09. Quantum Mechanics: Entanglement

1. Multipartite Vector States

Entanglement Involves Multipartite States!

- Let $\mathcal{H}_{A}, \mathcal{H}_{B}$ be vector spaces for two quantum 2 -state systems.
- The state space for the combined "bipartite" system is represented by the product vector space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
- Suppose $\left\{\left|0_{A}\right\rangle,\left|1_{A}\right\rangle\right\}$ is a basis for \mathcal{H}_{A} and $\left\{\left|0_{B}\right\rangle,\left|1_{B}\right\rangle\right\}$ is a basis for \mathcal{H}_{B}.
- Then: $\left\{\left|0_{A}\right\rangle\left|0_{A}\right\rangle,\left|0_{A}\right\rangle\left|1_{B}\right\rangle,\left|1_{A}\right\rangle\left|0_{B}\right\rangle,\left|1_{A}\right\rangle\left|1_{B}\right\rangle\right\}$ is a basis for $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.
- And: Any bipartite state $|Q\rangle$ in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ can be expanded in this basis:

$$
|Q\rangle=a\left|0_{A}\right\rangle\left|0_{B}\right\rangle+b\left|0_{A}\right\rangle\left|1_{B}\right\rangle+c\left|1_{A}\right\rangle\left|0_{B}\right\rangle+d\left|1_{A}\right\rangle\left|1_{B}\right\rangle
$$

Def. 1 (Product/non-product vector state). A product vector state in a product vector space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is a vector $|\psi\rangle$ that can be written as a product of two vectors $|\psi\rangle=\left|v_{A}\right\rangle \otimes\left|v_{B}\right\rangle$, where $\left|v_{A}\right\rangle \in \mathcal{H}_{A}$ and $\left|v_{B}\right\rangle \in \mathcal{H}_{B}$. A non-product vector in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is a vector that is not a product vector.

Examples:

- Non-product: $\left|\Psi^{+}\right\rangle=\sqrt{1 / 2}\left\{\left|0_{A}\right\rangle\left|0_{B}\right\rangle+\left|1_{A}\right\rangle\left|1_{B}\right\rangle\right\}$
- Product:

$$
\begin{aligned}
|Q\rangle & =\sqrt{1 / 4}\left\{\left|0_{A}\right\rangle\left|0_{B}\right\rangle+\left|0_{A}\right\rangle\left|1_{B}\right\rangle+\left|1_{A}\right\rangle\left|0_{B}\right\rangle+\left|1_{A}\right\rangle\left|1_{B}\right\rangle\right\} \\
& =\sqrt{1 / 4}\left\{\left|0_{A}\right\rangle+\left|1_{A}\right\rangle\right\}\left\{|0\rangle_{2}+|1\rangle_{2}\right\} \\
\left|Q^{\prime}\right\rangle & =\sqrt{1 / 2}\left\{\left|0_{A}\right\rangle\left|0_{B}\right\rangle+\left|1_{A}\right\rangle\left|0_{B}\right\rangle\right\}=\sqrt{1 / 2}\left\{\left|0_{A}\right\rangle+\left|1_{A}\right\rangle\right\}\left|0_{B}\right\rangle \\
\left|Q^{\prime \prime}\right\rangle & =\left|0_{A}\right\rangle\left|0_{B}\right\rangle
\end{aligned}
$$

- Suppose $|0\rangle$ and $|1\rangle$ are eigenstates of Hardness $(|0\rangle=\mid$ hard \rangle and $|1\rangle=|s o f t\rangle)$. According to the Eigenvalue-Eigenvector Rule:
- In vector states $\left|\Psi^{+}\right\rangle$and $|Q\rangle$, both electrons
 have no determinate Hardness value.
- In vector state $\left|Q^{\prime}\right\rangle$, electron A has no determinate Hardness value, but electron B does (i.e., hard).
- In state $\left|Q^{\prime \prime}\right\rangle$, both electrons have determinate Hardness values.

