11. Von Neumann Entropy

1. Motivation

- Recall: A density operator $\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$ that characterizes an ensemble $\left\{\left|\psi_{i}\right\rangle, p_{i}\right\}$ of quantum vector states is the correlate of a Gibbs distribution $\rho(x, t)$ that characterizes an ensemble of classical states.
- And: The Gibbs entropy is given by $S_{\text {Gibbs }}(\rho)=-k \int_{\Gamma} \rho(x, t) \ln \rho(x, t) d x$

What is the quantum correlate of $S_{\text {Gibss }}$?

Def. 1 (von Neumann entropy). The von Neumann entropy $S_{\mathrm{vN}}(\rho)$ of a density operator state ρ is defined by

$$
S_{\mathrm{vN}}(\rho) \equiv-\operatorname{Tr}(\rho \ln \rho)
$$

- Note 1: What is "ln $\rho " ? ~ \int^{\text {We know what } \ln x \text { does to a number }} \begin{aligned} & \text {, but what does it do to an operator? }\end{aligned}$
- Let B be an operator such that $B\left|\psi_{i}\right\rangle=b_{i}\left|\psi_{i}\right\rangle$.
- Let $f(x)$ be a function on the real numbers.
- Then $f(B)\left|\psi_{i}\right\rangle \equiv f\left(b_{i}\right)\left|\psi_{i}\right\rangle$
$\longleftarrow S$ If B is an operator with eigenvalues b_{i}, then $f(B)$ is an operator with eigenvalues $f\left(b_{i}\right)$.
- Recall: Can always express ρ as $\rho=\sum_{i} \lambda_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$, where $\rho\left|\phi_{i}\right\rangle=\lambda_{i}\left|\phi_{i}\right\rangle$
- So: $\ln \rho\left|\phi_{i}\right\rangle=\ln \lambda_{i}\left|\phi_{i}\right\rangle$

$\ln \rho$ is an operator with eigenvalues $\ln \lambda_{i}$.

Def. 1 (von Neumann entropy). The von Neumann entropy $S_{\mathrm{VN}}(\rho)$ of a density operator state ρ is defined by

$$
S_{\mathrm{vN}}(\rho) \equiv-\operatorname{Tr}(\rho \ln \rho)
$$

- Note 2: If ρ is a density operator state on an n-dim vector space \mathcal{H}, then the maximum value of $S_{\mathrm{vN}}(\rho)$ is $\ln n$.
- Proof: Note first:

$$
S_{\mathrm{vN}}(\rho)=-\operatorname{Tr}(\rho \ln \rho)=-\sum_{i=1}^{n}\left\langle\phi_{i}\right|(\rho \ln \rho)\left|\phi_{i}\right\rangle=-\sum_{i=1}^{n} \lambda_{i} \ln \lambda_{i}
$$

- Now recall $\left(d / d \lambda_{i}\right) S_{\mathrm{vN}}\left(\lambda_{i}^{*}\right)=0$ for the λ_{i}^{*} that maximizes S_{vN} :

$$
d S_{\mathrm{vN}}\left(\lambda_{i}^{*}\right)=-\sum_{i=1}^{n}\left(\ln \lambda_{i}^{*}-\alpha\right) d \lambda_{i}=0 \longleftarrow \text { constrained by } \sum_{i=1}^{n} d \lambda_{i}=0
$$

- Solve for λ_{i}^{*} :

$$
\lambda_{i}^{*}=e^{\alpha} \quad \Rightarrow \quad \sum_{i=1}^{n} \lambda_{i}=n e^{\alpha}=1 \quad \Rightarrow \quad \alpha=\ln (1 / n) \quad \Rightarrow \quad \lambda_{i}^{*}=(1 / n)
$$

- Thus: $S_{\mathrm{vN}}\left(\lambda_{i}^{*}\right)=-\sum_{i=1}^{n}(1 / n) \ln (1 / n)=-n(1 / n) \ln (1 / n)=\ln n$

Def. 1 (von Neumann entropy). The von Neumann entropy $S_{\mathrm{vN}}(\rho)$ of a density operator state ρ is defined by
 $$
S_{\mathrm{vN}}(\rho) \equiv-\operatorname{Tr}(\rho \ln \rho)
$$

- Note 3: Recall $\langle 0\rangle_{\rho}=\operatorname{Tr}(\rho O)$ is the expectation value of the operator O in the density operator state ρ.
- So: $S_{\mathrm{vN}}(\rho)$ is the expectation value of the operator $-\ln \rho$ in the density operator state ρ.

