10. Entanglement Correlations

1. What is a Common Cause?
2. The CHSH Inequality
3. A Violation of the CHSH Inequality

Let's prove the claim that correlations between some observables in an entangled vector state cannot be due to a common cause.

1. What is a Common Cause?

λ as common cause of A and B

- B is relevant to A in the absence of λ, but irrelevant in its presence.
- Which means: λ screens A off from B.

Example:
$A=$ storm
$B=$ drop in mercury in barometer
$\lambda=$ drop in atmospheric pressure

- Which means: A and B are "conditionally statistically independent" with respect to λ...

Def. 1 (Conditional statistical independence). Observables A and B are conditionally statistically independent in vector state $|\psi\rangle$ with respect to a random variable λ just when

$$
\operatorname{Pr}_{\psi}(a, b \mid A, B, \lambda)=\operatorname{Pr}_{\psi}(a \mid A, \lambda) \operatorname{Pr}_{\psi}(b \mid B, \lambda)
$$

$\left(\begin{array}{l}\text { The joint probability of getting the } \\ \text { value } a \text { of } A \text { and the value } b \text { of } B \\ \text { in vector state }|\psi\rangle \text {, given } \lambda .\end{array}\right)=\left(\begin{array}{l}\text { The probability of getting } \\ \text { the value } a \text { of } A \text { in vector } \\ \text { state }|\psi\rangle \text {, given } \lambda .\end{array}\right) \times\left(\begin{array}{l}\text { The probability of getting } \\ \text { the value } b \text { of } B \text { in vector } \\ \text { state }|\psi\rangle \text {, given } \lambda .\end{array}\right)$

Claim. Conditional statistical independence of A and B with respect to λ is a necessary condition for λ to be a common cause of A and B.

- Which means: If λ is a common cause of A and B, then A and B
 are conditionally statistically independent with respect to λ.

So: If A and B are correlated, and there is no λ such that A and B are conditionally statistically independent with respect to λ, then their correlation cannot be due to a common cause.

Def. 2 (Common cause-violating correlation). The observables represented by A and B exhibit a common cause-violating correlation just when they are correlated and there is no random variable λ such that they are conditionally statistically independent with respect to λ.

- Thus: To show that there can be correlations between observables in an entangled vector state that cannot be due to a common cause, we have to show that there is no random variable λ with respect to which these observables are conditionally statistically independent.

Claim. There are pair-wise correlations in the entangled vector state $\left|\Psi^{-}\right\rangle=$ $\sqrt{1 / 2}\left\{\left|0_{A} 1_{B}\right\rangle-\left|1_{A} 0_{B}\right\rangle\right\}$ between four spin $-1 / 2$ observables such that a particular sum of their expectation values violates a "Bell" inequality that it must satisfy if the correlated observables are conditionally statistically independent.

In other words:
(a) If these correlated observables are conditionally statistically independent, then a particular sum of their expectation values must satisfy a Bell inequality.
(b) This sum does not satisfy the Bell inequality.

So: If we can prove (a) and (b), then these correlations are common cause-violating.

Claim (a) (CHSH inequality). Let $A_{x}, B_{y}, x, y \in\{0,1\}$ be four spin- $1 / 2$ operators that act on 2-dim vector spaces $\mathcal{H}_{A}, \mathcal{H}_{B}$, respectively, with values $a, b \in\{-1,+1\}$, and let $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$. If A_{x}, B_{y} are conditionally statistically independent, then

$$
S \equiv\left\langle A_{0} \otimes B_{0}\right\rangle_{\psi}+\left\langle A_{0} \otimes B_{1}\right\rangle_{\psi}+\left\langle A_{1} \otimes B_{0}\right\rangle_{\psi}-\left\langle A_{1} \otimes B_{1}\right\rangle_{\psi} \leq 2
$$

Proof: Note first that conditional statistical independence of A_{x}, B_{y} requires

