

08. Quantum Mechanics: Density Operators

1. States as Density Operators
2. Pure States and Mixed States
3. Test for Mixedness

1. States as Density Operators

- Motivation: Suppose a quantum system is associated with an *ensemble* $\{|\psi_i\rangle, p_i\}$ of vector states $|\psi_i\rangle$, each with a probability p_i .

Suppose we don't know what state our quantum system is in; suppose all we know are its possible states.

- Recall: In Gibbs' approach to classical statistical mechanics, we considered an ensemble of *classical* states to be a *classical* phase space Γ with a probability distribution $\rho(x, t)$ defined on it.

- In QM, we use a vector space \mathcal{H} instead of a classical phase space Γ .
- What should we use instead of the function $\rho(x, t)$?

Answer: An operator...

Def. 1 (Density operator). The **density operator** ρ for a system in an ensemble $\{|\psi_i\rangle, p_i\}$ of m vector states $|\psi_i\rangle \in \mathcal{H}$ each with probability p_i , is defined by

$$\rho = \sum_{i=1}^m p_i |\psi_i\rangle\langle\psi_i|, \text{ where } \sum_{i=1}^m p_i = 1.$$

Warning! Same notation but different mathematical objects:
 ρ in QM is an operator.
 $\rho(x, t)$ in classical Stat Mech is a function.

- Note 1: $|\psi\rangle\langle\psi|$ is an *operator*.

- It acts on a vector $|\varphi\rangle$ and gives you another vector $|\psi\rangle\langle\psi|\varphi\rangle$.

vector $|\psi\rangle$ ↗
 inner product (number) $\langle\psi|\varphi\rangle$
 ↗
 the magnitude of $|\varphi\rangle$ in the direction of $|\psi\rangle$!

- Note 2: $|\psi\rangle\langle\psi|$ is a "projection" operator.

- It projects a vector $|\varphi\rangle$ in the direction of $|\psi\rangle$.

Def. 1 (Density operator). The **density operator** ρ for a system in an ensemble $\{|\psi_i\rangle, p_i\}$ of m vector states $|\psi_i\rangle \in \mathcal{H}$ each with probability p_i , is defined by

$$\rho = \sum_{i=1}^m p_i |\psi_i\rangle\langle\psi_i|, \text{ where } \sum_{i=1}^m p_i = 1.$$

Warning! Same notation but different mathematical objects:
 ρ in QM is an operator.
 $\rho(x, t)$ in classical Stat Mech is a function.

- Note 3: The vector states $\{|\psi_i\rangle\}$ are not necessarily orthogonal to each other, and m is not necessarily the dimension n of \mathcal{H} .

But: ρ can always be expressed in terms of a basis $\{|\phi_i\rangle\}$ of \mathcal{H} as

$$\rho = \sum_{i=1}^n \lambda_i |\phi_i\rangle\langle\phi_i|$$

where $|\phi_i\rangle$ are eigenvectors of ρ with eigenvalues $\lambda_i \geq 0$.

← Because ρ is Hermitian!

- And: Since ρ is supposed to represent an ensemble of

vector states, in this case $\{|\phi_i\rangle, \lambda_i\}$, we require $\sum_{i=1}^n \lambda_i = 1$.

← The sum of the eigenvalues of a density operator is 1!

Def. 1 (Density operator). The **density operator** ρ for a system in an ensemble $\{|\psi_i\rangle, p_i\}$ of m vector states $|\psi_i\rangle \in \mathcal{H}$ each with probability p_i , is defined by

$$\rho = \sum_{i=1}^m p_i |\psi_i\rangle\langle\psi_i|, \text{ where } \sum_{i=1}^m p_i = 1.$$

Warning! Same notation but different mathematical objects:
 ρ in QM is an operator.
 $\rho(x, t)$ in classical Stat Mech is a function.

- Note 4: A density operator can describe more than one ensemble of vector states.

