
09.	Quantum	Mechanics:	Entanglement 1.	Multipartite	Vector	States
2.	Correlations
3.	Entangled	Vector	States

1.	Multipartite	Vector	States

•	 Let	ℋ𝐴,	ℋ𝐵	be	vector	spaces	for	two	quantum	2-state	systems.
-	The	state	space	for	the	combined	"bipartite"	system	is	represented	by	
the	product	vector	space	ℋ𝐴⊗ℋ𝐵.

•	 Suppose	{|0𝐴⟩,	|1𝐴⟩}	is	a	basis	for	ℋ𝐴	and	{|0𝐵⟩,	|1𝐵⟩}	is	a	basis	for	ℋ𝐵.
-	Then:	{|0𝐴⟩|0𝐴⟩,	|0𝐴⟩|1𝐵⟩,	|1𝐴⟩|0𝐵⟩,	|1𝐴⟩|1𝐵⟩}	is	a	basis	for	ℋ𝐴⊗ℋ𝐵.
-	And:	Any	bipartite	state	|𝑄⟩	in	ℋ𝐴⊗ℋ𝐵	can	be	expanded	in	this	basis:
	 	 |𝑄⟩	=	𝑎|0𝐴⟩|0𝐵⟩	+	𝑏|0𝐴⟩|1𝐵⟩	+	𝑐|1𝐴⟩|0𝐵⟩	+	𝑑|1𝐴⟩|1𝐵⟩

Def.	1	(Product/non-product	vector	state).	A	product	vector	
state	in	a	product	vector	space	ℋ𝐴⊗ℋ𝐵	is	a	vector	|𝜓⟩ that	can	
be	written	as	a	product	of	two	vectors	|𝜓⟩	= |𝑣𝐴⟩⨂|𝑣𝐵⟩,	where	
|𝑣𝐴⟩	∈	ℋ𝐴	and	|𝑣𝐵⟩	∈	ℋ𝐵.	A	non-product	vector	in	ℋ𝐴⊗ℋ𝐵	is	a	
vector	that	is	not	a	product	vector.

Entanglement Involves Multipartite States!
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•	 Suppose	|0⟩	and	|1⟩	are	eigenstates	of	Hardness	(|0⟩	=	|hard⟩	and	|1⟩	=	|soft⟩).

Examples:
-	 Non-product:	|Ψ+⟩	=	 ½ {|0𝐴⟩|0𝐵⟩	+	|1𝐴⟩|1𝐵⟩}	

-	Product:
	 |𝑄⟩	=	 ¼{|0𝐴⟩|0𝐵⟩	+	|0𝐴⟩|1𝐵⟩	+	|1𝐴⟩|0𝐵⟩	+	|1𝐴⟩|1𝐵⟩}
	 	 =	 ¼{|0𝐴⟩	+	|1𝐴⟩}{|0⟩2	+	|1⟩2}

	 |𝑄′⟩	=	 ½	{|0𝐴⟩|0𝐵⟩	+	|1𝐴⟩|0𝐵⟩}	=	 ½	{|0𝐴⟩	+	|1𝐴⟩}|0𝐵⟩
	 |𝑄″⟩ =	|0𝐴⟩|0𝐵⟩

According	to	the	Eigenvalue-Eigenvector	Rule:
•	 In	vector	states	|Ψ+⟩	and	|𝑄⟩,	both	electrons	
have	no	determinate	Hardness	value.

Both are in superposed states
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Electron 𝐴 is in a 
superposed state

•	 In	vector	state	|𝑄′⟩,	electron	 𝐴	has	no	determinate	
Hardness	value,	but	electron	𝐵	does	(i.e.,	hard).

•	 In	state	|𝑄″⟩,	both	electrons	have	determinate	
Hardness	values.



According	to	the	Projection	Postulate:
•	 In	the	non-product	state	|Ψ+⟩,	when	a	measurement	is	
performed	on	electron	𝐴,	its	state	collapses	(to	either	|0𝐴⟩	or	
|1𝐴⟩),	and	this	instantaneously	affects	the	state	of	electron	𝐵!