So $:\left\langle A_{x} \otimes B_{y}\right\rangle_{\psi}=\sum_{a, b} a b \operatorname{Pr}_{\psi}\left(a, b \mid A_{x}, B_{y}\right)$

$$
\begin{aligned}
& =\sum_{a, b} a b \int d \lambda q(\lambda) \operatorname{Pr}_{\psi}\left(a \mid A_{x}, \lambda\right) \operatorname{Pr}_{\psi}\left(b \mid B_{y}, \lambda\right) \quad \hookleftarrow_{\substack{\text { independence assumption! } \\
\text { conditana statistial }}}^{\text {ind }} \\
& =\int d \lambda q(\lambda) \sum_{a} a \operatorname{Pr}_{\psi}\left(a \mid A_{x}, \lambda\right) \sum_{b} b \operatorname{Pr}_{\psi}\left(b \mid B_{y}, \lambda\right) \\
& =\int d \lambda q(\lambda)\left\langle A_{x}\right\rangle_{\psi, \lambda}\left\langle B_{y}\right\rangle_{\psi, \lambda} \quad \text { where, e.g., }\left\langle A_{x}\right\rangle_{\psi, \lambda} \equiv \sum_{a} a \operatorname{Pr}_{\psi}\left(a \mid A_{x}, \lambda\right)
\end{aligned}
$$

Claim (a) (CHSH inequality). Let $A_{x}, B_{y}, x, y \in\{0,1\}$ be four spin- $1 / 2$ operators that act on 2-dim vector spaces $\mathcal{H}_{A}, \mathcal{H}_{B}$, respectively, with values $a, b \in\{-1,+1\}$, and let $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$. If A_{x}, B_{y} are conditionally statistically independent, then

$$
S \equiv\left\langle A_{0} \otimes B_{0}\right\rangle_{\psi}+\left\langle A_{0} \otimes B_{1}\right\rangle_{\psi}+\left\langle A_{1} \otimes B_{0}\right\rangle_{\psi}-\left\langle A_{1} \otimes B_{1}\right\rangle_{\psi} \leq 2
$$

Proof:

So: If A_{x}, B_{y} are conditionally statistically independent, then

$$
\left\langle A_{x} \otimes B_{y}\right\rangle_{\psi}=\int d \lambda q(\lambda)\left\langle A_{x}\right\rangle_{\psi, \lambda}\left\langle B_{y}\right\rangle_{\psi, \lambda} \hookleftarrow \hookleftarrow \begin{array}{r}
\text { Where, e.g., }\left\langle A_{x}\right\rangle_{\psi, \lambda} \equiv \sum_{a} a \operatorname{Pr}_{\psi}\left(a \mid A_{x}, \lambda\right)= \\
-\operatorname{Pr}_{\psi}\left(-1 \mid A_{x}, \lambda\right)+\operatorname{Pr}_{\psi}\left(+1 \mid A_{x}, \lambda\right)
\end{array}
$$

Thus: $S=\int d \lambda q(\lambda)\left\{\left\langle A_{0}\right\rangle_{\psi, \lambda}\left\langle B_{0}\right\rangle_{\psi, \lambda}+\left\langle A_{0}\right\rangle_{\psi, \lambda}\left\langle B_{1}\right\rangle_{\psi, \lambda}+\left\langle A_{1}\right\rangle_{\psi, \lambda}\left\langle B_{0}\right\rangle_{\psi, \lambda}-\left\langle A_{1}\right\rangle_{\psi, \lambda}\left\langle B_{1}\right\rangle_{\psi, \lambda}\right\}$

$$
\begin{aligned}
& =\int d \lambda q(\lambda)\left\{\left\langle A_{0}\right\rangle_{\psi, \lambda}\left[\left\langle B_{0}\right\rangle_{\psi, \lambda}+\left\langle B_{1}\right\rangle_{\psi, \lambda}\right]+\left\langle A_{1}\right\rangle_{\psi, \lambda}\left[\left\langle B_{0}\right\rangle_{\psi, \lambda}-\left\langle B_{1}\right\rangle_{\psi, \lambda}\right]\right\} \\
& \leq \int d \lambda q(\lambda)\left\{\left|\left\langle B_{0}\right\rangle_{\psi, \lambda}+\left\langle B_{1}\right\rangle_{\psi, \lambda}\right|+\left|\left\langle B_{0}\right\rangle_{\psi, \lambda}-\left\langle B_{1}\right\rangle_{\psi, \lambda}\right|\right\} \hookleftarrow \underset{\substack{\text { since the max value } \\
\text { of }\left\{A_{x} \psi_{\psi, \lambda} \text { is }+1\right.}}{ }
\end{aligned}
$$

