1. What is a Common Cause?

10. Entanglement Correlations 2.The CHSH Incqualiy

3. A Violation of the CHSH
Inequality

Let's prove the claim that correlations between some observables
in an entangled vector state cannot be due to a common cause.

1. What is a Common Cause?

A B Example:
A = storm
\ / B = drop in mercury in barometer
1 A =drop in atmospheric pressure

A as common cause of A and B

If we didn't know there was a drop in atmospheric
pressure, then a drop in our barometer would be

1 ; / t to wheth t ill develop.
e Bisrelevantto A in the absence of 4, relevant to whether a storm will develop

but irrelevant in its presence. « S /fwe did know that there was a drop in
atmospheric pressure, then this alone would
be relevant to whether a storm will develop.

Which means: A screens A off from B.

e Which means: A and B are "conditionally statistically independent”
with respect to A...




Def. 1 (Conditional statistical independence). Observables A and B are
conditionally statistically independent in vector state |y) with
respect to a random variable A just when

Pr,(a, b|A, B,A) = Pry(a|A,A)Pr,(b|B,A)

The joint probability of getting the The probability of getting The probability of getting
value a of A and the value b of B — | thevaluea of A invector | X | the value b of B in vector
in vector state |y), given A. state |Y), given A. state | ), given A.

Claim. Conditional statistical independence of A
and B with respect to A is a necessary condition
for A to be a common cause of A and B.

Hans Reichenbach

- Which means: If A is a common cause of A and B, then A and B (1891-1953)
are conditionally statistically independent with respect to A.

So: If A and B are correlated, and there is no A such that A and B are
conditionally statistically independent with respect to A, then their correlation
cannot be due to a common cause.



Def. 2 (Common cause-violating correlation). The observables represented
by A and B exhibit a common cause-violating correlation just when they
are correlated and there is no random variable A such that they are
conditionally statistically independent with respect to A.

Thus: To show that there can be correlations between observables in an
entangled vector state that cannot be due to a common cause, we have to
show that there is no random variable A with respect to which these
observables are conditionally statistically independent.




Claim. There are pair-wise correlations in the entangled vector state |Y~) =

V%{|0,415) — |1,05)} between four spin-% observables such that a particular
sum of their expectation values violates a "Bell" inequality that it must satisfy
if the correlated observables are conditionally statistically independent.

In other words:
(a) Ifthese correlated observables are conditionally statistically independent,

then a particular sum of their expectation values must satisfy a Bell
inequality.

(b) This sum does not satisfy the Bell inequality.

So: If we can prove (a) and (b), then these correlations are common
cause-violating.



2. The CHSH lnequality < One type of "Bell" inequality (Clauser, Horne, Shimony, Holt 1969)

Claim (a) (CHSH inequality). LetA,, B, x, y € {0, 1} be four spin-1; operators
that act on 2-dim vector spaces H ,, H 5, respectively, with values a, b € {—1, +1},
and let [¢) € H,® H ;. If A,, B, are conditionally statistically independent, then

S=(A®Bg)y + (A¢®B1)y + (A1 ®Bg)y — (41@B1)y, < 2

Proof: Note first that conditional statistical independence of A,, B, requires
Pry(a, b|Ay, By, A) = Pry(alAy A)Pry(b| By, A)
or  [daq(A)Pry(a,blA,B,,A) = | dAq(A)Pry(alA, A)Pry(b|B,,A)

q(Q) is a probability distribution for the ‘E Left-hand-side is the joint
general case of a continuous range of probability Pry,(a, b|A,, B,)
values of the random varible A

So: (A,®B,)y = Y.apabPry(a,b|A,, B,)
— <= conditional statistical
Za’b abf dAq(4) Prlp(a |4 4) PF¢(b | By A) independence assumption!

= [daq()Y.aPry(al4, 1) Y, bPry(b|B,,2)

= fd/lq (/1) (Ax)l/),/1<By>l/),/1 where, e.g., (A, )y, = ZaaPr¢(a|Ax,/1)



2. The CHSH lnequality < One type of "Bell" inequality (Clauser, Horne, Shimony, Holt 1969)

Claim (a) (CHSH inequality). Let A,, B, x, y € {0, 1} be four spin-%2 operators
that act on 2-dim vector spaces H ,, H 5, respectively, with values a, b € {—1, +1},
and let [¢) € H,® H ;. If A,, B, are conditionally statistically independent, then

S=(A®Bg)y + (A¢®B1)y + (A1 ®Bg)y — (41@B1)y, < 2

Proof:

So: If A,, By are conditionally statistically independent, then

. Where, e.g., (A,)y , = XaaPry(ald,A) =
(@B, = A2 AdyiBylos <= e O

Thus: S = f dAq(A){{Ao)y,2{Bo)y,2 + (Ao)y,{B1)ya + (A1)ya{Bo)y,r — (A1), 2({B1)y,1}
= fdAQ(A){(AO>lP,A[(BO>¢,A + (B1)y,a] + {A1)yal{Bo)y,a — (B1)yal }

< [dagD{1(BoYya+ (Bl + 1{Bodyr — (Bi)pal} <= S(;’:(‘?Zg’;eﬁsai value

- Now note: The maximum value of (B,)y,; is +1, so the maximum value of

|<BO)1/),/1 + (Bl>1p,/1| + |<Bo>¢,,1 - (Bl>¢l,1| is 2.
- So: §< 2!




