11. Von Neumann Entropy

Motivation Comparison with S_{Shan} Entanglement Entropy

1

1. Motivation

- <u>*Recall*</u>: A density operator $\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|$ that characterizes an ensemble $\{|\psi_i\rangle, p_i\}$ of quantum vector states is the correlate of a Gibbs distribution $\rho(x, t)$ that characterizes an ensemble of classical states.
- <u>And</u>: The Gibbs entropy is given by $S_{\text{Gibbs}}(\rho) = -k \int_{\Gamma} \rho(x, t) \ln \rho(x, t) dx$

<u>Recall</u>: ρ in QM is an operator; $\rho(x, t)$ in classical Stat Mech is a function.

The ensemble average of $-k\ln\rho(x,t)$

What is the quantum correlate of S_{Gibbs} ?

Def. 1 (von Neumann entropy). The von Neumann entropy $S_{vN}(\rho)$ of a density operator state ρ is defined by $S_{\rm vN}(\rho) \equiv -{\rm Tr}(\rho \ln \rho)$ John von Neumann (1903 - 1957)We know what $\ln x$ does to a number • <u>Note 1</u>: What is " $\ln \rho$ "? \checkmark x, but what does it do to an operator? - Let *B* be an operator such that $B|\psi_i\rangle = b_i|\psi_i\rangle$. If B is an operator with eigen-- Let f(x) be a function on the real numbers. values b_i , then f(B) is an operator with eigenvalues $f(b_i)$. - Then $f(B)|\psi_i\rangle \equiv f(b_i)|\psi_i\rangle$

- <u>*Recall*</u>: Can always express ρ as $\rho = \sum_i \lambda_i |\phi_i\rangle \langle \phi_i|$, where $\rho |\phi_i\rangle = \lambda_i |\phi_i\rangle$
- <u>So</u>: $\ln \rho |\phi_i\rangle = \ln \lambda_i |\phi_i\rangle$ \bigwedge - ρ is an operator with eigenvalues λ_i $\ln \rho$ is an operator with eigenvalues $\ln \lambda_i$.

- **Def. 1** (*von Neumann entropy*). The **von Neumann entropy** $S_{vN}(\rho)$ of a density operator state ρ is defined by $S_{vN}(\rho) \equiv -\text{Tr}(\rho \ln \rho)$
- <u>Note 2</u>: If ρ is a density operator state on an *n*-dim vector space \mathcal{H} , then the maximum value of $S_{vN}(\rho)$ is $\ln n$.
 - <u>Proof</u>: Note first: $S_{vN}(\rho) = -Tr(\rho \ln \rho) = -\sum_{i=1}^{n} \langle \phi_i | (\rho \ln \rho) | \phi_i \rangle = -\sum_{i=1}^{n} \lambda_i \ln \lambda_i$
 - Now recall $(d/d\lambda_i)S_{vN}(\lambda_i^*) = 0$ for the λ_i^* that maximizes S_{vN} : $dS_{vN}(\lambda_i^*) = -\sum_{i=1}^n (\ln \lambda_i^* - \alpha) d\lambda_i = 0$ \iff constrained by $\sum_{i=1}^n d\lambda_i = 0$
 - Solve for λ_i^* :

$$\lambda_i^* = e^{\alpha} \quad \Rightarrow \quad \sum_{i=1}^n \lambda_i = n e^{\alpha} = 1 \quad \Rightarrow \quad \alpha = \ln(1/n) \quad \Rightarrow \quad \lambda_i^* = (1/n)$$

- <u>Thus</u>: $S_{vN}(\lambda_i^*) = -\sum_{i=1}^n (1/n) \ln(1/n) = -n(1/n) \ln(1/n) = \ln n$

Def. 1 (*von Neumann entropy*). The **von Neumann entropy** $S_{vN}(\rho)$ of a density operator state ρ is defined by $S_{vN}(\rho) \equiv -\text{Tr}(\rho \ln \rho)$

- <u>Note 3</u>: Recall $\langle O \rangle_{\rho} = \text{Tr}(\rho O)$ is the expectation value of the operator O in the density operator state ρ .
 - <u>So</u>: $S_{vN}(\rho)$ is the expectation value of the operator $-\ln\rho$ in the density operator state ρ .