•	 Suppose	|0⟩	and	|1⟩	are	eigenstates	of	Hardness	(|0⟩	=	|hard⟩	and	|1⟩	=	|soft⟩).

Spooky action 
at a distance?

Can this be 
detected?
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•	 In	any	of	the	product	states,	a	measurement	performed	on	
electron	𝐴	will	not	affect	the	state	of	electron	𝐵.

Examples:
-	 Non-product:	|Ψ+⟩	=	 ½ {|0𝐴⟩|0𝐵⟩	+	|1𝐴⟩|1𝐵⟩}	

-	Product:
	 |𝑄⟩	=	 ¼{|0𝐴⟩|0𝐵⟩	+	|0𝐴⟩|1𝐵⟩	+	|1𝐴⟩|0𝐵⟩	+	|1𝐴⟩|1𝐵⟩}
	 	 =	 ¼{|0𝐴⟩	+	|1𝐴⟩}{|0⟩2	+	|1⟩2}

	 |𝑄′⟩	=	 ½	{|0𝐴⟩|0𝐵⟩	+	|1𝐴⟩|0𝐵⟩}	=	 ½	{|0𝐴⟩	+	|1𝐴⟩}|0𝐵⟩
	 |𝑄″⟩ =	|0𝐴⟩|0𝐵⟩



Entanglement Involves Correlations!

•	 Idea:	When	a	bipartite	system	is	in	an	engangled	vector	state,	its	subsystems	
can	have	properties	that	are	correlated	in	a	non-classical	way.

Can't be explained 
by a direct cause!

Can't be explained by 
a common cause!

•	 Quantum	Information	Theory:	How	to	exploit	entanglement	correlations	to	
solve	computational	problems.

Task #1: How can we represent correlated observables with 
respect to vector states?

Task #2: How can we represent correlations that cannot be 
due to either a direct cause or a common cause?
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2.	Correlations	in	Vector	States



Def.	2	(Expectation	value	for	vector	state).	The	expectation	value	⟨𝑂⟩𝜓	of	an	
observable	𝑂	with	respect	to	a	vector	state	|𝜓⟩	is	given	by	⟨𝑂⟩𝜓	≡	⟨𝜓|𝑂|𝜓⟩.

⟨𝑏𝑗|𝑏𝑖⟩	=	1	for	𝑖	=	𝑗,	and	0	otherwise.
𝛼*𝑖𝛼𝑖	= |𝛼𝑖|2	=	Pr|𝜓⟩(𝑏𝑖|𝐵)

•	 Idea:	⟨𝑂⟩𝜓	is	the	average	value	of	𝑂	in	the	vector	state	|𝜓⟩.

-	 Suppose:	The	observable	is	represented	by	operator	𝐵	with	eigenvectors	|𝑏𝑖⟩	
and	eigenvalues	𝑏𝑖,	and	let	|𝜓⟩	=	∑𝑖𝛼𝑖|𝑏𝑖⟩,	⟨𝜓|	=	∑𝑗𝛼*𝑗 ⟨𝑏𝑗|.

The average value of the set of values {𝑏1,	...,	𝑏𝑛} with the Born 
probabilities {Pr|𝜓⟩(𝑏1|𝐵), ..., Pr|𝜓⟩(𝑏𝑛|𝐵)} assigned to its members.

⟨𝐵⟩𝜓	=	⟨𝜓|𝐵|𝜓⟩	=	∑𝑗𝛼*𝑗 ⟨𝑏𝑗|𝐵	∑𝑖𝛼𝑖|𝑏𝑖⟩

-	 Then:
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=	∑𝑖, 𝑗𝑏𝑖𝛼*𝑗𝛼𝑖⟨𝑏𝑗|𝑏𝑖⟩

=	∑𝑖𝑏𝑖Pr|𝜓⟩(𝑏𝑖|𝐵) 



•	 Idea:	⟨𝑂⟩𝜌	is	the	average	value	of	𝑂	in	density	operator	state	𝜌.

Def.	3	(Expectation	value	for	density	operator	state).	The	
expectation	value	⟨𝑂⟩𝜌	of	an	observable	𝑂	with	respect	
to	a	density	operator	state	𝜌	is	given	by	⟨𝑂⟩𝜌	≡	Tr(𝜌𝑂).