- Now note: The maximum value of $\left\langle B_{y}\right\rangle_{\psi, \lambda}$ is +1 , so the maximum value of $\left|\left\langle B_{0}\right\rangle_{\psi, \lambda}+\left\langle B_{1}\right\rangle_{\psi, \lambda}\right|+\left|\left\langle B_{0}\right\rangle_{\psi, \lambda}-\left\langle B_{1}\right\rangle_{\psi, \lambda}\right|$ is 2.
- $\underline{S o}: S \leq 2$!

3. A Violation of the CHSH Inequality

Now we'll show that a particular choice of $A_{0}, A_{1}, B_{0}, B_{1}$ violates the CHSH Inequality with respect to the entangled vector state $\left|\Psi^{-}\right\rangle=\sqrt{1 / 2}\{|01\rangle-|10\rangle\}$.

- Consider the following spin $-1 / 2$ operators:

$$
\begin{array}{ll}
A_{0}=\hat{x} \cdot \vec{\sigma} & A_{1}=\hat{y} \cdot \vec{\sigma} \\
B_{0}=-\sqrt{1 / 2}(\hat{x}+\hat{y}) \cdot \vec{\sigma} & B_{1}=\sqrt{1 / 2}(-\hat{x}+\hat{y}) \cdot \vec{\sigma}
\end{array}
$$

- Note 1: The "vector" $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ encodes the Pauli operators that act on 2 -dim vectors in the following way:

$$
\begin{array}{lll}
\sigma_{x}|0\rangle & =|1\rangle & \\
\sigma_{x}|1\rangle & =|0\rangle \\
\sigma_{y}|0\rangle & =i|1\rangle & \\
\sigma_{y}|1\rangle & =-i|0\rangle \\
\sigma_{z}|0\rangle & =|0\rangle & \\
\sigma_{z}|1\rangle & =-|1\rangle
\end{array}
$$

- Note 2: A_{0} represents the spin- $1 / 2$ observable "spin-along-the-
 \hat{x}-axis", and A_{1} represents "spin-along-the- \hat{y}-axis". The axes of B_{0} and B_{1} are at 45° from the \hat{x} and \hat{y} axes.

Let's explicitly calculate

$$
S=\left\langle A_{0} \otimes B_{0}\right\rangle_{\Psi^{-}}+\left\langle A_{0} \otimes B_{1}\right\rangle_{\Psi^{-}}+\left\langle A_{1} \otimes B_{0}\right\rangle_{\Psi^{-}}-\left\langle A_{1} \otimes B_{1}\right\rangle_{\Psi^{-}}
$$

Calculating $S=\left\langle A_{0} \otimes B_{0}\right\rangle_{\Psi^{-}}+\left\langle A_{0} \otimes B_{1}\right\rangle_{\Psi^{-}}+\left\langle A_{1} \otimes B_{0}\right\rangle_{\Psi^{-}}-\left\langle A_{1} \otimes B_{1}\right\rangle_{\Psi^{-}}$

- $\left\langle A_{0} \otimes B_{0}\right\rangle_{\Psi-}=1 / 2\{\langle 01|-\langle 10|\}\left(A_{0} \otimes B_{0}\right)\{|01\rangle-|10\rangle\}$