What does $S_{\mathrm{vN}}(\rho)$ measure?

Def. 2 (Maximally mixed density operator state). Let ρ be a density operator on an n-dim vector space \mathcal{H} with identify operator I_{n}. Then ρ is maximally mixed just when it can be expressed by $\rho=(1 / n) I_{n}$.

- Recall: A mixed density operator can be expressed by $\rho=\sum_{i=1}^{n} \lambda_{i}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$ where the $\left|\phi_{i}\right\rangle$ form a basis for \mathcal{H}, and $\sum_{i=1}^{n} \lambda_{i}=1$.
- And: ρ is pure just when one λ_{i} is 1 and all the rest are 0 .
- Intuition: The more mixed ρ is, the "farther away" it is from the pure case.
- And: The maximum "distance" ρ is from the pure case occurs when all the λ_{i} are equal; i.e., when $\lambda_{i}=1 / n$.
- So: $\rho_{\max }=\sum_{i=1}^{n}(1 / n)\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right|$

$$
\begin{aligned}
& =(1 / n) \sum_{i=1}^{n}\left|\phi_{i}\right\rangle\left\langle\phi_{i}\right| \\
& =(1 / n) I_{n}
\end{aligned}
$$

$S_{\mathrm{vN}}(\rho)$ is a measure of the degree to which ρ is mixed!
Claim 1. Let ρ be a density operator on an n-dim vector space \mathcal{H}. Then $S_{\mathrm{vN}}(\rho)$ varies from zero, if ρ is a pure density operator state, to $\ln n$, if ρ is a maximally mixed density operator state.

- Proof: Suppose ρ is a pure density operator state.
- Then: $S_{\mathrm{vN}}(\rho)=-\sum_{i=1}^{n} \lambda_{i} \ln \lambda_{i}=-\ln (1)=0$
- Now Suppose ρ is a maximally mixed density operator state.
- Then: $S_{\mathrm{vN}}(\rho)=-\sum_{i=1}^{n} \lambda_{i} \ln \lambda_{i}=-\sum_{i=1}^{n}(1 / n) \ln (1 / n)$

$$
\begin{aligned}
& =-\ln (1 / n) \\
& =\ln n \longleftarrow \text { The maximum value of } S_{\mathrm{vN}}!
\end{aligned}
$$

2. Comparison with $S_{\text {Shar }}$

$S_{\mathrm{vN}}(\rho)$ as a measure of information compression?

- The Shannon Entropy:
$S_{\text {Shan }}(X)=-\sum_{i} p_{i} \log _{2} p_{i}$
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$, where x_{i} is a state produced by a classical information source, and p_{i} is a probability distribution over such states.
- The von Neumann Entropy:
$S_{\mathrm{vN}}(\rho)=-\sum_{i} p_{i} \ln p_{i}$
- $\rho=-\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$, where $\left|\psi_{i}\right\rangle$ is a vector state produced by a quantum information source, and p_{i} is a probability distribution over such states.
\longleftarrow Specifies the minimal number of qubits required to encode the output of a quantum information source.
$S_{\mathrm{vN}}(\rho)$ as a measure of uncertainty?
- The Shannon Entropy:
$S_{\text {Shan }}(X)=-\sum_{i} p_{i} \log _{2} p_{i}$
- $X=\left\{x_{1}, \ldots, x_{n}\right\}$, where x_{i} is a state produced by a classical information source, and p_{i} is a probability distribution over such states.
- The von Neumann Entropy:

$$
S_{\mathrm{vN}}(\rho)=-\sum_{i} p_{i} \ln p_{i}
$$

- $\rho=-\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|$, where $\left|\psi_{i}\right\rangle$ is a vector state produced by a quantum information source, and p_{i} is a probability distribution over such states.