Examples:

- Non-product: $\left|\Psi^{+}\right\rangle=\sqrt{1 / 2}\left\{\left|0_{A}\right\rangle\left|0_{B}\right\rangle+\left|1_{A}\right\rangle\left|1_{B}\right\rangle\right\}$
- Product:

$$
\begin{aligned}
|Q\rangle & =\sqrt{1 / 4}\left\{\left|0_{A}\right\rangle\left|0_{B}\right\rangle+\left|0_{A}\right\rangle\left|1_{B}\right\rangle+\left|1_{A}\right\rangle\left|0_{B}\right\rangle+\left|1_{A}\right\rangle\left|1_{B}\right\rangle\right\} \\
& =\sqrt{1 / 4}\left\{\left|0_{A}\right\rangle+\left|1_{A}\right\rangle\right\}\left\{|0\rangle_{2}+|1\rangle_{2}\right\} \\
\left|Q^{\prime}\right\rangle & =\sqrt{1 / 2}\left\{\left|0_{A}\right\rangle\left|0_{B}\right\rangle+\left|1_{A}\right\rangle\left|0_{B}\right\rangle\right\}=\sqrt{1 / 2}\left\{\left|0_{A}\right\rangle+\left|1_{A}\right\rangle\right\}\left|0_{B}\right\rangle \\
\left|Q^{\prime \prime}\right\rangle & =\left|0_{A}\right\rangle\left|0_{B}\right\rangle
\end{aligned}
$$

- Suppose $|0\rangle$ and $|1\rangle$ are eigenstates of Hardness $(|0\rangle=\mid$ hard \rangle and $|1\rangle=|s o f t\rangle)$. According to the Projection Postulate:
- In the non-product state $\left|\Psi^{+}\right\rangle$, when a measurement is performed on electron A, its state collapses (to either $\left|0_{A}\right\rangle$ or
 $\left.\left|1_{A}\right\rangle\right)$, and this instantaneously affects the state of electron B!
- In any of the product states, a measurement performed on electron A will not affect the state of electron B.

2. Correlations in Vector States

Entanglement Involves Correlations!

- Idea: When a bipartite system is in an engangled vector state, its subsystems can have properties that are correlated in a non-classical way.

Can't be explained by a direct cause!

Can't be explained by a common cause!

- Quantum Information Theory: How to exploit entanglement correlations to solve computational problems.

Task \#1: How can we represent correlated observables with respect to vector states?

Task \#2: How can we represent correlations that cannot be due to either a direct cause or a common cause?

Def. 2 (Expectation value for vector state). The expectation value $\langle O\rangle_{\psi}$ of an observable O with respect to a vector state $|\psi\rangle$ is given by $\langle O\rangle_{\psi} \equiv\langle\psi| O|\psi\rangle$.

- Idea: $\langle O\rangle_{\psi}$ is the average value of O in the vector state $|\psi\rangle$.
- Suppose: The observable is represented by operator B with eigenvectors $\left|b_{i}\right\rangle$ and eigenvalues b_{i}, and let $|\psi\rangle=\sum_{i} \alpha_{i}\left|b_{i}\right\rangle,\langle\psi|=\sum_{j} \alpha_{j}^{*}\left\langle b_{j}\right|$.
- Then:

$$
\begin{aligned}
\langle B\rangle_{\psi}=\langle\psi| B|\psi\rangle & =\sum_{j} \alpha_{j}^{*}\left\langle b_{j}\right| B \sum_{i} \alpha_{i}\left|b_{i}\right\rangle \\
& =\sum_{i, j} b_{i} \alpha_{j}^{*} \alpha_{i}\left\langle b_{j} \mid b_{i}\right\rangle \stackrel{S}{\left\langle b_{j} \mid b_{i}\right\rangle=1 \text { for } i=j, \text { and } 0 \text { otherwise. }} \begin{array}{l}
\alpha_{i}^{*} \alpha_{i}=\left|\alpha_{i}\right|^{2}=\operatorname{Pr}_{|\psi\rangle\rangle}\left(b_{i} \mid B\right) \\
\\
\end{array}=\sum_{i} b_{i} \operatorname{Pr}_{|\psi\rangle}\left(b_{i} \mid B\right)
\end{aligned}
$$

The average value of the set of values $\left\{b_{1}, \ldots, b_{n}\right\}$ with the Born probabilities $\left\{\operatorname{Pr}_{|\psi\rangle}\left(b_{1} \mid B\right), \ldots, \operatorname{Pr}_{|\psi\rangle}\left(b_{n} \mid B\right)\right\}$ assigned to its members.

