝑓(𝑀)	=	0 ⇔ 𝑇BH	=	𝑇gas

-	Note:			𝑓(𝑀)	→	−∞	as	𝑀	 →	−∞					and					𝑓(𝑀)	→	+∞	as	𝑀	→	+∞

- So 𝑀	=	$%𝐸tot must be a minimum!
- There are no max/mins to the right of 𝑀	
=	$%𝐸total, and 𝑓(𝑀) is increasing to +∞.

- So 𝑀	=	0	must be a maximum!
- There are no max/min's to the left of 𝑀	
=	0, and 𝑓(𝑀) is decreasing to −∞.
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•	 Let	𝑓(𝑀)	=	𝑀4(𝑀	−	𝐸total)	+	𝛽𝑉

-	So:	Condition	for	there	to	be	physically	reasonable	values	of	𝑀	for	which	𝑇BH	=	𝑇gas:

	 	 𝑓("#𝐸total)	≤	0					or				𝛽𝑉	≤	0.082𝐸tot5

𝑑𝑇?@
𝑑𝑀

=
𝑑
𝑑𝑀

1
8𝜋𝑀

= −
1

8𝜋𝑀A

Or:
1
4B

𝑀C

𝐸DEDFG −𝑀 H < 𝛽𝑉

Are	these	values	of	𝑀	stable	equilibrium	points? Do they satisfy Condition (2)	
𝑑𝑇BH/𝑑𝑀	<	𝑑𝑇g/𝑑𝑀?

1
4B

𝑀C

𝐸DEDFG −𝑀 H ≤ 0.082𝐸DEDFG
I-	 For	physically	

reasonable	values	
of	𝑀,	this	becomes:

𝑑𝑇JKL
𝑑𝑀 =

𝑑
𝑑𝑀

𝐸DEDFG −𝑀
M&
NI𝑉

N/B

= −NB
M&
NI𝑉

PN/B
𝐸DEDFG −𝑀 PH/B

or					𝑀	<	"#𝐸total

−
1

8𝜋𝑀A < −NB
M&
NI𝑉

PN/B
𝐸DEDFG −𝑀 PH/BSo	Condition	(2)	is:

𝑓(𝑀)	=	0 ⇔ 𝑇BH	=	𝑇gas
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𝛽𝑉	>	0

𝑀	=	!"𝐸total

𝑀	=	0

𝑓(𝑀)

The physically reasonable value of 𝑀 
that is a stable equilibrium point for  
the black hole + photon gas system!

-	Case	1:			𝑓("#𝐸total)	<	0,	0	<	𝛽𝑉	<	0.082𝐸tot5

𝑀
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3.	A	Black	Hole	Carnot	Cycle
•	 So:	It	looks	like	a	black	hole	can	be	in	equilibrium	with	a	photon	
gas,	and	hence	potentially	undergo	a	reversible	process.

•	 Next	task:	Describe	such	a	process.
-	 Construct	a	Carnot	cycle	using	a	black	hole	and	photon	gas	as	the	working	fluid.

•	 Slight	catch:	Black	hole	+	photon	gas	working	fluid	has	negative	heat	capacity.

To use it to power a heat engine, need to reverse the 
standard (positive heat capacity working fluid) Carnot cycle.
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Standard	Carnot	cycle	heat	engine
Positive	heat	capacity	working	fluid:
-	 heat	absorbed	→	temp	increase
-	 heat	radiated	→	temp	decrease

1-2.	Isothermal	Expansion
-	 heat	absorbed	at	constant	temp
-	 temp	increase	offset	by	volume	
increase

2-3.	Adiabatic	Expansion
-	 volume	increases
-	 temperature	decreases

3-4.	Isothermal	Contraction
-	 heat	radiated	at	constant	temp
-	 temp	decrease	offset	by	volume	
decrease