Let $-\log p_{i}$ be "info gained" upon finding a system to be in a state drawn from a set of states with probabilites p_{i}.
\checkmark Expected value of information gained upon measurement of X with outcome x_{i}.
\longleftarrow Expected value of information gained upon measurement of ρ with outcome $\left|\psi_{i}\right\rangle$.

But: $S_{\mathrm{vN}}(\rho)$ measures mixedness of ρ.
And: Mixedness does not necessarily entail uncertainty...

3. Entanglement Entropy

Def. 3 (Partial trace). Let $O_{A} \otimes O_{B}$ be an operator on $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$, and let $\left\{\left|w_{B i}\right\rangle\right\}$ be a basis of \mathcal{H}_{B}. The partial trace $\operatorname{Tr}_{B}\left(O_{A} \otimes O_{B}\right)$ of $O_{A} \otimes O_{B}$ over \mathcal{H}_{B} is defined by

$$
\operatorname{Tr}_{B}\left(O_{A} \otimes O_{B}\right) \equiv \sum_{i}\left\langle w_{B i}\right| O_{A} \otimes O_{B}\left|w_{B i}\right\rangle
$$

Traces out the degrees of freedom of subsystem B.

- Note. $\operatorname{Tr}_{B}\left(O_{A} \otimes O_{B}\right)=\sum_{i}\left(w_{B i}\left|O_{A} \otimes O_{B}\right| w_{B i}\right\rangle$

$$
\begin{aligned}
& =\sum_{i} O_{A}\left\langle w_{B}\right| O_{B}\left|w_{B i}\right\rangle \\
& =O_{A} \operatorname{Tr}\left(O_{B}\right)
\end{aligned}
$$

$\operatorname{Tr}\left(O_{B}\right)$ is a number, so $O_{A} \operatorname{Tr}\left(O_{B}\right)$ is an operator on \mathcal{H}_{A} !

Def. 4 (Reduced density operator). Let $\rho_{A B}$ be a density operator for a bipartite system $A B$ with subsystems A and B. The reduced density operator for subsystem A is defined by $\rho_{A} \equiv \operatorname{Tr}_{B}\left(\rho_{A B}\right)$.

Example. Consider the entangled vector state $\left|\psi_{A B}\right\rangle=\sqrt{1 / 2}\left\{\left|0_{A} 0_{B}\right\rangle+\left|1_{A} 1_{B}\right\rangle\right\}$.

$$
\begin{aligned}
\rho_{A B}= & \left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right| \\
= & 1 / 2\left\{\left|0_{A} 0_{B}\right\rangle\left\langle 0_{A} 0_{B}\right|+\left|1_{A} 1_{B}\right\rangle\left\langle 0_{A} 0_{B}\right|+\left|0_{A} 0_{B}\right\rangle\left\langle 1_{A} 1_{B}\right|+\left|1_{A} 1_{B}\right\rangle\left\langle 1_{A} 1_{B}\right|\right\} \\
\rho_{A}= & \operatorname{Tr}_{B}\left(\rho_{A B}\right) \\
= & \sum_{i=1}^{2}\left\langle w_{B i}\right| \rho_{A B}\left|w_{B i}\right\rangle \\
= & 1 / 2\left\langle 0_{B}\right|\left\{\left|0_{A} 0_{B}\right\rangle\left\langle 0_{A} 0_{B}\right|+\left|1_{A} 1_{B}\right\rangle\left\langle 0_{A} 0_{B}\right|+\left|0_{A} 0_{B}\right\rangle\left\langle 1_{A} 1_{B}\right|+\left|1_{A} 1_{B}\right\rangle\left\langle 1_{A} 1_{B}\right|\right\}\left|0_{B}\right\rangle \\
& \quad+1 / 2\left\langle 1_{B}\right|\left\{\left|0_{A} 0_{B}\right\rangle\left\langle 0_{A} 0_{B}\right|+\left|1_{A} 1_{B}\right\rangle\left\langle 0_{A} 0_{B}\right|+\left|0_{A} 0_{B}\right\rangle\left\langle 1_{A} 1_{B}\right|+\left|1_{A} 1_{B}\right\rangle\left\langle 1_{A} 1_{B}\right|\right\}\left|1_{B}\right\rangle \\
= & 1 / 2\left\{\left|0_{A}\right\rangle\left\langle 0_{A}\right|+\left|1_{A}\right\rangle\left\langle 1_{A}\right|\right\} \\
= & 1 / 2 I_{A}
\end{aligned}
$$

Def. 4 (Reduced density operator). Let $\rho_{A B}$ be a density operator for a bipartite system $A B$ with subsystems A and B. The reduced density operator for subsystem A is defined by $\rho_{A} \equiv \operatorname{Tr}_{B}\left(\rho_{A B}\right)$.