Def. 3 (Expectation value for density operator state). The expectation value $\langle O\rangle_{\rho}$ of an observable O with respect to a density operator state ρ is given by $\langle O\rangle_{\rho} \equiv \operatorname{Tr}(\rho O)$.

- Idea: $\langle 0\rangle_{\rho}$ is the average value of O in density operator state ρ.
- So: $\langle 0\rangle_{\rho}=\sum_{j} p_{j}\langle O\rangle_{\psi_{j}} \longleftarrow$ The weighted sum of the average value of O in each vector state $\left|\psi_{j}\right\rangle$ of an ensemble $\left\{\left|\psi_{j}\right\rangle, p_{j}\right\}$.
- Suppose: The observable is represented by operator B with eigenvectors $\left|b_{i}\right\rangle$ and eigenvalues b_{i}, and let $\left|\psi_{j}\right\rangle=\sum_{k} \alpha_{j k}\left|b_{k}\right\rangle$, and $\rho=\sum_{j} p_{j}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right|=\sum_{j, k, l} p_{j} \alpha_{j k} \alpha_{j l}^{*}\left|b_{k}\right\rangle\left\langle b_{l}\right|$.
- Then:

$$
\begin{aligned}
\operatorname{Tr}(\rho B) & =\sum_{i}\left\langle b_{i}\right| \rho B\left|b_{i}\right\rangle \\
& =\sum_{i, j, k l l} p_{j} b_{i} \alpha_{j k} \alpha_{j l}^{*}\left\langle b_{i} \mid b_{k}\right\rangle\left\langle b_{l} \mid b_{i}\right\rangle \stackrel{~}{\langle }\left\langle\begin{array}{l}
\left\langle b_{i} \mid b_{k}\right\rangle=1 \\
\left\langle b_{l} \mid b_{i}\right\rangle=1 \text { for } i=k, \text { and } 0 \text { otherwise. } \\
\\
\end{array}=\sum_{j} p_{j} \sum_{i} b_{i} \alpha_{j i} \alpha_{j i}^{*} \text { and } 0\right. \text { otherwise. } \\
& =\sum_{j} p_{j} \sum_{i} b_{i} \operatorname{Pr}_{\left|\psi_{j}\right\rangle}\left(b_{i} \mid B\right) \\
& =\sum_{j} p_{j}\langle O\rangle_{\psi_{j}} \alpha_{j i}^{*}=\left|\alpha_{j}\right|^{2}=\operatorname{Pr}_{\left|\psi_{j}\right\rangle}\left(b_{i} \mid B\right)
\end{aligned}
$$

Def. 4 (Product operator). Let O_{A} and O_{B} be operators on vector spaces \mathcal{H}_{A} and \mathcal{H}_{B}, and let $\left|\psi_{A}\right\rangle \in \mathcal{H}_{A},\left|\psi_{B}\right\rangle \in \mathcal{H}_{B}$, and $\left|\psi_{A} \otimes \psi_{B}\right\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$. The product operator $O_{A} \otimes O_{B}$ is defined by

$$
\left(O_{A} \otimes O_{B}\right)\left|\psi_{A} \otimes \psi_{B}\right\rangle \equiv O_{A}\left|\psi_{A}\right\rangle \otimes O_{B}\left|\psi_{B}\right\rangle
$$

- Idea: The " A " part of $O_{A} \otimes O_{B}$ only acts on the " A " part of $\left|\psi_{A} \otimes \psi_{B}\right\rangle$, and the " B " part of $O_{A} \otimes O_{B}$ only acts on the " B " part of $\left|\psi_{A} \otimes \psi_{B}\right\rangle$.
- O_{A} and O_{B} represent observables (properties) of the two subsystems of a composite bipartite system.

What does it mean to say these observables are correlated with each other?