$$
\begin{aligned}
& =1 / 2\{\langle 01|-\langle 10|\}[(\hat{x} \cdot \vec{\sigma}) \otimes[-\sqrt{1 / 2}(\hat{x}+\hat{y}) \cdot \vec{\sigma}]]\{|01\rangle-|10\rangle\} \\
& =1 / 2(-\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\left[\sigma_{x} \otimes\left(\sigma_{x}+\sigma_{y}\right)\right]\{|01\rangle-|10\rangle\} \\
& =1 / 2(-\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\left[\left(\sigma_{x} \otimes \sigma_{x}\right)+\left(\sigma_{x} \otimes \sigma_{y}\right)\right]\{|01\rangle-|10\rangle\} \\
& =1 / 2(-\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\{|10\rangle-|01\rangle+[-i|10\rangle-i|01\rangle]\} \\
& =1 / 2(-\sqrt{1 / 2})\{(-1-i)+(-1+i)\}=\sqrt{1 / 2} \\
& \begin{array}{ll}
\sigma_{x}|0\rangle=|1\rangle & \sigma_{x}|1\rangle=|0\rangle \\
\sigma_{y}|0\rangle=i|1\rangle & \sigma_{y}|1\rangle=-i|0\rangle \\
\sigma_{z}|0\rangle=|0\rangle & \sigma_{z}|1\rangle=-|1\rangle
\end{array}
\end{aligned}
$$

- $\left\langle A_{0} \otimes B_{1}\right\rangle_{\Psi^{-}}=1 / 2\{\langle 01|-\langle 10|\}\left(A_{0} \otimes B_{1}\right)\{|01\rangle-|10\rangle\}$

$$
\begin{aligned}
& =1 / 2\{\langle 01|-\langle 10|\}[(\hat{x} \cdot \vec{\sigma}) \otimes[\sqrt{1 / 2}(-\hat{x}+\hat{y}) \cdot \vec{\sigma}]]\{|01\rangle-|10\rangle\} \\
& =1 / 2(\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\left[\sigma_{x} \otimes\left(-\sigma_{x}+\sigma_{y}\right)\right]\{|01\rangle-|10\rangle\} \\
& =1 / 2(\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\left[\left(\sigma_{x} \otimes-\sigma_{x}\right)+\left(\sigma_{x} \otimes \sigma_{y}\right)\right]\{|01\rangle-|10\rangle\} \\
& =1 / 2(\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\{-|10\rangle+|01\rangle+[-i|10\rangle-i|01\rangle]\} \\
& =1 / 2(\sqrt{1 / 2})\{(1-i)-(-1-i)\}=\sqrt{1 / 2}
\end{aligned}
$$

Calculating $S=\left\langle A_{0} \otimes B_{0}\right\rangle_{\Psi^{-}}+\left\langle A_{0} \otimes B_{1}\right\rangle_{\Psi^{-}}+\left\langle A_{1} \otimes B_{0}\right\rangle_{\Psi^{-}}-\left\langle A_{1} \otimes B_{1}\right\rangle_{\Psi^{-}}$

- $\left\langle A_{1} \otimes B_{0}\right\rangle_{\Psi-}=1 / 2\{\langle 01|-\langle 10|\}\left(A_{1} \otimes B_{0}\right)\{|01\rangle-|10\rangle\}$

$$
\begin{aligned}
& =1 / 2\{\langle 01|-\langle 10|\}[(\hat{y} \cdot \vec{\sigma}) \otimes[-\sqrt{1 / 2}(\hat{x}+\hat{y}) \cdot \vec{\sigma}]]\{|01\rangle-|10\rangle\} \\
& =1 / 2(-\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\left[\sigma_{y} \otimes\left(\sigma_{x}+\sigma_{y}\right)\right]\{|01\rangle-|10\rangle\} \\
& =1 / 2(-\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\left[\left(\sigma_{y} \otimes \sigma_{x}\right)+\left(\sigma_{y} \otimes \sigma_{y}\right)\right]\{|01\rangle-|10\rangle\} \\
& =1 / 2(-\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\{i|10\rangle+i|01\rangle+[|10\rangle-|01\rangle] \\
& =1 / 2(-\sqrt{1 / 2})\{(i-1)-(i+1)\}=\sqrt{1 / 2} \\
& \begin{array}{ll}
\sigma_{x}|0\rangle=|1\rangle & \sigma_{x}|1\rangle=|0\rangle \\
\sigma_{y}|0\rangle=i|1\rangle & \sigma_{y}|1\rangle=-i|0\rangle \\
\sigma_{z}|0\rangle=|0\rangle & \sigma_{z}|1\rangle=-|1\rangle
\end{array}
\end{aligned}
$$