Example. Consider the entangled vector state $\left|\psi_{A B}\right\rangle=\sqrt{1 / 2}\left\{\left|0_{A} 0_{B}\right\rangle+\left|1_{A} 1_{B}\right\rangle\right\}$.

$$
\begin{aligned}
\rho_{A B} & =\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right| \\
& =1 / 2\left\{\left|0_{A} 0_{B}\right\rangle\left\langle 0_{A} 0_{B}\right|+\left|1_{A} 1_{B}\right\rangle\left\langle 0_{A} 0_{B}\right|+\left|0_{A} 0_{B}\right\rangle\left\langle 1_{A} 1_{B}\right|+\left|1_{A} 1_{B}\right\rangle\left\langle 1_{A} 1_{B}\right|\right\} \\
\rho_{A} & =\operatorname{Tr}_{B}\left(\rho_{A B}\right) \\
& =1 / 2\left\{\left|0_{A}\right\rangle\left\langle 0_{A}\right|+\left|1_{A}\right\rangle\left\langle 1_{A}\right|\right\}=1 / 2 I_{A} \\
\rho_{B} & =\operatorname{Tr}_{A}\left(\rho_{A B}\right) \\
& =1 / 2\left\{\left|0_{B}\right\rangle\left\langle 0_{B}\right|+\left|1_{B}\right\rangle\left\langle 1_{B}\right|\right\}=1 / 2 I_{B}
\end{aligned}
$$

No ignorance interpretation of ρ_{A} or ρ_{B} :

- An ignorance interpretation of ρ_{A}, ρ_{B} suggests subsystems A, B are either in vector states $|0\rangle$ or $|1\rangle$.
- But: This would entail $\rho_{A B}$ is $1 / 2\left\{\left|0_{A} 0_{B}\right\rangle\left\langle 0_{A} 0_{B}\right|+\left|1_{A} 1_{B}\right\rangle\left\langle 1_{A} 1_{B}\right|\right\}$.

Entanglement quantified!
Def. 5 (Entanglement entropy). For a bipartite system $A B$ with density operator $\rho_{A B}$, the entanglement entropy S_{A} of subsystem A is defined by:

$$
S_{A} \equiv S_{\mathrm{vN}}\left(\rho_{A}\right)=-\operatorname{Tr}\left(\rho_{A} \log \rho_{A}\right)
$$

S_{A} is a measure of the degree to which the density operator ρ_{A} is mixed.

But what does this have to do with entanglement?...

Claim 2. Let $\rho_{A B}=\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right|$ be a pure density operator state on a product vector space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Then $\left|\psi_{A B}\right\rangle$ is an entangled vector state if and only if $S_{A}>0$ (i.e., ρ_{A} is mixed).

- Proof: " \Leftarrow ". Suppose $\left|\psi_{A B}\right\rangle=\left|\varphi_{A} \phi_{B}\right\rangle$ is a product vector state, where $\left|\varphi_{A}\right\rangle \in \mathcal{H}_{A}$ and $\left|\phi_{B}\right\rangle \in \mathcal{H}_{B}$, and let $\left\{\left|w_{B_{i}}\right\rangle\right\}$ be a basis of \mathcal{H}_{B}.
- Then: $\rho_{A}=\operatorname{Tr}_{B}\left(\rho_{A B}\right)=\sum_{i}\left\langle w_{B_{i}}\right| \rho_{A B}\left|w_{B_{i}}\right\rangle$

