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1.	Motivation

•	 Recall:	A	density	operator	𝜌	=	∑𝑖𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖|	that	characterizes	an	
ensemble	{|𝜓𝑖⟩,	𝑝𝑖}	of	quantum	vector	states	is	the	correlate	of	a	Gibbs	
distribution	𝜌(𝑥,	𝑡)	that	characterizes	an	ensemble	of	classical	states.

What is the quantum correlate of 𝑆Gibbs?

The ensemble average 
of −𝑘ln𝜌(𝑥,	𝑡)

•	 And:	The	Gibbs	entropy	is	given	by	𝑆Gibbs(𝜌)	=	−𝑘∫Γ𝜌(𝑥,	𝑡)ln𝜌(𝑥,	𝑡)𝑑𝑥

Recall: 𝜌 in QM is an operator; 𝜌(𝑥,	𝑡) 
in classical Stat Mech is a function.
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Def.	1	(von	Neumann	entropy).	The	von	Neumann	entropy	𝑆vN(𝜌)	
of	a	density	operator	state	𝜌	is	defined	by

	𝑆vN(𝜌)	≡	−Tr(𝜌ln𝜌)

•	 Note	1:	What	is	"ln𝜌"? We know what ln𝑥 does to a number 
𝑥, but what does it do to an operator?

-	 Recall:	Can	always	express	𝜌	as	𝜌	=	∑𝑖𝜆𝑖|𝜙𝑖⟩⟨𝜙𝑖|,	where	𝜌|𝜙𝑖⟩	=	𝜆𝑖|𝜙𝑖⟩

- 𝜌 is an operator with 
eigenvalues 𝜆𝑖

- {|𝜙𝑖⟩} is a basis for ℋ
ln𝜌 is an operator with eigenvalues ln𝜆𝑖.

-	 So:			ln𝜌|𝜙𝑖⟩	=	ln𝜆𝑖|𝜙𝑖⟩

John	von	Neumann
(1903-1957)

-	 Let	𝐵	be	an	operator	such	that	𝐵|𝜓𝑖⟩	=	𝑏𝑖|𝜓𝑖⟩.
-	 Let	𝑓(𝑥)	be	a	function	on	the	real	numbers.
-	 Then	𝑓(𝐵)|𝜓𝑖⟩	≡	𝑓(𝑏𝑖)|𝜓𝑖⟩

If 𝐵 is an operator with eigen-
values 𝑏𝑖, then 𝑓(𝐵) is an 
operator with eigenvalues 𝑓(𝑏𝑖).
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Def.	1	(von	Neumann	entropy).	The	von	Neumann	entropy	𝑆vN(𝜌)	
of	a	density	operator	state	𝜌	is	defined	by

	𝑆vN(𝜌)	≡	−Tr(𝜌ln𝜌)

•	 Note	2:	If	𝜌	is	a	density	operator	state	on	an	𝑛-dim	vector	space	ℋ,	
then	the	maximum	value	of	𝑆vN(𝜌)	is	ln𝑛.

John	von	Neumann
(1903-1957)

-	 Solve	for	𝜆∗𝑖:
	 	 𝜆𝑖*	=	𝑒𝛼					⇒				∑𝑛

𝑖=1𝜆𝑖	=	𝑛𝑒𝛼	=	1					⇒				 𝛼	=	ln(1/𝑛)					⇒				 𝜆𝑖*	=	(1/𝑛)

-	Thus:			𝑆vN(𝜆𝑖*)	=	−∑𝑛
𝑖=1(1/𝑛)ln(1/𝑛)	=	−𝑛(1/𝑛)ln(1/𝑛)	=	ln𝑛

-	 Now	recall	(𝑑/𝑑𝜆𝑖)𝑆vN(𝜆∗𝑖)	=	0	for	the	𝜆∗𝑖	that	maximizes	𝑆vN:

	 	 𝑑𝑆vN(𝜆∗𝑖)	=	−∑𝑛
𝑖=1(ln𝜆

∗
𝑖	−	𝛼)𝑑𝜆𝑖	=	0 constrained by ∑𝑛

𝑖=1𝑑𝜆𝑖	=	0

-	 Proof:	Note	first:
		 𝑆vN(𝜌)	=	−Tr(𝜌ln𝜌)	=	−∑𝑛

𝑖=1 ⟨𝜙𝑖|(𝜌ln𝜌)|𝜙𝑖⟩	=	−∑
𝑛
𝑖=1𝜆𝑖ln𝜆𝑖	

{|𝜙𝑖⟩} is an eigenvector basis of 𝜌
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•	 Note	3:	Recall	⟨𝑂⟩𝜌	=	Tr(𝜌𝑂)	is	the	expectation	value	of	the	operator	
𝑂	in	the	density	operator	state	𝜌.