Example:

Suppose: $|a\rangle = \sqrt{3/4}|0\rangle + \sqrt{1/4}|1\rangle$ Then: $|0\rangle = \sqrt{1/3}|a\rangle + \sqrt{1/3}|b\rangle$

$$|b\rangle = \sqrt{3/4}|0\rangle - \sqrt{1/4}|1\rangle \quad |1\rangle = |a\rangle - |b\rangle$$

So: $\rho = \frac{1}{2}|a\rangle\langle a| + \frac{1}{2}|b\rangle\langle b|$ corresponds to $\rightsquigarrow \{|a\rangle, |b\rangle; \frac{1}{2}, \frac{1}{2}\}$

$$= \frac{3}{4}|0\rangle\langle 0| + \frac{1}{4}|1\rangle\langle 1| \quad \text{corresponds to } \rightsquigarrow \{|0\rangle, |1\rangle; \frac{3}{4}, \frac{1}{4}\}$$

↔
 distinct ensembles,
 same density operator

2. Pure States and Mixed States

Why use density operators to represent states?

Def. 2 (Pure/mixed density operator state). If a density operator can be expressed as $\rho = |\psi\rangle\langle\psi|$, then it is called a **pure density operator state**. Otherwise, it is called a **mixed density operator state**.

- Note 1: An "ignorance" interpretation of mixed density operator states is not always appropriate!

$$\rho = p_1|\psi_1\rangle\langle\psi_1| + p_2|\psi_2\rangle\langle\psi_2| + \dots$$

 Ignorance as to what vector state the system is in?

- Concern 1: ρ can describe more than one ensemble of vector states.

Recall:

$$\text{Let: } |a\rangle = \sqrt{3/4}|0\rangle + \sqrt{1/4}|1\rangle$$

$$|b\rangle = \sqrt{3/4}|0\rangle - \sqrt{1/4}|1\rangle$$

If the system is in the density operator state ρ , should it be associated with the ensemble $\{|a\rangle, |b\rangle; 1/2, 1/2\}$ or the ensemble $\{|0\rangle, |1\rangle; 3/4, 1/4\}$?

$$\text{Then: } \rho = 1/2|a\rangle\langle a| + 1/2|b\rangle\langle b| \text{ corresponds to } \{|a\rangle, |b\rangle; 1/2, 1/2\}$$

$$= 3/4|0\rangle\langle 0| + 1/4|1\rangle\langle 1| \text{ corresponds to } \{|0\rangle, |1\rangle; 3/4, 1/4\}$$

2. Pure States and Mixed States

Why use density operators to represent states?

Def. 2 (Pure/mixed density operator state). If a density operator can be expressed as $\rho = |\psi\rangle\langle\psi|$, then it is called a **pure density operator state**. Otherwise, it is called a **mixed density operator state**.

- Note 1: An "ignorance" interpretation of mixed density operator states is not always appropriate!

$$\rho = p_1|\psi_1\rangle\langle\psi_1| + p_2|\psi_2\rangle\langle\psi_2| + \dots$$

 Ignorance as to what vector state the system is in?

- Concern 2: An ignorance interpretation cannot be applied to a mixed density operator state of a subsystem of a composite system in a pure *entangled* density operator state.

 To be demonstrated later...

2. Pure States and Mixed States

Why use density operators to represent states?

Def. 2 (Pure/mixed density operator state). If a density operator can be expressed as $\rho = |\psi\rangle\langle\psi|$, then it is called a **pure density operator state**. Otherwise, it is called a **mixed density operator state**.

- Note 2: A mixed density operator state is not the same thing as a superposed vector state!

Example:

- The mixed density operator state $\rho = \frac{1}{2}|a\rangle\langle a| + \frac{1}{2}|b\rangle\langle b|$ corresponds to an *ensemble* of vector states $\{|a\rangle, |b\rangle; \frac{1}{2}, \frac{1}{2}\}$.
- The pure density operator state $\rho = \frac{1}{2}\{|a\rangle + |b\rangle\}\{|\langle a| + \langle b|\}$ corresponds to a *single* vector state $\frac{1}{\sqrt{2}}\{|a\rangle + |b\rangle\}$.

3. A Test for Mixedness

Def. 3 (Trace). Let O be an operator on a vector space \mathcal{H} with basis $\{|\nu_i\rangle\}$. The **trace** $\text{Tr}(O)$ of O is defined by

$$\text{Tr}(O) \equiv \sum_i \langle \nu_i | O | \nu_i \rangle$$

*The sum of the diagonal elements
of a matrix representation of O*

- Note 1: If O is a Hermitian operator on \mathcal{H} , then its eigenvectors $\{|\lambda_i\rangle\}$ form a basis for \mathcal{H} , and

$$\text{Tr}O = \sum_i \langle \lambda_i | O | \lambda_i \rangle = \sum_i \lambda_i \langle \lambda_i | \lambda_i \rangle = \sum_i \lambda_i$$

*The trace of a Hermitian operator
is the sum of its eigenvalues!*

- Note 2: Recall that the sum of the eigenvalues of a density operator state ρ is 1.
 - So: $\text{Tr} \rho = 1$ for both pure and mixed density operator states.