$$
\begin{aligned}
& =\sum_{i}\left\langle w_{B_{i}} \mid \varphi_{A} \phi_{B}\right\rangle\left\langle\varphi_{A} \phi_{B} \mid w_{B_{i}}\right\rangle \\
& =\left|\varphi_{A}\right\rangle\left\langle\varphi_{A}\right| \sum_{i}\left\langle\phi_{B} \mid w_{B_{i}}\right\rangle\left\langle w_{B_{i}} \mid \phi_{B}\right\rangle \hookleftarrow \sum_{i}\left|w_{B}\right\rangle\left\langle w_{B_{i} \mid}\right|=I_{n} \\
& =\left|\varphi_{A}\right\rangle\left\langle\varphi_{A}\right|\left\langle\phi_{B} \mid \phi_{B}\right\rangle=\left|\varphi_{A}\right\rangle\left\langle\varphi_{A}\right|
\end{aligned}
$$

- Thus: ρ_{A} is pure (i.e., not mixed).

So: If ρ_{A} is mixed, then $\left|\psi_{A B}\right\rangle$ is a non-product (i.e., entangled) vector state.

Claim 2. Let $\rho_{A B}=\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right|$ be a pure density operator state on a product vector space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Then $\left|\psi_{A B}\right\rangle$ is an entangled vector state if and only if $S_{A}>0$ (i.e., ρ_{A} is mixed).

- Proof: " \Rightarrow ". Let $\left\{\left|w_{A_{i}}\right\rangle\right\},\left\{\left|w_{B_{i}}\right\rangle\right\}$ be bases for \mathcal{H}_{A} and \mathcal{H}_{B}. Then $\left|\psi_{A B}\right\rangle$ can be written as $\left|\psi_{A B}\right\rangle=\sum_{i} \alpha_{i}\left|w_{A_{i}} w_{B_{i}}\right\rangle$.
- Strategy: Let $\left\{\left|w_{A_{i}}\right\rangle\right\}$ be an eigenbasis of ρ_{A}.
\checkmark We want to show that if ρ_{A} is pure, then there's only one term
- Then: $\rho_{A}=\operatorname{Tr}_{B}\left(\rho_{A B}\right)=\sum_{i}\left\langle w_{B_{i}}\right| \rho_{A B}\left|w_{B_{i}}\right\rangle$ in this "biorthogonal expansion".

$$
\begin{aligned}
& =\sum_{i}\left\langle w_{B_{i}}\right| \sum_{j} \alpha_{j}\left|w_{A_{j}} w_{B_{j}}\right\rangle \sum_{k} \alpha_{k}^{*}\left\langle w_{A_{k}} w_{B_{k}} \mid w_{B_{i}}\right\rangle \\
& =\sum_{i, j, k} \alpha_{j} \alpha_{k}^{*}\left|w_{A_{j}}\right\rangle\left\langle w_{A_{k}}\right|\left\langle w_{B_{i}} \mid w_{B_{j}}\right\rangle\left\langle w_{B_{k}} \mid w_{B_{i}}\right\rangle \\
& =\sum_{i, j} \alpha_{j} \alpha_{i}^{*}\left|w_{A_{j}}\right\rangle\left\langle w_{A_{i}}\right|\left\langle w_{B_{i}} \mid w_{B_{j}}\right\rangle \\
& =\sum_{i} \alpha_{i} \alpha_{i}^{*}\left|w_{A_{i}}\right\rangle\left\langle w_{A_{i}}\right|
\end{aligned}
$$

- If ρ_{A} is pure, then all the α_{i} are zero except for one; and this entails $\left|\psi_{A B}\right\rangle$ is a product vector state!

So: If $\left|\psi_{A B}\right\rangle$ is a non-product (entangled) vector state, then ρ_{A} is mixed.

> Claim 2. Let $\rho_{A B}=\left|\psi_{A B}\right\rangle\left\langle\psi_{A B}\right|$ be a pure density operator state on a product vector space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Then $\left|\psi_{A B}\right\rangle$ is an entangled vector state if and only if $S_{A}>0$ (i.e., ρ_{A} is mixed).

- So: If a bipartite system is in a pure state, then S_{A} is a measure of the degree to which the vector state of the system is entangled.
- More provocatively: S_{A} is a measure of the degree to which subsystem A is entangled with subsystem B.
- The more mixed ρ_{A} is, the greater the entanglement between A and B.

Side note: What if $\rho_{A B}$ is mixed and/or the composite system has more than two subsystems?...