Def.	1	(von	Neumann	entropy).	The	von	Neumann	entropy	𝑆vN(𝜌)	
of	a	density	operator	state	𝜌	is	defined	by

	𝑆vN(𝜌)	≡	−Tr(𝜌ln𝜌)

-	 So:	𝑆vN(𝜌)	is	the	expectation	value	of	the	operator	−ln𝜌	
in	the	density	operator	state	𝜌.

Analogous to ensemble 
average in Gibbs approach!

John	von	Neumann
(1903-1957)
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Def.	2	(Maximally	mixed	density	operator	state).	Let	𝜌	be	a	density	
operator	on	an	𝑛-dim	vector	space	ℋ	with	identify	operator	𝐼𝑛 .	Then	
𝜌	is	maximally	mixed	just	when	it	can	be	expressed	by	𝜌	=	(1/𝑛)𝐼𝑛 .

What does 𝑆vN(𝜌) measure?

•	 Recall:	A	mixed	density	operator	can	be	expressed	by	𝜌	=	∑𝑛
𝑖=1𝜆𝑖|𝜙𝑖⟩⟨𝜙𝑖|	where	

the	|𝜙𝑖⟩	form	a	basis	for	ℋ,	and	∑𝑛
𝑖=1𝜆𝑖	=	1.

-	And:	𝜌	is	pure	just	when	one	𝜆𝑖	is	1	and	all	the	rest	are	0.

•	So:			𝜌max	=	∑𝑛
𝑖=1(1/𝑛)|𝜙𝑖⟩⟨𝜙𝑖|

	 	 =	(1/𝑛)∑𝑛
𝑖=1 |𝜙𝑖⟩⟨𝜙𝑖|

	 	 =	(1/𝑛)𝐼𝑛

•	 Intuition:	The	more	mixed	𝜌	is,	the	"farther	away"	it	is	from	the	pure	case.
-	And:	The	maximum	"distance"	𝜌	is	from	the	pure	case	occurs	when	all	the	𝜆𝑖	
are	equal;	i.e.,	when	𝜆𝑖	=	1/𝑛.
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Claim	1.	Let	𝜌	be	a	density	operator	on	an	𝑛-dim	vector	space	ℋ.	
Then	𝑆vN(𝜌)	varies	from	zero,	if	𝜌	is	a	pure	density	operator	state,	
to	ln𝑛,	if	𝜌	is	a	maximally	mixed	density	operator	state.

•	 Proof:	Suppose	𝜌	is	a	pure	density	operator	state.
-	Then:			𝑆vN(𝜌)	=	−∑𝑛

𝑖=1𝜆𝑖ln𝜆𝑖	=	−ln(1)	=	0

•	 Now	Suppose	𝜌	is	a	maximally	mixed	density	operator	state.
-	Then:			𝑆vN(𝜌)	=	−∑𝑛

𝑖=1𝜆𝑖ln𝜆𝑖	=	−∑
𝑛
𝑖=1(1/𝑛)ln(1/𝑛)

	 	 =	−ln(1/𝑛)
	 	 =	ln𝑛 The maximum value of 𝑆vN!

𝑆vN(𝜌) is a measure of the degree to which 𝜌 is mixed!



𝑆vN(𝜌) as a measure of information compression?

•	 The	Shannon	Entropy:

		 𝑆Shan(𝑋)	=	−∑𝑖𝑝𝑖 log2𝑝𝑖

-	𝑋	=	{𝑥1,	...,	𝑥𝑛},	where	𝑥𝑖	is	a	state	
produced	by	a	classical	information	
source,	and	𝑝𝑖	is	a	probability	
distribution	over	such	states.	

Specifies the minimal number of 
bits required to encode the output 
of a classical information source.

•	 The	von	Neumann	Entropy:

		 𝑆vN(𝜌)	=	−∑𝑖𝑝𝑖 ln𝑝𝑖

-	𝜌	=	−∑𝑖𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖|	,where	|𝜓𝑖⟩	is	a	vector	
state	produced	by	a	quantum	information	
source,	and	𝑝𝑖	is	a	probability	distribution	
over	such	states.	