4-1.	Adiabatic	Contraction
-	 volume	decreases
-	 temperature	increases

cold	place

Heat	in

Heat	out

Work	out

Heat engine: takes heat from a hot place 
to a cold place and produces work

hot	place



2-3.	Adiabatic	Expansion
-	 vol	increases
-	 temp	decreases

14

Standard	Carnot	cycle	refrigerator
Positive	heat	capacity	working	fluid:
-	 heat	absorbed	→	temp	increase
-	 heat	radiated	→	temp	decrease

hot	place

Heat	in

Work	in
-	 to	decrease	volume	
(squeezing	heat	out)

cold	place

1-2.	Isothermal	Expansion
-	 heat	absorbed	at	constant	temp
-	 temp	increase	offset	by	vol	
increase

3-4.	Isothermal	Contraction
-	 heat	radiated	at	constant	temp
-	 temp	decrease	offset	by	vol	
decrease

4-1.	Adiabatic	Contraction
-	 vol	decreases
-	 temp	increases

Refrigerator: takes heat from a hot place 
to a cold place with work input

Heat	out

A reverse positive heat capacity heat engine!
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Negative	heat	capacity	Carnot	cycle	heat	engine
-	 heat	absorbed	→	temp	decrease
-	 heat	radiated	→	temp	increase

Heat	in

Heat	out

1-2.	Isothermal	Expansion
-	 heat	absorbed	at	constant	temp
-	 temp	decrease	offset	by	vol	
increase

4-1.	Adiabatic	Expansion
-	 vol	increases
-	 temp	increases

2-3.	Adiabatic	Contraction
-	 vol	decreases
-	 temp	decreases

3-4.	Isothermal	Contraction
-	 heat	radiated	at	constant	temp
-	 temp	increase	offset	by	vol	decrease

hot	place

cold	place

Heat engine: takes heat from a hot place 
to a cold place and produces work

Work	out

A "reverse" positive heat capacity refrigerator!
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Black	hole	+	photon	gas	Carnot	cycle	heat	engine
-	 heat	absorbed	→	temp	decrease;	mass	increase
-	 heat	radiated	→	temp	increase;	mass	decrease

1-2.	Isothermal	Expansion
-	 heat	absorbed	at	constant	temp
-	 temp	decrease	offset	by	vol	
increase

4-1.	Adiabatic	Expansion
-	 vol	increases
-	 temp	increases;	mass	decreases

2-3.	Adiabatic	Contraction
-	 vol	decreases
-	 temp	decreases;	mass	increases

3-4.	Isothermal	Contraction
-	 heat	radiated	at	constant	temp
-	 temp	increase	offset	by	vol	decrease

Heat	in

Heat	out

hot	place

cold	place

Heat engine: takes heat from a hot place 
to a cold place and produces work

Work	out

Tasks:
(a) Show that efficiency 𝜇	=	(𝑄in	−	𝑄out)/𝑄in	=	1	−	𝑇2/𝑇1
(b) Show that 𝑆TD	of BH subsystem is 1/16𝜋𝑇2	=	4𝜋𝑀2	=	𝐴/4	=	𝑆BH

𝑇BH	=1/8𝜋𝑀
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(1→2) Isothermal	Expansion
𝑉1	→	𝑉2	at	constant	𝑇	=	𝑇1

1
2

3

4

𝑇1

𝑇2

•	 Note:	 	𝛿𝑄12	=	𝑑𝑈BH+gas	+	𝑃gas𝑑𝑉

	 	 =	(∂𝑈BH+gas	/∂𝑉)𝑇𝑑𝑉	+		()𝛼𝑇14𝑑𝑉

	 	 =	𝛼𝑇14𝑑𝑉	+	()𝛼𝑇14𝑑𝑉

Black	hole	+	photon	gas	Carnot	cycle

•	 And: ∆𝑆4B= R
4

B
𝛿𝑄4B/𝑇4 = 8

C𝛼𝑇4
C(𝑉B − 𝑉4)