Def. 5 (Correlated observables for vector states). Let O_{A} and O_{B} be operators on vector spaces \mathcal{H}_{A} and \mathcal{H}_{B} with identity operators I_{A} and I_{B}, and let $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$. Then the observables represented by O_{A} and O_{B} are correlated in vector state $|\psi\rangle$ just when

$$
\left\langle O_{A} \otimes O_{B}\right\rangle_{\psi} \neq\left\langle O_{A} \otimes I_{B}\right\rangle_{\psi}\left\langle I_{A} \otimes O_{B}\right\rangle_{\psi}
$$

The expectation value of $O_{A} \otimes O_{B}$ cannot be factored into a product of the expectation values of its "parts"

- Motivation: The observables O_{A} and O_{B} are correlated in the sense of Def. 4 if and only if they are statistically dependent; i.e.,

$$
\begin{gathered}
\operatorname{Pr}_{|\psi\rangle}\left(a_{i}, b_{j} \mid O_{A}, O_{B}\right) \neq \operatorname{Pr}_{|\psi\rangle}\left(a_{i} \mid O_{A}\right) \operatorname{Pr}_{|\psi\rangle}\left(b_{j} \mid O_{B}\right), \\
\text { for all } i, j \\
\left(\begin{array}{l}
\text { The joint probability of getting } \\
\text { the value a of of in and the } \\
\text { value } b_{j} \text { of } O_{B} \text { in the state }|\psi\rangle
\end{array}\right) \neq\left(\begin{array}{l}
\text { The probability of } \\
\text { getting the value } a_{i} \\
\text { of } O_{A} \text { in the state }|\psi\rangle
\end{array}\right) \times\left(\begin{array}{l}
\text { The probability of } \\
\text { getting the value } b_{j} \\
\text { of } O_{B} \text { in the state }|\psi\rangle
\end{array}\right)
\end{gathered}
$$

Task \#1 accomplished!

Claim. Observables represented by the operators O_{A} and O_{B} that appear in a product operator $O_{A} \otimes O_{B}$ are uncorrelated in a product vector state and correlated in a non-product vector state.

- Example: Let $\left|\psi_{\text {prod }}\right\rangle=\left|\psi_{A} \psi_{B}\right\rangle$ and $\left|\psi_{\text {non }}\right\rangle=\sqrt{1 / 2}\left\{\left|\psi_{A} \phi_{B}\right\rangle+\left|\phi_{A} \psi_{B}\right\rangle\right\}$ be a product vector and a non-product vector in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.

$$
\begin{aligned}
\left\langle O_{A} \otimes O_{B}\right\rangle_{\psi_{\text {prod }}} & =\left\langle\psi_{A} \psi_{B}\right|\left(O_{A} \otimes O_{B}\right)\left|\psi_{A} \psi_{B}\right\rangle \\
& =\left\langle\psi_{A} \psi_{B}\right|\left(O_{A}\left|\psi_{A}\right\rangle \otimes O_{B}\left|\psi_{B}\right\rangle\right) \longleftarrow \text { def. of product operator } \\
& =\left\langle\psi_{A}\right| O_{A}\left|\psi_{A}\right\rangle\left\langle\psi_{B}\right| O_{B}\left|\psi_{B}\right\rangle \longleftarrow \text { def. of product space inner-product } \\
& =\left\langle\psi_{A}\right| O_{A}\left|\psi_{A}\right\rangle\left(\left\langle\psi_{B}\right| I_{B}\left|\psi_{B}\right\rangle\right)\left(\left\langle\psi_{A}\right| I_{A}\left|\psi_{A}\right\rangle\right)\left\langle\psi_{B}\right| O_{B}\left|\psi_{B}\right\rangle \longleftarrow \text { insertion of identity } \\
& =\left\langle\psi_{A} \psi_{B}\right|\left(O_{A} \otimes I_{B}\right)\left|\psi_{A} \psi_{B}\right\rangle\left\langle\psi_{A} \psi_{B}\right|\left(I_{A} \otimes O_{B}\right)\left|\psi_{A} \psi_{B}\right\rangle \longleftarrow \text { rearranging... } \\
& =\left\langle O_{A} \otimes I_{B}\right\rangle_{\psi_{\text {prod }}}\left\langle I_{A} \otimes O_{B}\right\rangle_{\psi_{\text {prod }}}
\end{aligned}
$$

No correlation between O_{A} and O_{B} in $\left|\psi_{\text {prod }}\right\rangle$!

Claim. Observables represented by the operators O_{A} and O_{B} that appear in a product operator $O_{A} \otimes O_{B}$ are uncorrelated in a product vector state and correlated in a non-product vector state.

