08. Quantum Mechanics: Density Operators

States as Density Operators
 Pure States and Mixed States
 Test for Mixedness

1. States as Density Operators

• <u>Motivation</u>: Suppose a quantum system is associated with an *ensemble* $\{|\psi_i\rangle, p_i\}$ of vector states $|\psi_i\rangle$, each with a probability p_i .

Suppose we don't know what state our quantum system is in; suppose all we know are its possible states.

- <u>*Recall*</u>: In Gibbs' approach to classical statistical mechanics, we considered an ensemble of *classical* states to be a *classical* phase space Γ with a probability distribution $\rho(x, t)$ defined on it.
 - In QM, we use a vector space $\mathcal H$ instead of a classical phase space Γ .
 - What should we use instead of the function $\rho(x, t)$?

Answer: An operator...

Def. 1 (*Density operator*). The **density operator** ρ for a system in an ensemble { $|\psi_i\rangle$, p_i } of m vector states $|\psi_i\rangle \in \mathcal{H}$ each with probablity p_i , is defined by $\rho = \sum_{i=1}^m p_i |\psi_i\rangle \langle \psi_i |$, where $\sum_{i=1}^m p_i = 1$.

<u>Warning!</u> Same notation but different mathematical objects: ρ in QM is an operator. $\rho(x, t)$ in classical Stat Mech is a function.

- <u>Note 1</u>: $|\psi\rangle\langle\psi|$ is an operator.
 - It acts on a vector $|\varphi\rangle$ and gives you another vector $|\psi\rangle\langle\psi|\varphi\rangle$.

Def. 1 (*Density operator*). The **density operator** ρ for a system in an ensemble $\{|\psi_i\rangle, p_i\}$ of m vector states $|\psi_i\rangle \in \mathcal{H}$ each with probablity p_i , is defined by $\rho = \sum_{i=1}^m p_i |\psi_i\rangle \langle \psi_i |$, where $\sum_{i=1}^m p_i = 1$.

<u>Warning!</u> Same notation but different mathematical objects: ρ in QM is an operator. $\rho(x, t)$ in classical Stat Mech is a function.

• <u>Note 3</u>: The vectors states $\{|\psi_i\rangle\}$ are not necessarily orthogonal to each other, and m is not necessarily the dimension n of \mathcal{H} .

<u>But</u>: ρ can always be expressed in terms of a basis $\{|\phi_i\rangle\}$ of \mathcal{H} as $\rho = \sum_{i=1}^n \lambda_i |\phi_i\rangle \langle \phi_i |$ where $|\phi_i\rangle$ are eigenvectors of ρ with eigenvalues $\lambda_i \ge 0$.

 ← ∠ Because ρ is Hermitian!

operator is 1!

- <u>And</u>: Since ρ is supposed to represent an ensemble of vector states, in this case $\{|\phi_i\rangle, \lambda_i\}$, we require $\sum_{i=1}^n \lambda_i = 1$. \leftarrow The sum of the eigenvalues of a density

Def. 1 (*Density operator*). The **density operator** ρ for a system in an ensemble $\{|\psi_i\rangle, p_i\}$ of m vector states $|\psi_i\rangle \in \mathcal{H}$ each with probablity p_i , is defined by $\rho = \sum_{i=1}^m p_i |\psi_i\rangle \langle \psi_i |$, where $\sum_{i=1}^m p_i = 1$.

<u>Warning!</u> Same notation but different mathematical objects: ρ in QM is an operator. $\rho(x, t)$ in classical Stat Mech is a function.

• <u>Note 4</u>: A density operator can describe more than one ensemble of vector states.

 $\begin{array}{l} \underline{Example}:\\ \underline{Suppose}: \ |a\rangle = \sqrt{\frac{3}{4}}|0\rangle + \sqrt{\frac{1}{4}}|1\rangle & \underline{Then}: \ |0\rangle = \sqrt{\frac{1}{3}}|a\rangle + \sqrt{\frac{1}{3}}|b\rangle \\ |b\rangle = \sqrt{\frac{3}{4}}|0\rangle - \sqrt{\frac{1}{4}}|1\rangle & |1\rangle = |a\rangle - |b\rangle \end{array}$ $\begin{array}{l} \underline{So}: \ \rho = \frac{1}{2}|a\rangle\langle a| + \frac{1}{2}|b\rangle\langle b| & \text{corresponds to } \Longrightarrow \{|a\rangle, |b\rangle; \frac{1}{2}, \frac{1}{2}\} \\ = \frac{3}{4}|0\rangle\langle 0| + \frac{1}{4}|1\rangle\langle 1| & \text{corresponds to } \Longrightarrow \{|0\rangle, |1\rangle; \frac{3}{4}, \frac{1}{4}\} \end{array}$

2. Pure States and Mixed States

Why use density operators to represent states?

Def. 2 (*Pure/mixed density operator state*). If a density operator can be expressed as $\rho = |\psi\rangle\langle\psi|$, then it is called a **pure density operator state**. Otherwise, it is called a **mixed density operator state**.