Resulting change in entropy

𝐸BH+gas	=	𝑈BH+gas	=	𝑀	+	𝛼𝑉𝑇4,					𝛼	=	'
&
(%

𝑆gas	=	∫𝑑𝑈gas	/𝑇	=	∫(4𝛼𝑉𝑇3𝑑𝑇)/𝑇	=	∫4𝛼𝑉𝑇2𝑑𝑇	= $
)	𝛼𝑉𝑇

3

𝑃gas	=	()(𝑈gas	/𝑉)=
(
)	𝛼𝑇

4 

•	 So: 𝑄4B = R
D(

D!
𝛼𝑇48 + 4

C𝛼𝑇4
8 𝑑𝑉 = 8

C𝛼𝑇4
8(𝑉B − 𝑉4)

Heat absorbed

𝑄12
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(2→3) Adiabatic	Compression
𝑄23	=	0,	𝑉2	→	𝑉3,	𝑇1	→	𝑇2	

𝐸BH+gas	=	𝑈BH+gas	=	𝑀	+	𝛼𝑉𝑇4,					𝛼	=	'
&
(%

𝑆gas	=	∫𝑑𝑈gas	/𝑇	=	∫(4𝛼𝑉𝑇3𝑑𝑇)/𝑇	=	∫4𝛼𝑉𝑇2𝑑𝑇	= $
)	𝛼𝑉𝑇

3

𝑃gas	=	()(𝑈gas	/𝑉)=
(
)	𝛼𝑇

4 

•	 Adiabatic	relation:					𝑑𝑈BH+gas	=	𝑑𝑊gas

−(
)	𝛼𝑇

4𝑑𝑉	=	work done on gas𝑑𝑀	+	4𝛼𝑉𝑇3𝑑𝑇	+	𝛼𝑇4𝑑𝑉	

Or... 𝑉C𝑇BC +
3𝛾

8𝛼𝑇BB
= 𝑉B𝑇4C +

3𝛾
8𝛼𝑇4B

Black	hole	+	photon	gas	Carnot	cycle

1
2

3

4

𝑇1

𝑇2

𝑄12

•	 So: ∆𝑆BC= R
B

C
𝛿𝑄BC/𝑇4 = 0

Or... 𝑉𝑇C +
3𝛾
8𝛼𝑇B = const.

- 	𝛾	=	 (*'
- For photon gas by itself, adiabatic 

relation is just 𝑉𝑇3	=	const.
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(3→4) Isothermal	Compression
𝑉3	→	𝑉4	at	constant	𝑇	=	𝑇2

Black	hole	+	photon	gas	Carnot	cycle

∆𝑆C8= R
C

8
𝛿𝑄C8/𝑇B = 8

C𝛼𝑇B
C(𝑉8 − 𝑉C)

Resulting change in entropy

1
2

3

4

𝑇1

𝑇2

𝐸BH+gas	=	𝑈BH+gas	=	𝑀	+	𝛼𝑉𝑇4,					𝛼	=	'
&
(%

𝑆gas	=	∫𝑑𝑈gas	/𝑇	=	∫(4𝛼𝑉𝑇3𝑑𝑇)/𝑇	=	∫4𝛼𝑉𝑇2𝑑𝑇	= $
)	𝛼𝑉𝑇

3

𝑃gas	=	()(𝑈gas	/𝑉)=
(
)	𝛼𝑇

4 
𝑄12

•	 In	derviation	similar	to	(1→2):

𝑄C8 = R
D)

D"
𝛼𝑇B8 + 4

C𝛼𝑇B
8 𝑑𝑉 = 8

C𝛼𝑇B
8(𝑉8 − 𝑉C)

Heat radiated

𝑄34
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(4→1) Adiabatic	Expansion
𝑄41	=	0,	𝑉4	→	𝑉1,	𝑇2	→	𝑇1	

Black	hole	+	photon	gas	Carnot	cycle

•	 For	(4→1)	this	becomes:

𝑉8𝑇BC +
3𝛾

8𝛼𝑇BB
= 𝑉4𝑇4C +

3𝛾
8𝛼𝑇4B

•	 Recall	adiabatic	relation	for	(2→3):

