
07. Quantum Mechanics: Basics

1. Motivation

Stern-Gerlach Experiment Stern \& Gerlach (1922)

sliver atoms

spin-up along n axis

spin-up along m axis

spin-down along n axis

spin-down along m axis hard and soft).

Experimental Result \#1: There is no correlation between Color and Hardness

Figure I. 4 Experiment VH .

Experimental Result \#2:

Hardness measurements "disrupt" Color measurements, and vice-versa.

- Can we build a Hardness measuring box that doesn't "disrupt" Color values?
- All evidence suggests "No"!
- Can we determine which electrons get their Color values "disrupted" by a Hardness measurement?
- All evidence suggests "No"!
- Thus: All evidence suggests Hardness and Color cannot be simultaneously measured.

Figure 1.5 Experiment VHV

Experimental Result \#3: The "2-Path" Experiment.

Experimental Result \#3: The "2-Path"Experiment.

- Feed white electrons into the device and measure their Color as they exit.
- From previous experiments, we should expect 50% white and 50% black...

But: Experimentally, 100\% are white!

Experimental Result \#3: The "2-Path" Experiment.

- Now insert a barrier along the s path.
- 50\% less electrons register at the Exit.
- And: Experimentally, of these 50% are white and 50% are black.

Experimental Result \#3: The "2-Path" Experiment.

What path does an individual electron take without the barrier present?

- Not h. The Color statistics of hard electrons is 50/50.
- Not s The Color statistics of soft electrons is 50/50.
- Not both. Place detectors along the paths and only one will register.
- Not neither. Block both paths and no electrons register at Exit.

Experimental Result \#3: The "2-Path" Experiment.

What path does an individual electron take without the barrier present?

- Not h.
- Not s.
- Not both.
- Not neither.

Suggests that white electrons have no determinate value of Hardness.

How to Describe Physical Phenomena: 5 Basic Notions

(a) Physical system.

Classical example: baseball Quantum example: electron
(b) Properties of a physical system.

Classical examples

- momentum
- position
- energy

Quantum examples

- Hardness (spin along a given direction)
- Color (spin along another direction)
- momentum
- position
- energy
(c) State of a physical system. Description of system at an instant in time in terms of its properties.

Classical example

- baseball moving at $95 \mathrm{mph}, 5 \mathrm{ft}$ from batter

Quantum example

- white electron entering a Hardness box
(d) State space. The collection of all possible states of a system.
(e) Dynamics. A description of how the states of a system evolve in time.

Mathematical Description of Classical Physical System (baseball example)

(i) A state of the baseball: Specified by giving momentum $\left(p_{1}, p_{2}, p_{3}\right)$ and position $\left(q_{1}, q_{2}, q_{3}\right)$. (Baseball has 6 "degrees of freedom".)
(ii) The state space of the baseball: Represented by a 6-dim set of points (phase space):

(iii) Properties of the baseball: Represented by functions on the phase space.

These are in-principle always well-defined for any point in phase space.

$$
\underline{\text { Ex: }} \text { baseball's energy }=E\left(p_{i}, q_{i}\right)=\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right) / 2 m
$$

(iv) Dynamics of the baseball: Provided by Newton's equations of motion (in their Hamiltonian form).

Will this mathematical description work for electrons?
No!

- Experiments suggest the "spin" properties of Hardness and Color are not always well-defined.
- So: We can't represent them mathematically as functions on a set of points.
- Early 20th century task: Construct a new theory (quantum mechanics) for physical systems like electrons that represents states, state space, and properties in a different way than classical mechanics:

physical concept	mathematical representation	
	$\underline{\text { Classical mechanics }}$	Quantum mechanics
states	points	vectors state space properties
sef points (phase space) functions of points	vector space operators on vectors	

2. States as vectors

- Restrict attention to quantum properties with only two values (like Hardness and Color).
- Associated state vectors are 2-dimensional:
quantum 2state system

$$
|Q\rangle=a|0\rangle+b|1\rangle
$$

Require state vector $|Q\rangle$ to have unit length:

$$
|a|^{2}+|b|^{2}=1
$$

- Set of all vectors decomposible in basis $\{|0\rangle,|1\rangle\}$ forms a vector space \mathcal{H}.