- Example: Let $\left|\psi_{\text {prod }}\right\rangle=\left|\psi_{A} \psi_{B}\right\rangle$ and $\left|\psi_{\text {non }}\right\rangle=\sqrt{1 / 2}\left\{\left|\psi_{A} \phi_{B}\right\rangle+\left|\phi_{A} \psi_{B}\right\rangle\right\}$ be a product vector and a non-product vector in $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.

$$
\begin{aligned}
\begin{aligned}
\left\langle O_{A} \otimes O_{B}\right\rangle_{\psi_{\text {non }}}= & 1 / 2\left\{\left\langle\psi_{A} \phi_{B}\right|+\left\langle\phi_{A} \psi_{B}\right|\right\}\left(O_{A} \otimes O_{B}\right)\left\{\left|\psi_{A} \phi_{B}\right\rangle+\left|\phi_{A} \psi_{B}\right\rangle\right\} \\
& =1 / 2\left\{\left\langle O_{A}\right\rangle_{\psi_{A}}\left\langle O_{B}\right\rangle_{\phi_{B}}+\left\langle\phi_{A}\right| O_{A}\left|\psi_{A}\right\rangle\left\langle\psi_{B}\right| O_{B}\left|\phi_{B}\right\rangle+\left\langle\psi_{A}\right| O_{A}\left|\phi_{A}\right\rangle\left\langle\phi_{B}\right| O_{B}\left|\psi_{B}\right\rangle\right. \\
& \left.+\left\langle O_{A}\right\rangle_{\phi_{A}}\left\langle O_{B}\right\rangle_{\psi_{B}}\right\}
\end{aligned} \\
\begin{aligned}
&\left\langle O_{A} \otimes I_{B}\right\rangle_{\psi_{\text {non }}}\left\langle I_{A} \otimes O_{B}\right\rangle_{\psi_{\text {non }}} \\
&= 1 / 4\left\{\left\langle O_{A}\right\rangle_{\psi_{A}}\left\langle O_{B}\right\rangle_{\phi_{B}}+\left\langle O_{A}\right\rangle_{\psi_{A}}\left\langle O_{B}\right\rangle_{\psi_{B}}+\left\langle O_{A}\right\rangle_{\phi_{A}}\left\langle O_{B}\right\rangle_{\phi_{B}}+\left\langle O_{A}\right\rangle_{\phi_{A}}\left\langle O_{B}\right\rangle_{\psi_{B}}\right\}
\end{aligned}
\end{aligned}
$$

So: $\left\langle O_{A} \otimes O_{B}\right\rangle_{\psi_{\text {non }}} \neq\left\langle O_{A} \otimes I_{B}\right\rangle_{\psi_{\text {non }}}\left\langle I_{A} \otimes O_{B}\right\rangle_{\psi_{\text {non }}}$
Correlation between O_{A} and O_{B} in $\left|\psi_{\text {non }}\right\rangle$!

3. Entangled Vector States

So: Non-product vector states exhibit correlations between observables.
Can these correlations be explained by direct causes and/or common causes?

- In $\left|\psi_{\text {non }}\right\rangle=\sqrt{1 / 2}\left\{\left|0_{A} 1_{B}\right\rangle-\left|1_{A} 0_{B}\right\rangle\right\}$, there is a correlation between the Hardness properties of electron A \& electron B : When one is hard, the other is soft.
- Direct cause explanation?
- No! Projection Postulate entails that when a measurement is performed on electron A, its state collapses (to either $\left|0_{A}\right\rangle$ or $\left|1_{A}\right\rangle$), and this instantaneously affects the state of electron B!
- Common cause explanation?
- No! Can show that in $\left|\psi_{\text {non }}\right\rangle$ there are pair-wise correlations between four spin $-1 / 2$ observables such that a particular sum of their expectation values violates a "Bell" inequality that it must satisfy if the correlations are due to a common cause.

A bit messy to demonstrate! Ultimately due to the way we represent expectation values of bipartite properties in a non-product vector state.

So: Non-product vector states exhibit correlations between observables that cannot be explained either by a direct cause or a common cause.

- Classical correlations can always be explained by a direct cause and/or a common cause.
- This suggests that the correlations exhibited by non-product vector states are unique to quantum mechanics.
- Call them "entanglement correlations".
- Call the vector states in quantum mechanics that support them, "entangled vector states".

Def. 6 (Entangled vector state). A state represented by a multipartite vector $|\psi\rangle$ is entangled just when $|\psi\rangle$ is a non-product vector state.