Analogous to ensemble average in Gibbs approach!

What does $S_{vN}(\rho)$ measure?

Def. 2 (*Maximally mixed density operator state*). Let ρ be a density operator on an *n*-dim vector space \mathcal{H} with identify operator I_n . Then ρ is **maximally mixed** just when it can be expressed by $\rho = (1/n)I_n$.

- <u>*Recall*</u>: A mixed density operator can be expressed by $\rho = \sum_{i=1}^{n} \lambda_i |\phi_i\rangle \langle \phi_i|$ where the $|\phi_i\rangle$ form a basis for \mathcal{H} , and $\sum_{i=1}^{n} \lambda_i = 1$.
 - <u>And</u>: ρ is pure just when one λ_i is 1 and all the rest are 0.
- *Intuition*: The more mixed ρ is, the "farther away" it is from the pure case.
 - <u>And</u>: The maximum "distance" ρ is from the pure case occurs when all the λ_i are equal; i.e., when $\lambda_i = 1/n$.
- <u>So</u>: $\rho_{\max} = \sum_{i=1}^{n} (1/n) |\phi_i\rangle \langle \phi_i|$ = $(1/n) \sum_{i=1}^{n} |\phi_i\rangle \langle \phi_i|$ = $(1/n) I_n$

$S_{\rm vN}(\rho)$ is a measure of the degree to which ρ is mixed!

Claim 1. Let ρ be a density operator on an *n*-dim vector space \mathcal{H} . Then $S_{vN}(\rho)$ varies from zero, if ρ is a pure density operator state, to $\ln n$, if ρ is a maximally mixed density operator state.

• <u>*Proof*</u>: Suppose ρ is a pure density operator state.

- Then:
$$S_{vN}(\rho) = -\sum_{i=1}^{n} \lambda_i \ln \lambda_i = -\ln(1) = 0$$

• Now Suppose ρ is a maximally mixed density operator state.

- Then:
$$S_{vN}(\rho) = -\sum_{i=1}^{n} \lambda_i \ln \lambda_i = -\sum_{i=1}^{n} (1/n) \ln (1/n)$$

= $-\ln (1/n)$
= $\ln n$ \checkmark The maximum value of S_{vN} !

2. Comparison with S_{Shan}

 $S_{\rm vN}(\rho)$ as a measure of information compression?

• The Shannon Entropy:

$$S_{\rm Shan}(X) = -\sum_i p_i \log_2 p_i$$

- $X = \{x_1, ..., x_n\}$, where x_i is a state produced by a classical information source, and p_i is a probability distribution over such states.
- The von Neumann Entropy:

 $S_{\rm vN}(\rho) = -\sum_i p_i \ln p_i$

- $\rho = -\sum_i p_i |\psi_i\rangle \langle \psi_i |$, where $|\psi_i\rangle$ is a vector state produced by a quantum information source, and p_i is a probability distribution over such states. Specifies the minimal number of bits required to encode the output of a classical information source.

Specifies the minimal number of qubits required to encode the output of a quantum information source.

 $S_{\rm vN}(\rho)$ as a measure of uncertainty?

• The Shannon Entropy:

$$S_{\rm Shan}(X) = -\sum_i p_i \log_2 p_i$$

- $X = \{x_1, ..., x_n\}$, where x_i is a state produced by a classical information source, and p_i is a probability distribution over such states.
- The von Neumann Entropy:

 $S_{\rm vN}(\rho) = -\sum_i p_i \ln p_i$

- $\rho = -\sum_i p_i |\psi_i\rangle \langle \psi_i |$, where $|\psi_i\rangle$ is a vector state produced by a quantum information source, and p_i is a probability distribution over such states. Let $-\log p_i$ be "info gained" upon finding a system to be in a state drawn from a set of states with probabilites p_i .

with outcome x_i .

Expected value of information gained upon measurement of ρ with outcome $|\psi_i\rangle$.