𝑉C𝑇BC +
3𝛾

8𝛼𝑇BB
= 𝑉B𝑇4C +

3𝛾
8𝛼𝑇4B

𝑉8𝑇BC − 𝑉C𝑇BC = 𝑉4𝑇4C − 𝑉B𝑇4C

Combine	to	get:

1
2

3

4

𝑇1

𝑇2

𝑄12

𝑄34

•	 So: ∆𝑆84= R
8

4
𝛿𝑄84/𝑇B = 0

𝐸BH+gas	=	𝑈BH+gas	=	𝑀	+	𝛼𝑉𝑇4,					𝛼	=	'
&
(%

𝑆gas	=	∫𝑑𝑈gas	/𝑇	=	∫(4𝛼𝑉𝑇3𝑑𝑇)/𝑇	=	∫4𝛼𝑉𝑇2𝑑𝑇	= $
)	𝛼𝑉𝑇

3

𝑃gas	=	()(𝑈gas	/𝑉)=
(
)	𝛼𝑇

4 
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Task	(a):	Show	that	efficiency	𝜇	=	(𝑄in −	𝑄out)/𝑄in	= 1	−	𝑇2/𝑇1

1
2

3

4

𝑇1

𝑇2

𝑄12

𝑄34

𝜇 =
𝑄4B − 𝑄C8

𝑄4B

=
8
C𝛼𝑇4

8 𝑉B − 𝑉4 − 8
C𝛼𝑇B

8(𝑉8 − 𝑉C)
𝑄4B

=
8
C𝛼 𝑇4 𝑉B𝑇4

C − 𝑉4𝑇4C − 8
C𝛼 𝑇B 𝑉8𝑇B

C − 𝑉C𝑇BC

𝑄4B

=
8
C𝛼𝑇4

8 𝑉B − 𝑉4 1 − 𝑇B𝑇4
𝑄4B

=
8
C𝛼 𝑇4 𝑉B𝑇4

C − 𝑉4𝑇4C − 8
C𝛼 𝑇B 𝑉4𝑇4

C − 𝑉B𝑇4C

𝑄4B

𝑉+𝑇,- − 𝑉-𝑇,- = 𝑉.𝑇.- − 𝑉,𝑇.-
adiabatic relation

= 1 −
𝑇B
𝑇4 Task (a) accomplished!
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Task	(b):	Show	that	𝑆TD	of	BH	subsystem	is	1/16𝜋𝑇2

1
2

3

4

𝑇1

𝑇2

𝑄12

𝑄34

∆𝑆NA= B
H𝛼𝑇N

H(𝑉A − 𝑉N)

∆𝑆HB= B
H𝛼𝑇A

H(𝑉B − 𝑉H)
Entropy change in gas only 
(no change of state of BH)

•	 Isothermal	processes	(1→2),	(3→4):

•	 Adiabatic	processes	(2→3),	(4→1):			Δ𝑆BH+gas	=	0
-	 But:	Adiabatic	relation	of	gas	by	itself	is	different	from	
adiabatic	relation	of	BH+gas.

-	 Claim:	There	must	be	heat	flux	from	gas	to	BH	during	
adiabatic	compression	(2→3).

•	 So:			Δ𝑆BH+gas,23	=	Δ𝑆BH,23	+	Δ𝑆gas,23

	 	 =	Δ𝑆BH,23	+	
8
C
𝛼(𝑉3𝑇23	−	𝑉2𝑇13)

	 	 =	Δ𝑆BH,23	+	
8
C
𝛼 CE

:FG!!
− CE

:FG(!

	 	 =	Δ𝑆BH,23	+	
4
B
	𝛾 4

G!!
− 4

G(!
	=	0

adiabatic relation

𝑉-𝑇.- +
3𝛾

8𝛼𝑇..
= 𝑉.𝑇/- +

3𝛾
8𝛼𝑇/.

•	 Or:			Δ𝑆BH,23	=	
4
B
	𝛾 4

G(!
− 4

G!!

•	 In	general:			𝑆BH	 =	
4
B
	𝛾(1/𝑇2)	=	1/16𝜋𝑇2 Task (b) accomplished!