Why is this helpful?

- Recall: Black electrons appear to have no determinate value of Hardness.
- Let's represent the values of Color and Hardness as basis vectors.
- Let's suppose the Hardness basis $\{|h a r d\rangle,|s o f t\rangle\}$ is rotated by 45° with respect to the Color basis $\{\mid$ white $\rangle,|b l a c k\rangle\}$:

- Let's assume:

Eigenvalue-eigenvector Rule

A quantum system possesses the value of a property if and only if it is in a vector state associated with that value.

Upshot: Since an electron in the vector state |white〉 cannot be in either of the vector states \mid hard \rangle, \mid soft \rangle, it cannot be said to possess values of Hardness.

- Recall: Experimental Result \#1: There is no correlation between Hardness measurements and Color measurements.
- If the Hardness of a batch of white electrons is measured, 50% will be soft and 50% will be hard.
- Let's assume:

Born Rule

The probability $\operatorname{Pr}_{|\psi\rangle}(b \mid B)$ that a quantum system in a vector state $|\psi\rangle$ possesses the value b of a property B is given by the square of the expansion coefficient of the basis state $|b\rangle$ in the expansion of $|\psi\rangle$ in the basis corresponding to all values of the property.

Max Born (1882-1970)

- $\underline{\text { So: }}$ The probability $\operatorname{Pr}_{|b l a c k\rangle}($ hard|Hardness) that a black electron has the value hard when measured for Hardness is $1 / 2$!

3. Properties as operators

- Motivation: A property has values.
- And: We've associating these values with basis vectors.
- And: A certain type of linear operator (a "Hermitian operator") can be associated with a set of basis vectors.

Def. 1 (Linear operator). A linear operator O is a map that assigns to any vector $|A\rangle$, another vector $O|A\rangle$, such that, for any other vector $|B\rangle$ and numbers n, m,

$$
O(n|A\rangle+m|B\rangle)=n(O|A\rangle)+m(O|B\rangle)
$$

To understand the notion of a Hermitian operator, let's first consider matrix representations of vectors and linear operators...

Matrix representations

$$
\begin{aligned}
& |Q\rangle=\binom{a}{b} \quad \begin{array}{c}
\text { 2-dim vector as } 2 \times 1
\end{array} \quad\langle Q|=\left(a^{*}, b^{*}\right) \quad \begin{array}{l}
\text { complex-transpose of }|Q\rangle \\
\text { as } 1 \times 2 \text { "row" matrix }
\end{array} \\
& \langle Q \mid Q\rangle=\left(a^{*}, b^{*}\right)\binom{a}{b}=a^{*} a+b^{*} b=|a|^{2}+|b|^{2}=1 \\
& \begin{array}{l}
\text { Matrix multiplication }
\end{array} \\
& O=\left(\begin{array}{ll}
O_{11} & O_{12} \\
O_{21} & O_{22}
\end{array}\right) \quad \text { Operator on 2-dim vectors as } 2 \times 2 \text { matrix } \\
& O|Q\rangle=\left(\begin{array}{ll}
O_{11} & O_{12} \\
O_{21} & O_{22}
\end{array}\right)\binom{a}{b}=\binom{O_{11} a+O_{12} b}{O_{21} a+O_{22} b} \\
& \langle Q| O^{\dagger}=\left(a^{*}, b^{*}\right)\left(\begin{array}{ll}
O_{11}^{*} & O_{21}^{*} \\
O_{12}^{*} & O_{22}^{*}
\end{array}\right)=\left(O_{11}^{*} a^{*}+O_{12}^{*} b^{*}, O_{21}^{*} a^{*}+O_{22}^{*} b^{*}\right) \\
& \begin{array}{l}
O^{\dagger} \text { is complex-transpose } \\
\text { (or "adjoint") of } O
\end{array}
\end{aligned}
$$

Def. 2 (Hermitian operator). An operator O is Hermitian (or "self-adjoint") just when $O=0^{\dagger}$.

Now: In what sense can a Hermitian operator be associated with a set of basis vectors...