<u>But</u>: $S_{vN}(\rho)$ measures mixedness of ρ . <u>And</u>: Mixedness does not necessarily entail uncertainty...

3. Entanglement Entropy

Def. 3 (*Partial trace*). Let $O_A \otimes O_B$ be an operator on $\mathcal{H}_A \otimes \mathcal{H}_B$, and let $\{|w_{B_i}\rangle\}$ be a basis of \mathcal{H}_B . The **partial trace** $\operatorname{Tr}_B(O_A \otimes O_B)$ of $O_A \otimes O_B$ over \mathcal{H}_B is defined by $\operatorname{Tr}_B(O_A \otimes O_B) \equiv \sum_i \langle w_{B_i} | O_A \otimes O_B | w_{B_i} \rangle$

Traces out the degrees of freedom of subsystem *B*.

• <u>Note</u>. $\operatorname{Tr}_B(O_A \otimes O_B) = \sum_i \langle w_{Bi} | O_A \otimes O_B | w_{Bi} \rangle$

Def. 4 (*Reduced density operator*). Let ρ_{AB} be a density operator for a bipartite system *AB* with subsystems *A* and *B*. The **reduced density operator** for subsystem *A* is defined by $\rho_A \equiv \text{Tr}_B(\rho_{AB})$.

 ρ_A is the A part of ρ_{AB} !

<u>*Example*</u>. Consider the entangled vector state $|\psi_{AB}\rangle = \sqrt{\frac{1}{2}} \{|0_A 0_B\rangle + |1_A 1_B\rangle\}.$

$$\rho_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}|$$

= $\frac{1}{2}\{|0_A 0_B\rangle\langle 0_A 0_B| + |1_A 1_B\rangle\langle 0_A 0_B| + |0_A 0_B\rangle\langle 1_A 1_B| + |1_A 1_B\rangle\langle 1_A 1_B|\}$

 $= \frac{1}{2}I_A$

Def. 4 (*Reduced density operator*). Let ρ_{AB} be a density operator for a bipartite system *AB* with subsystems *A* and *B*. The **reduced density operator** for subsystem *A* is defined by $\rho_A \equiv \text{Tr}_B(\rho_{AB})$.

 ρ_A is the A part of ρ_{AB} !

<u>*Example*</u>. Consider the entangled vector state $|\psi_{AB}\rangle = \sqrt{\frac{1}{2}} \{|0_A 0_B\rangle + |1_A 1_B\rangle\}.$

<u>No ignorance interpretation of ρ_A or ρ_B :</u>

- An ignorance interpretation of ρ_A , ρ_B suggests subsystems A, B are either in vector states $|0\rangle$ or $|1\rangle$.
- <u>But</u>: This would entail ρ_{AB} is $\frac{1}{2}\{|0_A 0_B\rangle\langle 0_A 0_B| + |1_A 1_B\rangle\langle 1_A 1_B|\}$.

Entanglement quantified!

Def. 5 (*Entanglement entropy*). For a bipartite system *AB* with density operator ρ_{AB} , the **entanglement entropy** S_A of subsystem *A* is defined by: $S_A \equiv S_{vN}(\rho_A) = -\text{Tr}(\rho_A \log \rho_A)$

 S_A is a measure of the degree to which the density operator ρ_A is mixed.

But what does this have to do with entanglement?...

Claim 2. Let $\rho_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}|$ be a pure density operator state on a product vector space $\mathcal{H}_A \otimes \mathcal{H}_B$. Then $|\psi_{AB}\rangle$ is an entangled vector state *if and only if* $S_A > 0$ (i.e., ρ_A is mixed).