Specifies the minimal number of 
qubits required to encode the output 
of a quantum information source.
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2.	Comparison	with	𝑆Shan



Let	−log𝑝𝑖	be	"info	gained"	upon	
finding	a	system	to	be	in	a	state	drawn	
from	a	set	of	states	with	probabilites	𝑝𝑖.

But: 𝑆vN(𝜌) measures mixedness of 𝜌.
And: Mixedness does not necessarily 
entail uncertainty...

•	 The	Shannon	Entropy:

		 𝑆Shan(𝑋)	=	−∑𝑖𝑝𝑖 log2𝑝𝑖

-	𝑋	=	{𝑥1,	...,	𝑥𝑛},	where	𝑥𝑖	is	a	state	
produced	by	a	classical	information	
source,	and	𝑝𝑖	is	a	probability	
distribution	over	such	states.	

Expected value of information 
gained upon measurement of 𝑋 
with outcome 𝑥𝑖.

𝑆vN(𝜌) as a measure of uncertainty?

•	 The	von	Neumann	Entropy:

		 𝑆vN(𝜌)	=	−∑𝑖𝑝𝑖 ln𝑝𝑖

-	𝜌	=	−∑𝑖𝑝𝑖 |𝜓𝑖⟩⟨𝜓𝑖|	,where	|𝜓𝑖⟩	is	a	vector	
state	produced	by	a	quantum	information	
source,	and	𝑝𝑖	is	a	probability	distribution	
over	such	states.	

Expected value of information 
gained upon measurement of 𝜌 
with outcome |𝜓𝑖⟩.

8



9

•	 Note.	Tr𝐵(𝑂𝐴⨂𝑂𝐵)	=	∑𝑖⟨𝑤𝐵𝑖|𝑂𝐴⨂𝑂𝐵|𝑤𝐵𝑖⟩

	 	 =	∑𝑖𝑂𝐴⟨𝑤𝐵𝑖|𝑂𝐵|𝑤𝐵𝑖⟩

	 	 =	𝑂𝐴Tr(𝑂𝐵)

3.	Entanglement	Entropy

Def.	3	(Partial	trace).	Let	𝑂𝐴⨂𝑂𝐵	be	an	operator	on	ℋ𝐴⨂ℋ𝐵, 
and let {|𝑤𝐵𝑖⟩} be a basis of ℋ𝐵. The	partial	trace	
Tr𝐵(𝑂𝐴⨂𝑂𝐵)	of	𝑂𝐴⨂𝑂𝐵	over	ℋ𝐵	is	defined	by

		 Tr𝐵(𝑂𝐴⨂𝑂𝐵)	≡	∑𝑖⟨𝑤𝐵𝑖|𝑂𝐴⨂𝑂𝐵|𝑤𝐵𝑖⟩

Traces out the degrees of 
freedom of subsystem 𝐵.

Tr(𝑂𝐵) is a number, so 𝑂𝐴Tr(𝑂𝐵) 
is an operator on ℋ𝐴 !
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Example.	Consider	the	entangled	vector	state	|𝜓𝐴𝐵⟩	=	 ½{|0𝐴0𝐵⟩	+	|1𝐴1𝐵⟩}. 

𝜌𝐴	 =	Tr𝐵(𝜌𝐴𝐵)

𝜌𝐴𝐵	=	|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|
	 =	½{|0𝐴0𝐵⟩⟨0𝐴0𝐵|	+	|1𝐴1𝐵⟩⟨0𝐴0𝐵|	+	|0𝐴0𝐵⟩⟨1𝐴1𝐵|	+	|1𝐴1𝐵⟩⟨1𝐴1𝐵|}

Let {|𝑤𝐵𝑖⟩} be the basis {|0𝐵⟩,	|1𝐵⟩}
=	∑2

𝑖=1 ⟨𝑤𝐵𝑖|𝜌𝐴𝐵|𝑤𝐵𝑖⟩

=	½⟨0𝐵|{|0𝐴0𝐵⟩⟨0𝐴0𝐵|	+	|1𝐴1𝐵⟩⟨0𝐴0𝐵|	+	|0𝐴0𝐵⟩⟨1𝐴1𝐵|	+	|1𝐴1𝐵⟩⟨1𝐴1𝐵|}|0𝐵⟩
		 +	½⟨1𝐵|{|0𝐴0𝐵⟩⟨0𝐴0𝐵|	+	|1𝐴1𝐵⟩⟨0𝐴0𝐵|	+	|0𝐴0𝐵⟩⟨1𝐴1𝐵|	+	|1𝐴1𝐵⟩⟨1𝐴1𝐵|}|1𝐵⟩

=	½{|0𝐴⟩⟨0𝐴|	+	|1𝐴⟩⟨1𝐴|}
=	½𝐼𝐴	

Def.	4	(Reduced	density	operator).	Let	𝜌𝐴𝐵	be	a	density	operator	
for	a	bipartite	system	𝐴𝐵	with	subsystems	𝐴	and	𝐵.	The	reduced	
density	operator	for	subsystem	𝐴	is	defined	by	𝜌𝐴	≡	Tr𝐵(𝜌𝐴𝐵).	