Claim (*Test for mixedness*).

- (a) ρ is a pure density operator state if and only if $\text{Tr } \rho^2 = 1$.
- (b) ρ is a mixed density operator state if and only if $\text{Tr } \rho^2 < 1$.

- First note:

$$\begin{aligned}
 \rho^2 &= \sum_{i=1}^n \lambda_i |\phi_i\rangle\langle\phi_i| \sum_{j=1}^n \lambda_j |\phi_j\rangle\langle\phi_j| \quad \text{if } |\phi_i\rangle \text{ are eigenvectors of } \rho \text{ with eigenvalues } \lambda_i \\
 &= \sum_{i,j} \lambda_i \lambda_j |\phi_i\rangle\langle\phi_i| |\phi_j\rangle\langle\phi_j| \quad \text{if } \langle\phi_i|\phi_j\rangle = 0 \text{ unless } j = i \\
 &= \sum_i \lambda_i^2 |\phi_i\rangle\langle\phi_i| \quad \text{if } |\phi_i\rangle \text{ are eigenvectors of } \rho^2 \text{ with eigenvalues } \lambda_i^2 \quad \text{if } \text{Tr } \rho^2 = \sum_i \lambda_i^2
 \end{aligned}$$

Proof of (a):

- Suppose: ρ is a pure density operator state.
 - Then: $\rho^2 = \rho$, and hence $\text{Tr } \rho^2 = \text{Tr } \rho = 1$.
- Now suppose: ρ is a density operator state and $\text{Tr } \rho^2 = 1$.
 - Then: $\sum_i \lambda_i^2 = 1 = \sum_i \lambda_i$.
 - And: This holds if and only if one of the λ_i is 1 and the rest are 0.
 - Thus: ρ is pure.

Claim (Test for mixedness).

- (a) ρ is a pure density operator state if and only if $\text{Tr } \rho^2 = 1$.
- (b) ρ is a mixed density operator state if and only if $\text{Tr } \rho^2 < 1$.

- First note:

$$\begin{aligned}
 \rho^2 &= \sum_{i=1}^n \lambda_i |\phi_i\rangle\langle\phi_i| \sum_{j=1}^n \lambda_j |\phi_j\rangle\langle\phi_j| \quad \text{if } |\phi_i\rangle \text{ are eigenvectors of } \rho \text{ with eigenvalues } \lambda_i \\
 &= \sum_{i,j} \lambda_i \lambda_j |\phi_i\rangle\langle\phi_i| |\phi_j\rangle\langle\phi_j| \quad \text{if } \langle\phi_i|\phi_j\rangle = 0 \text{ unless } j = i \\
 &= \sum_i \lambda_i^2 |\phi_i\rangle\langle\phi_i| \quad \text{if } |\phi_i\rangle \text{ are eigenvectors of } \rho^2 \text{ with eigenvalues } \lambda_i^2 \quad \text{if } \text{Tr } \rho^2 = \sum_i \lambda_i^2
 \end{aligned}$$

Proof of (b):

- Suppose: ρ is a mixed density operator state.
 - Then: $\text{Tr } \rho^2 = \sum_i \lambda_i^2 \leq \sum_i \lambda_i = 1$, with equality if and only if ρ is pure.
- Now suppose: ρ is a density operator state and $\text{Tr } \rho^2 < 1$.
 - Then: $\text{Tr } \rho^2 = \sum_i \lambda_i^2 < 1$, and $\sum_i \lambda_i = 1$.
 - And: This excludes the case of one of the λ_i being 1 and the rest 0.
 - Thus: ρ must be mixed.

Why get bogged down with all these linear algebra definitions of mixed density operator states and tests of mixedness?

- Because:

- Ultimately: We're going to focus on a notion of entropy associated with density operator states (think of the analogy with the Gibbs entropy for classical ensembles).
- And: That notion of entropy (called the "von Neumann" entropy) is first and foremost a measure of the degree to which a density operator state is mixed!
- Moreover: As we'll see, it can also be interpreted (under certain conditions) as a measure of *entanglement*.

Next up...