- <u>*Proof*</u>: " \Leftarrow ". Suppose $|\psi_{AB}\rangle = |\varphi_A \phi_B\rangle$ is a product vector state, where $|\varphi_A\rangle \in \mathcal{H}_A$ and $|\phi_B\rangle \in \mathcal{H}_B$, and let $\{|w_{B_i}\rangle\}$ be a basis of \mathcal{H}_B .
 - <u>Then</u>: $\rho_A = \operatorname{Tr}_B(\rho_{AB}) = \sum_i \langle w_{B_i} | \rho_{AB} | w_{B_i} \rangle$ $= \sum_i \langle w_{B_i} | \varphi_A \phi_B \rangle \langle \varphi_A \varphi_B | w_{B_i} \rangle$ $= |\varphi_A \rangle \langle \varphi_A | \sum_i \langle \phi_B | w_{B_i} \rangle \langle w_{B_i} | \phi_B \rangle$ $\leq \sum_i |w_{B_i} \rangle \langle w_{B_i} | = I_n$ $= |\varphi_A \rangle \langle \varphi_A | \langle \phi_B | \phi_B \rangle = |\varphi_A \rangle \langle \varphi_A |$
 - *Thus*: ρ_A is pure (i.e., not mixed).

<u>So</u>: If ρ_A is mixed, then $|\psi_{AB}\rangle$ is a non-product (i.e., entangled) vector state.

Claim 2. Let $\rho_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}|$ be a pure density operator state on a product vector space $\mathcal{H}_A \otimes \mathcal{H}_B$. Then $|\psi_{AB}\rangle$ is an entangled vector state *if and only if* $S_A > 0$ (i.e., ρ_A is mixed).

• <u>*Proof*</u>: " \Rightarrow ". Let { $|w_{A_i}\rangle$ }, { $|w_{B_i}\rangle$ } be bases for \mathcal{H}_A and \mathcal{H}_B . Then $|\psi_{AB}\rangle$ can be written as $|\psi_{AB}\rangle = \sum_i \alpha_i |w_{A_i}w_{B_i}\rangle$.

- *Strategy*: Let $\{|w_{A_i}\rangle\}$ be an eigenbasis of ρ_A .

We want to show that if ρ_A is pure, then there's only one term in this "biorthogonal expansion".

$$- \underline{Then}: \rho_{A} = \operatorname{Tr}_{B}(\rho_{AB}) = \sum_{i} \langle w_{B_{i}} | \rho_{AB} | w_{B_{i}} \rangle$$

$$= \sum_{i} \langle w_{B_{i}} | \sum_{j} \alpha_{j} | w_{A_{j}} w_{B_{j}} \rangle \sum_{k} \alpha_{k}^{*} \langle w_{A_{k}} w_{B_{k}} | w_{B_{i}} \rangle$$

$$= \sum_{i,j,k} \alpha_{j} \alpha_{k}^{*} | w_{A_{j}} \rangle \langle w_{A_{k}} | \langle w_{B_{i}} | w_{B_{j}} \rangle \langle w_{B_{k}} | w_{B_{i}} \rangle$$

$$= \sum_{i,j} \alpha_{j} \alpha_{i}^{*} | w_{A_{j}} \rangle \langle w_{A_{i}} | \langle w_{B_{i}} | w_{B_{j}} \rangle$$

$$= \sum_{i} \alpha_{i} \alpha_{i}^{*} | w_{A_{i}} \rangle \langle w_{A_{i}} |$$

- If ρ_A is pure, then all the α_i are zero except for one; and this entails $|\psi_{AB}\rangle$ is a product vector state!

<u>So</u>: If $|\psi_{AB}\rangle$ is a non-product (entangled) vector state, then ρ_A is mixed.

Claim 2. Let $\rho_{AB} = |\psi_{AB}\rangle\langle\psi_{AB}|$ be a pure density operator state on a product vector space $\mathcal{H}_A \otimes \mathcal{H}_B$. Then $|\psi_{AB}\rangle$ is an entangled vector state *if and only if* $S_A > 0$ (i.e., ρ_A is mixed).

- <u>So</u>: If a bipartite system is in a pure state, then S_A is a measure of the degree to which the vector state of the system is entangled.
 - <u>More provocatively</u>: S_A is a measure of the degree to which subsystem A is entangled with subsystem B.
 - The more mixed ρ_A is, the greater the entanglement between A and B.

<u>Side note</u>: What if ρ_{AB} is mixed and/or the composite system has more than two subsystems?...