𝜌𝐴 is the 𝐴 part of 𝜌𝐴𝐵!
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Example.	Consider	the	entangled	vector	state	|𝜓𝐴𝐵⟩	=	 ½{|0𝐴0𝐵⟩	+	|1𝐴1𝐵⟩}. 

𝜌𝐴	 =	Tr𝐵(𝜌𝐴𝐵)
	 =	½{|0𝐴⟩⟨0𝐴|	+	|1𝐴⟩⟨1𝐴|}	=	½𝐼𝐴	

Def.	4	(Reduced	density	operator).	Let	𝜌𝐴𝐵	be	a	density	operator	
for	a	bipartite	system	𝐴𝐵	with	subsystems	𝐴	and	𝐵.	The	reduced	
density	operator	for	subsystem	𝐴	is	defined	by	𝜌𝐴	≡	Tr𝐵(𝜌𝐴𝐵).	

𝜌𝐵	 =	Tr𝐴(𝜌𝐴𝐵)
	 =	½{|0𝐵⟩⟨0𝐵|	+	|1𝐵⟩⟨1𝐵|}	=	½𝐼𝐵	

No ignorance interpretation of 𝜌𝐴 or 𝜌𝐵:
- An ignorance interpretation of 𝜌𝐴, 𝜌𝐵 suggests subsystems 𝐴, 𝐵 are either in 

vector states |0⟩ or |1⟩.
- But: This would entail 𝜌𝐴𝐵 is ½{|0𝐴0𝐵⟩⟨0𝐴0𝐵|	+	|1𝐴1𝐵⟩⟨1𝐴1𝐵|}.

𝜌𝐴𝐵	=	|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|
	 =	½{|0𝐴0𝐵⟩⟨0𝐴0𝐵|	+	|1𝐴1𝐵⟩⟨0𝐴0𝐵|	+	|0𝐴0𝐵⟩⟨1𝐴1𝐵|	+	|1𝐴1𝐵⟩⟨1𝐴1𝐵|}

pure state

mixed states

𝜌𝐴 is the 𝐴 part of 𝜌𝐴𝐵!



Entanglement quantified!

Def.	5	(Entanglement	entropy).	For	a	bipartite	system	𝐴𝐵	with	density	
operator	𝜌𝐴𝐵,	the	entanglement	entropy	𝑆𝐴	of	subsystem	𝐴	is	defined	by:	
		 𝑆𝐴	≡	𝑆vN(𝜌𝐴)	=	−Tr(𝜌𝐴log𝜌𝐴)

𝑆𝐴 is a measure of the degree to which the density operator 𝜌𝐴 is mixed.

12

But what does this have to do with entanglement?...



•	 Proof:	"⇐".	Suppose	|𝜓𝐴𝐵⟩	=	|𝜑𝐴𝜙𝐵⟩	is	a	product	vector	state,	where	
|𝜑𝐴⟩	∈	ℋ𝐴	and	|𝜙𝐵⟩	∈	ℋ𝐵,	and	let	{|𝑤𝐵𝑖⟩} be a basis of ℋ𝐵.

Claim	2.	Let	𝜌𝐴𝐵	=	|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|	be	a	pure	density	operator	
state	on	a	product	vector	space	ℋ𝐴⨂ℋ𝐵.	Then	|𝜓𝐴𝐵⟩	is	an	
entangled	vector	state	if	and	only	if	𝑆𝐴	>	0	(i.e.,	𝜌𝐴	is	mixed).
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-	Then:		𝜌𝐴	=	Tr𝐵(𝜌𝐴𝐵)	=	∑𝑖⟨𝑤𝐵𝑖|𝜌𝐴𝐵|𝑤𝐵𝑖⟩

	 	 =	∑𝑖⟨𝑤𝐵𝑖|𝜑𝐴𝜙𝐵⟩⟨𝜑𝐴𝜙𝐵|𝑤𝐵𝑖⟩

	 	 =	|𝜑𝐴⟩⟨𝜑𝐴|∑𝑖⟨𝜙𝐵|𝑤𝐵𝑖⟩⟨𝑤𝐵𝑖|𝜙𝐵⟩

So: If 𝜌𝐴 is mixed, then |𝜓𝐴𝐵⟩ is a non-product (i.e., entangled) vector state.