-	 Then:

	 Tr(𝜌𝐵)	=	∑𝑖 ⟨𝑏𝑖|𝜌𝐵|𝑏𝑖⟩
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-	 So:	⟨𝑂⟩𝜌	=	∑𝑗𝑝𝑗⟨𝑂⟩𝜓𝑗 The weighted sum of the average value of 𝑂 in 
each vector state |𝜓𝑗⟩ of an ensemble {|𝜓𝑗⟩,	𝑝𝑗}.

-	 Suppose:	The	observable	is	represented	by	operator	𝐵	with	eigenvectors	|𝑏𝑖⟩	and	
eigenvalues	𝑏𝑖,	and	let	|𝜓𝑗⟩	=	∑𝑘𝛼𝑗𝑘|𝑏𝑘⟩,	and	𝜌	=	∑𝑗𝑝𝑗|𝜓𝑗⟩⟨𝜓𝑗|	=	∑𝑗,𝑘,𝑙𝑝𝑗𝛼𝑗𝑘𝛼

∗
𝑗𝑙|𝑏𝑘⟩⟨𝑏𝑙|.

⟨𝑏𝑖|𝑏𝑘⟩	=	1	for	𝑖	=	𝑘,	and	0	otherwise.

⟨𝑏𝑙|𝑏𝑖⟩	=	1	for	𝑙	=	𝑖,	and	0	otherwise.

𝛼𝑗𝑖𝛼∗𝑗𝑖	= |𝛼𝑗|2	=	Pr|𝜓𝑗⟩(𝑏𝑖|𝐵)

=	∑𝑖 ,𝑗,𝑘,𝑙𝑝𝑗𝑏𝑖𝛼𝑗𝑘𝛼
∗
𝑗𝑙á𝑏𝑖|𝑏𝑘⟩⟨𝑏𝑙|𝑏𝑖⟩

=	∑𝑗𝑝𝑗∑𝑖𝑏𝑖𝛼𝑗𝑖𝛼
∗
𝑗𝑖

=	∑𝑗𝑝𝑗∑𝑖𝑏𝑖Pr|𝜓𝑗⟩(𝑏𝑖|𝐵)

=	∑𝑗𝑝𝑗⟨𝑂⟩𝜓𝑗



Def.	4	(Product	operator).	Let	𝑂𝐴	and	𝑂𝐵	be	operators	on	vector	spaces	
ℋ𝐴	and	ℋ𝐵,	and	let	|𝜓𝐴⟩	∈	ℋ𝐴,	|𝜓𝐵⟩	∈	ℋ𝐵,	and	|𝜓𝐴⨂𝜓𝐵⟩	∈	ℋ𝐴⨂ℋ𝐵.	The	
product	operator	𝑂𝐴⨂𝑂𝐵	is	defined	by
		 (𝑂𝐴⨂𝑂𝐵)|𝜓𝐴⨂𝜓𝐵⟩	≡	𝑂𝐴|𝜓𝐴⟩	⨂	𝑂𝐵|𝜓𝐵⟩

•	 Idea:	The	"𝐴"	part	of	𝑂𝐴⨂𝑂𝐵	only	acts	on	the	"𝐴"	part	of	|𝜓𝐴⨂𝜓𝐵⟩,	and	
the	"𝐵"	part	of	𝑂𝐴⨂𝑂𝐵	only	acts	on	the	"𝐵"	part	of	|𝜓𝐴⨂𝜓𝐵⟩.

•	 𝑂𝐴	and	𝑂𝐵	represent	observables	(properties)	of	the	two	subsystems	of	
a	composite	bipartite	system.