- <u>Note 1</u>: An "ignorance" interpretation of mixed density operator states is not always appropriate!

 - *Concern* 1: ρ can describe more than one ensemble of vector states.

2. Pure States and Mixed States

Why use density operators to represent states?

Def. 2 (*Pure/mixed density operator state*). If a density operator can be expressed as $\rho = |\psi\rangle\langle\psi|$, then it is called a **pure density operator state**. Otherwise, it is called a **mixed density operator state**.

• <u>Note 1</u>: An "ignorance" interpretation of mixed density operator states is not always appropriate!

<u>Concern 2</u>: An ignorance interpretation cannot be applied to a mixed density operator state of a subsystem of a composite system in a pure *entangled* density operator state.

2. Pure States and Mixed States

Why use density operators to represent states?

Def. 2 (*Pure/mixed density operator state*). If a density operator can be expressed as $\rho = |\psi\rangle\langle\psi|$, then it is called a **pure density operator state**. Otherwise, it is called a **mixed density operator state**.

• <u>Note 2</u>: A mixed density operator state is not the same thing as a superposed vector state!

Example:

- The mixed density operator state ρ = ½|a⟩⟨a| + ½|b⟩⟨b| corresponds to an *ensemble* of vector states {|a⟩, |b⟩; ½, ½}.
- The pure density operator state $\rho = \frac{1}{2}\{|a\rangle + |b\rangle\}\{\langle a| + \langle b|\}\$ corresponds to a *single* vector state $\frac{1}{\sqrt{2}}\{|a\rangle + |b\rangle\}$.

3. A Test for Mixedness

Def. 3 (*Trace*). Let *O* be an operator on a vector space \mathcal{H} with basis $\{|v_i\rangle\}$. The **trace** Tr(*O*) of *O* is defined by Tr(*O*) $\equiv \sum_i \langle v_i | O | v_i \rangle$

The sum of the diagonal elements of a matrix representation of O

- <u>Note 1</u>: If *O* is a Hermitian operator on \mathcal{H} , then its eigenvectors $\{|\lambda_i\rangle\}$ form a basis for \mathcal{H} , and $\operatorname{Tr} O = \sum_i \langle \lambda_i | O | \lambda_i \rangle = \sum_i \lambda_i \langle \lambda_i | \lambda_i \rangle = \sum_i \lambda_i$ $\xrightarrow{\text{The trace of a Hermitian operator}} is the sum of its eigenvalues!}$
- <u>Note 2</u>: Recall that the sum of the eigenvalues of a density operator state ρ is 1.
 - <u>So</u>: $\operatorname{Tr} \rho = 1$ for both pure and mixed density operator states.

Claim (*Test for mixedness*).
(a) *ρ* is a pure density operator state *if and only if* Tr *ρ*² = 1.
(b) *ρ* is a mixed density operator state *if and only if* Tr *ρ*² < 1.

• *First note*:

<u>Proof of (a)</u>:

- *Suppose*: ρ is a pure density operator state.
 - <u>*Then*</u>: $\rho^2 = \rho$, and hence $\text{Tr}\rho^2 = \text{Tr}\rho = 1$.
- <u>Now suppose</u>: ρ is a density operator state and $Tr\rho^2 = 1$.
 - <u>Then</u>: $\sum_{i} \lambda_i^2 = 1 = \sum_{i} \lambda_i$.
 - <u>And</u>: This holds if and only if one of the λ_i is 1 and the rest are 0.
 - *<u>Thus</u>*: *ρ* is pure.

Claim (*Test for mixedness*). (a) ρ is a pure density operator state *if and only if* Tr $\rho^2 = 1$. (b) ρ is a mixed density operator state *if and only if* Tr $\rho^2 < 1$.

• *First note*:

Proof of (b):

- *Suppose*: ρ is a mixed density operator state.
 - <u>*Then*</u>: $\operatorname{Tr} \rho^2 = \sum_i \lambda_i^2 \leq \sum_i \lambda_i = 1$, with equality if and only if ρ is pure.
- <u>*Now suppose*</u>: ρ is a density operator state and $Tr\rho^2 < 1$.
 - <u>*Then*</u>: $\operatorname{Tr} \rho^2 = \sum_i \lambda_i^2 < 1$, and $\sum_i \lambda_i = 1$.
 - <u>And</u>: This excludes the case of one of the λ_i being 1 and the rest 0.
 - <u>*Thus*</u>: ρ must be mixed.

Why get bogged down with all these linear algebra definitions of mixed density operator states and tests of mixedness?

- <u>Because</u>:
 - <u>Ultimately</u>: We're going to focus on a notion of entropy associated with density operator states (think of the analogy with the Gibbs entropy for classical ensembles).
 - <u>And</u>: That notion of entropy (called the "von Neumann" entropy) is first and foremost a measure of the degree to which a density operator state is mixed!
 - *Moreover*: As we'll see, it can also be interpreted (under certain conditions) as a measure of *entanglement*.

Next up...