∑𝑖 |𝑤𝐵𝑖⟩⟨𝑤𝐵𝑖|	=	𝐼𝑛

	 =	|𝜑𝐴⟩⟨𝜑𝐴|⟨𝜙𝐵|𝜙𝐵⟩	=	|𝜑𝐴⟩⟨𝜑𝐴|
-	Thus:	𝜌𝐴	is	pure	(i.e.,	not	mixed).



•	 Proof:	"⇒".	Let		{|𝑤𝐴𝑖⟩},	{|𝑤𝐵𝑖⟩} be bases for ℋ𝐴 and ℋ𝐵.	
Then	|𝜓𝐴𝐵⟩	can	be	written	as	|𝜓𝐴𝐵⟩	=	∑𝑖𝛼𝑖|𝑤𝐴𝑖𝑤𝐵𝑖⟩.
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-	Strategy:	Let	{|𝑤𝐴𝑖⟩}	be	an	eigenbasis	of	𝜌𝐴.

-	Then:		𝜌𝐴	=	Tr𝐵(𝜌𝐴𝐵)	=	∑𝑖⟨𝑤𝐵𝑖|𝜌𝐴𝐵|𝑤𝐵𝑖⟩

	 	 =	∑𝑖⟨𝑤𝐵𝑖|∑𝑗	𝛼𝑗|𝑤𝐴𝑗𝑤𝐵𝑗⟩∑𝑘𝛼
∗
𝑘⟨𝑤𝐴𝑘𝑤𝐵𝑘|𝑤𝐵𝑖⟩

	 	 =	∑𝑖,𝑗,𝑘𝛼𝑗𝛼
∗
𝑘|𝑤𝐴𝑗⟩⟨𝑤𝐴𝑘|⟨𝑤𝐵𝑖|𝑤𝐵𝑗⟩⟨𝑤𝐵𝑘|𝑤𝐵𝑖⟩

	 	 =	∑𝑖,𝑗𝛼𝑗𝛼
∗
𝑖|𝑤𝐴𝑗⟩⟨𝑤𝐴𝑖|⟨𝑤𝐵𝑖|𝑤𝐵𝑗⟩

	 	 =	∑𝑖𝛼𝑖𝛼
∗
𝑖|𝑤𝐴𝑖⟩⟨𝑤𝐴𝑖|

-	 If	𝜌𝐴	is	pure,	then	all	the	𝛼𝑖	are	zero	except	for	one;	and	this	entails	
|𝜓𝐴𝐵⟩	is	a	product	vector	state!

So: If |𝜓𝐴𝐵⟩ is a non-product (entangled) vector state, then 𝜌𝐴 is mixed.

We want to show that if 𝜌𝐴	is 
pure, then there's only one term 
in this "biorthogonal expansion".

Claim	2.	Let	𝜌𝐴𝐵	=	|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|	be	a	pure	density	operator	
state	on	a	product	vector	space	ℋ𝐴⨂ℋ𝐵.	Then	|𝜓𝐴𝐵⟩	is	an	
entangled	vector	state	if	and	only	if	𝑆𝐴	>	0	(i.e.,	𝜌𝐴	is	mixed).



•	So:	If	a	bipartite	system	is	in	a	pure	state,	then	𝑆𝐴	is	a	measure	of	the	degree	
to	which	the	vector	state	of	the	system	is	entangled.

- More provocatively: 𝑆𝐴 is a measure of the degree to which subsystem 𝐴 is 
entangled with subsystem 𝐵.

- The more mixed 𝜌𝐴 is, the greater the entanglement between 𝐴 and 𝐵.

Side note: What if 𝜌𝐴𝐵 is mixed and/or the composite 
system has more than two subsystems?...
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Claim	2.	Let	𝜌𝐴𝐵	=	|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|	be	a	pure	density	operator	
state	on	a	product	vector	space	ℋ𝐴⨂ℋ𝐵.	Then	|𝜓𝐴𝐵⟩	is	an	
entangled	vector	state	if	and	only	if	𝑆𝐴	>	0	(i.e.,	𝜌𝐴	is	mixed).