What does it mean to say these observables are correlated 
with each other?
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Def.	5	(Correlated	observables	for	vector	states).	Let	𝑂𝐴	and	𝑂𝐵	be	
operators	on	vector	spaces	ℋ𝐴	and	ℋ𝐵	with	identity	operators	𝐼𝐴	and	𝐼𝐵,	
and	let	|𝜓⟩	∈	ℋ𝐴⨂ℋ𝐵.	Then	the	observables	represented	by	𝑂𝐴	and	𝑂𝐵	
are	correlated	in	vector	state	|𝜓⟩	just	when
		 ⟨𝑂𝐴⨂𝑂𝐵⟩𝜓	≠	⟨𝑂𝐴⨂𝐼𝐵⟩𝜓⟨𝐼𝐴⨂𝑂𝐵⟩𝜓

•	 Motivation:	The	observables	𝑂𝐴	and	𝑂𝐵	are	correlated	in	the	sense	
of	Def.	4	if	and	only	if	they	are	statistically	dependent;	i.e.,

		 Pr|𝜓⟩(𝑎𝑖,𝑏𝑗|𝑂𝐴,𝑂𝐵)	≠	Pr|𝜓⟩(𝑎𝑖|𝑂𝐴)Pr|𝜓⟩(𝑏𝑗|𝑂𝐵),					for	all	𝑖,	𝑗 

The expectation value of 𝑂𝐴⨂𝑂𝐵 
cannot be factored into a product of 
the expectation values of its "parts"

≠ ×
The joint probability of getting 
the value 𝑎𝑖	of	𝑂𝐴	and the 
value 𝑏𝑗	of	𝑂𝐵	in the state	|𝜓⟩ 

The probability of 
getting the value 𝑎𝑖	
of	𝑂𝐴	in the state	|𝜓⟩ 

The probability of 
getting the value 𝑏𝑗	
of	𝑂𝐵	in the state	|𝜓⟩ 

Task #1 accomplished!
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Claim.	Observables	represented	by	the	operators	𝑂𝐴	and	𝑂𝐵	that	
appear	in	a	product	operator	𝑂𝐴⨂𝑂𝐵	are	uncorrelated	in	a	
product	vector	state	and	correlated	in	a	non-product	vector	state.  

•	 Example:	Let	|𝜓prod⟩	=	|𝜓𝐴𝜓𝐵⟩	and	|𝜓non⟩	=	 ½{|𝜓𝐴𝜙𝐵⟩	+	|𝜙𝐴𝜓𝐵⟩} be	a	product	
vector	and	a	non-product	vector	in	ℋ𝐴⨂ℋ𝐵.

⟨𝑂𝐴⨂𝑂𝐵⟩𝜓prod	 =	⟨𝜓𝐴𝜓𝐵|(𝑂𝐴⨂𝑂𝐵)|𝜓𝐴𝜓𝐵⟩

No correlation between 𝑂𝐴 and 𝑂𝐵 in |𝜓prod⟩!
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def. of product operator
	 =	⟨𝜓𝐴𝜓𝐵|(𝑂𝐴|𝜓𝐴⟩⨂𝑂𝐵|𝜓𝐵⟩)

def. of product space inner-product 	 =	⟨𝜓𝐴|𝑂𝐴|𝜓𝐴⟩⟨𝜓𝐵|𝑂𝐵|𝜓𝐵⟩
insertion of identity

	 =	⟨𝜓𝐴|𝑂𝐴|𝜓𝐴⟩(⟨𝜓𝐵|𝐼𝐵|𝜓𝐵⟩)(⟨𝜓𝐴|𝐼𝐴|𝜓𝐴⟩)⟨𝜓𝐵|𝑂𝐵|𝜓𝐵⟩

rearranging…	 =	⟨𝜓𝐴𝜓𝐵|(𝑂𝐴⨂𝐼𝐵)|𝜓𝐴𝜓𝐵⟩ ⟨𝜓𝐴𝜓𝐵|(𝐼𝐴⨂𝑂𝐵)|𝜓𝐴𝜓𝐵⟩

	 =	⟨𝑂𝐴⨂𝐼𝐵⟩𝜓prod ⟨𝐼𝐴⨂𝑂𝐵⟩𝜓prod



Claim.	Observables	represented	by	the	operators	𝑂𝐴	and	𝑂𝐵	that	
appear	in	a	product	operator	𝑂𝐴⨂𝑂𝐵	are	uncorrelated	in	a	
product	vector	state	and	correlated	in	a	non-product	vector	state.  