Def. 3 (Eigenvector). An eigenvector of an operator O is a vector $|\lambda\rangle$ that does not change its direction when O acts on it: $O|\lambda\rangle=\lambda|\lambda\rangle$, for some number λ.

Def. 4 (Eigenvalue). An eigenvalue λ of an operator O is the number that results when O acts on one of its eigenvectors.

Claim. The eigenvectors of a Hermitian operator on a vector space \mathcal{H} form a basis of \mathcal{H}, and its eigenvalues are real numbers.

This suggests the following correspondences

- Let a Hermitian operator O represent a property.
- Let its eigenvectors $|\lambda\rangle$ represent the value states ("eigenstates") associated with the property.
- Let its eigenvalues λ represent the (real number) values of the property.
- The Eigenvalue-Eigenvector Rule can now be stated as:

Eigenvalue-Eigenvector Rule. A quantum system possesses the value λ of a property represented by a Hermitian operator O if and only if it is in a vector state $|\lambda\rangle$ that is an eigenvector of O with eigenvalue λ.

4. Dynamics and Projection Postulate

Schrödinger Dynamics

Vector states evolve in time via the Schrödinger equation.

- The Schrödinger equation can be encoded in an operator $S \equiv e^{-i H\left(t_{2}-t_{1}\right) / \hbar}$ (where H is the Hamiltonian operator that encodes the energy).

Important property: S is a linear operator.

$$
S(n|A\rangle+m|B\rangle)=n(S|A\rangle)+m(S|B\rangle), \text { where } n, m \text { are numbers. }
$$

Projection Postulate (2-state systems)

When a measurement of a property represented by an operator B is made on a system in the vector state $|Q\rangle=a\left|\lambda_{1}\right\rangle+b\left|\lambda_{2}\right\rangle$ expanded in the eigenvector basis of B, and the result is the value λ_{1}, then $|Q\rangle$ collapses to the state $\left|\lambda_{1}\right\rangle$:

$$
|Q\rangle \xrightarrow[\text { collapse }]{ }\left|\lambda_{1}\right\rangle
$$

Example: Suppose we measure a black electron for Hardness.

- The pre-measurement state is given by:

$$
\mid \text { black }\rangle=\sqrt{1 / 2} \mid \text { hard }\rangle+\sqrt{1 / 2} \mid \text { soft }\rangle
$$

- Suppose: The outcome of the measurement is the value hard.
- Then: The post-measurement state is given by |hard \rangle.

Motivations:

- Guarantees that measurements have unique outcomes.
- Guarantees that if we obtain the value λ_{1} once, then we should get the same value λ_{1} on a second measurement (provided the system is not interferred with).

Recap: 5 Principles of Quantum Mechanics

(1) States are represented by vectors of length 1.
(2) Properties are represented by Hermitian operators.

Eigenvalue-Eigenvector Rule: A quantum system possesses the value λ of a property represented by a Hermitian operator O if and only if it is in a vector state $|\lambda\rangle$ that is an eigenvector of O with eigenvalue λ.
(3) Dynamics is given by the linear Schrödinger equation.

$$
\left|\psi\left(t_{1}\right)\right\rangle \underset{\substack{\text { Schrödinger } \\ \text { evolution }}}{ }\left|\psi\left(t_{2}\right)\right\rangle
$$

(4) Born Rule.
$\operatorname{Pr}_{|\psi\rangle}(b \mid B)=\left|\left\langle\psi \mid b_{i}\right\rangle\right|^{2}$ where $\left|b_{i}\right\rangle$ is an eigenvector of B with eigenvalue b_{i}

(5) Projection Postulate.

When a measurement of a property represented by an operator B is made on a system in the vector state $|Q\rangle=a\left|\lambda_{1}\right\rangle+b\left|\lambda_{2}\right\rangle$ expanded in the eigenvector basis of B, and the result is the value λ_{1}, then $|Q\rangle$ collapses to the state $\left|\lambda_{1}\right\rangle$:

$$
|Q\rangle \xrightarrow[\text { collapse }]{ }\left|\lambda_{1}\right\rangle
$$