- $\left\langle A_{1} \otimes B_{1}\right\rangle_{\Psi_{-}}=1 / 2\{\langle 01|-\langle 10|\}\left(A_{0} \otimes B_{1}\right)\{|01\rangle-|10\rangle\}$

$$
\begin{aligned}
& =1 / 2\{\langle 01|-\langle 10|\}[(\hat{y} \cdot \vec{\sigma}) \otimes[\sqrt{1 / 2}(-\hat{x}+\hat{y}) \cdot \vec{\sigma}]]\{|01\rangle-|10\rangle\} \\
& =1 / 2(\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\left[\sigma_{y} \otimes\left(-\sigma_{x}+\sigma_{y}\right)\right]\{|01\rangle-|10\rangle\} \\
& =1 / 2(\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\left[\left(\sigma_{y} \otimes-\sigma_{x}\right)+\left(\sigma_{y} \otimes \sigma_{y}\right)\right]\{|01\rangle-|10\rangle\} \\
& =1 / 2(\sqrt{1 / 2})\{\langle 01|-\langle 10|\}\{-i|10\rangle-i|01\rangle+[|10\rangle-|01\rangle]\} \\
& =1 / 2(\sqrt{1 / 2})\{(-i-1)-(-i+1)\}=-\sqrt{1 / 2}
\end{aligned}
$$

Calculating $S=\left\langle A_{0} \otimes B_{0}\right\rangle_{\Psi^{-}}+\left\langle A_{0} \otimes B_{1}\right\rangle_{\Psi^{-}}+\left\langle A_{1} \otimes B_{0}\right\rangle_{\Psi^{-}}-\left\langle A_{1} \otimes B_{1}\right\rangle_{\Psi^{-}}$

- So: $S=\left\langle A_{0} \otimes B_{0}\right\rangle_{\Psi^{-}}+\left\langle A_{0} \otimes B_{1}\right\rangle_{\Psi^{-}}+\left\langle A_{1} \otimes B_{0}\right\rangle_{\Psi^{-}}-\left\langle A_{1} \otimes B_{1}\right\rangle_{\Psi^{-}}$

$$
\begin{aligned}
& =\sqrt{1 / 2}+\sqrt{1 / 2}+\sqrt{1 / 2}-\sqrt{1 / 2} \\
& =2 \sqrt{2}>2 \hookleftarrow \text { A violation of the CSHS inequality! }
\end{aligned}
$$

- What this means: In the entangled vector state $\left|\Psi^{-}\right\rangle=\sqrt{1 / 2}\{|01\rangle-|10\rangle\}$, and for our choice of spin- $1 / 2$ observables:

$$
\begin{array}{ll}
A_{0}=\hat{x} \cdot \vec{\sigma} & A_{1}=\hat{y} \cdot \vec{\sigma} \\
B_{0}=-\sqrt{1 / 2}(\hat{x}+\hat{y}) \cdot \vec{\sigma} & B_{1}=\sqrt{1 / 2}(-\hat{x}+\hat{y}) \cdot \vec{\sigma}
\end{array}
$$

A_{0} and B_{0} are correlated, as are A_{0} and B_{1}, and A_{1} and B_{0}, and A_{1} and B_{1}.

- And: These correlations are not conditionally statistically independent (because their expectation values with respect to $\left|\Psi^{-}\right\rangle$violate the CHSH inequality).
- So: These correlations are common-cause violating!

To Sum Up:

- When a bipartite system is in a state represented by the entangled vector $\left|\Psi^{-}\right\rangle=\sqrt{1 / 2}\{|01\rangle-|10\rangle\}$, there are correlations between spin- $1 / 2$ properties of the two subsystems that cannot be due to a common cause.
- And: If the two subsystems are separated by a distance large enough so that a direct cause cannot propagate between them, these correlations cannot be due to a direct cause, either.
- Is there a way to quantify these non-classical entanglement correlations?
- Is there a way to quantify entanglement?
- Yes!
... And it has to do with entropy!