•	 Example:	Let	|𝜓prod⟩	=	|𝜓𝐴𝜓𝐵⟩	and	|𝜓non⟩	=	 ½{|𝜓𝐴𝜙𝐵⟩	+	|𝜙𝐴𝜓𝐵⟩} be	a	product	
vector	and	a	non-product	vector	in	ℋ𝐴⨂ℋ𝐵.

⟨𝑂𝐴⨂𝑂𝐵⟩𝜓non	 =	½{⟨𝜓𝐴𝜙𝐵|	+	⟨𝜙𝐴𝜓𝐵|}(𝑂𝐴⨂𝑂𝐵){|𝜓𝐴𝜙𝐵⟩	+	|𝜙𝐴𝜓𝐵⟩}
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=	½{⟨𝑂𝐴⟩𝜓𝐴⟨𝑂𝐵⟩𝜙𝐵	+	⟨𝜙𝐴|𝑂𝐴|𝜓𝐴⟩⟨𝜓𝐵|𝑂𝐵|𝜙𝐵⟩	+	⟨𝜓𝐴|𝑂𝐴|𝜙𝐴⟩⟨𝜙𝐵|𝑂𝐵|𝜓𝐵⟩

	 	 	 +	⟨𝑂𝐴⟩𝜙𝐴⟨𝑂𝐵⟩𝜓𝐵}

⟨𝑂𝐴⨂𝐼𝐵⟩𝜓non ⟨𝐼𝐴⨂𝑂𝐵⟩𝜓non	

	 =	¼{⟨𝑂𝐴⟩𝜓𝐴⟨𝑂𝐵⟩𝜙𝐵	+	⟨𝑂𝐴⟩𝜓𝐴⟨𝑂𝐵⟩𝜓𝐵	+	⟨𝑂𝐴⟩𝜙𝐴⟨𝑂𝐵⟩𝜙𝐵	+	⟨𝑂𝐴⟩𝜙𝐴⟨𝑂𝐵⟩𝜓𝐵} 

Correlation between 𝑂𝐴 and 𝑂𝐵 in |𝜓non⟩!

So:	⟨𝑂𝐴⨂𝑂𝐵⟩𝜓non	≠	⟨𝑂𝐴⨂𝐼𝐵⟩𝜓non ⟨𝐼𝐴⨂𝑂𝐵⟩𝜓non



•	 Direct	cause	explanation?
-	 No!	Projection	Postulate	entails	that	when	a	measurement	is	
performed	on	electron	𝐴,	its	state	collapses	(to	either	|0𝐴⟩	or	|1𝐴⟩),	
and	this	instantaneously	affects	the	state	of	electron	𝐵!

•	 In	|𝜓non⟩	=	 ½{|0𝐴1𝐵⟩	−	|1𝐴0𝐵⟩},	there	is	a	correlation	between	the	Hardness	
properties	of	electron	𝐴	&	electron	𝐵:	When	one	is	hard,	the	other	is	soft.

•	 Common	cause	explanation?
-	 No!	Can	show	that	in	|𝜓non⟩	there	are	pair-wise	correlations	between	four	
spin-½	observables	such	that	a	particular	sum	of	their	expectation	values	
violates	a	"Bell"	inequality	that	it	must	satisfy	if	the	correlations	are	due	
to	a	common	cause.

So: Non-product vector states exhibit correlations between observables.
Can these correlations be explained by direct causes and/or common causes?
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A bit messy to demonstrate! Ultimately due to the 
way we represent expectation values of bipartite 
properties in a non-product vector state.

3.	Entangled	Vector	States



•	 Classical	correlations	can	always	be	explained	by	a	direct	cause	and/or	a	
common	cause.

So: Non-product vector states exhibit correlations between observables that 
cannot be explained either by a direct cause or a common cause.

Def.	6	(Entangled	vector	state).	A	state	represented	by	a	multipartite	
vector	|𝜓⟩	is	entangled	just	when	|𝜓⟩	is	a	non-product	vector	state. 

•	 This	suggests	that	the	correlations	exhibited	by	non-product	vector	states	
are	unique	to	quantum	mechanics.
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- Call them "entanglement correlations".
- Call the vector states in quantum mechanics that support 

them, "entangled vector states".