3. A Violation of the CHSH Inequality

Now we'll show that a particular choice of A,, A4, By, B violates the CHSH
Inequality with respect to the entangled vector state |W~) = v/%{|01) — | 10)}.

e Consider the following spin-12 operators:

- -

A0=A.0' Alzj}.o-

e Note 1: The "vector" ¢ = (o,, g,, 0,) encodes the Pauli
operators that act on 2-dim vectors in the following way:

,?\
o J0)=11)  a1)=0) ;
6,10)=i|1)  o,|1)=—i|0) o
\/g_A N 45
5,100=10)  a,|1)=—|1) S ;
—

e Note 2: A, represents the spin-%2 observable "spin-along-the- —V1%(% + 9)
X-axis", and A, represents "spin-along-the-y-axis". The axes
of By and B, are at 45° from the X and y axes.

Let's explicitly calculate
§=(A)Q@By)y-+ (4@ B )y- + <A1®Bo>lp— - <A1®B1>tp—



Calculating S = (Ay®@ By)y- + (Ay@ B1)y- + (A Q@ By)y- — (A, Q@ B )y-

* (Ao®Bo)y- = V2{(01] — (10[}(40® Bo){|01) — [10)}
= %{(01] = (10]}[(X - ) @[V (% + §) - 6]1{|01) — |10)}
= Y%(—V%){(01] — (10[}[0,® (0, + 0,)]{|01) — |10)}
= %(—V%){(01]| — (10[}[(0:® 0,) + (0:®0,)]{|01) — |10)}
= 1%(—V%){(01| — (10[3{|10) — |01) + [—i|10) — i|01)]}

=%(—VHE{(-1-D+(-1+D)}=V% 0,10y =1) a,1)=0)
0,10y =i[1) o,|1) = —i|0)
6,10)=10) o,|1)=—|1)
e (A)®@ B1)y- = ¥2{(01] — (10[}(4o® B1){|01) — |10)}

= 1%{(01] — (10}[(% - &) ® [V¥2(—% + P) - 6]]{|01) — | 10)}
= % (%){(01] — (10[}[0,® (=0, + 6,)]{|01) — | 10)}

=% (V%){(01] — (10}[(0,® —0,) + (0:®0,)]{|01) — |10)}
=% (%){(01] = (10[}{=]10) + |01) + [-i|10) — i|01)]}
=BER{A-) - (-1-D}=V%



Calculating S = (Ay®@ By)y- + (Ay@ B1)y- + (A Q@ By)y- — (A, Q@ B )y-

* (A1® Bo)w- = %{(01] — (10[}(A:® Bo){|01) — |10)}
= 1%{(01] = (10}[(¥ - &) ®[-V72(X + ) - 7]]{|01) — | 10)}
= % (—V%){(01]| — (10}[0, ® (0, + 0,)]{|01) — | 10)}
= % (—V%){(01]| — (10[}[(0,® 0,) + (0,®0,)]{|01) — | 10)}
= ¥(—V%2){(01] — (10[}{i|10) + i|01) + [|10) — |01)]
=%(—VE){({i—-1) - (+1D}=V"% 0,10)=11) o,1)=10)

0,10y =i|1) a,|1) = —i|0)
0,/0)=10) o,[1)=—[1)
e (A1®B1)y- = %2{(01] — (10[}(4o® B1){|01) — |10)}

= 1{(01] — (10}[(P - &) @ [V¥2(—% + $) - 6]]{|01) — | 10)}
= 1% (V1%){(01]| — (10|}[o,® (—a, + 7,)]{|01) — | 10)}
=1%W%){(01]| — (10]}[(0,® —0,) + (0,87,)]{|01) — |10)}
=% (V¥%2){(01] — (10[}{=i|10) — i|01) + [| 10) — |01)]}
=(VR{(-i-D) - (-i+1D}=—%



CalculatingS = <A0®BO>‘P_ + <A0®B1>Lp— + (A1®B0>tp— — <A1®B1>Lp—

e 50: §=(A;®By)y-+ (4@ B1)y- + {A;®Bp)y- — (A1 Q B1)y-
=V + V% + V% — V%

= /2 AR A violation of the CSHS inequality!

e What this means: In the entangled vector state |¥~) = v/%{|01) — |10)},
and for our choice of spin-%2 observables:

- -

A0=A.0' Alzj}.o-

A, and B, are correlated, as are A, and B4, and A, and B, and A, and B;.

- And: These correlations are not conditionally statistically independent
(because their expectation values with respect to |'\¥~) violate the CHSH

inequality).

- So: These correlations are common-cause violating!

10



To Sum Up:

e When a bipartite system is in a state represented by the entangled vector
|W—) =+/%{|01) — |10)}, there are correlations between spin-%2 properties of
the two subsystems that cannot be due to a common cause.

e And: If the two subsystems are separated by a distance large enough so that a
direct cause cannot propagate between them, these correlations cannot be
due to a direct cause, either.

- Is there a way to quantify these non-classical entanglement correlations?
- Is there a way to quantify entanglement?
- Yes!

... And it has to do with entropy!
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