
Richard	Feynman
(1918-1988)

"I	am	going	to	tell	you	what	nature	behaves	like...	Do	
not	keep	saying	to	yourself,	if	you	can	possibly	avoid	
it,	'But	how	can	it	be	like	that?'	because	you	will	get	
'down	the	drain,'	into	a	blind	alley	from	which	nobody	
has	yet	escaped.	Nobody	knows	how	it	can	be	like	
that."	(The	Character	of	Physical	Laws	1965,	pg.	129.)



07.	Quantum	Mechanics:	Basics
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Stern-Gerlach	Experiment			Stern	&	Gerlach	(1922)

Suggests:	Electrons	possess	2-valued	"spin"	properties.		
(Goudsmit	&	Uhlenbeck	1925)
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along	𝑛	axis
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along	𝑛	axis

spin-up	
along	𝑚	axis

spin-down	
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•	With	respect	to	a	given	axis	(direction),	an	electron	can	
possess	either	the	value	"spin-up"	or	the	value	"spin-down".

•	Call	two	such	spin	properties	with	perpendicular	axes	"Color"	
(with	values	white	and	black)	and	"Hardness"	(with	values	
hard	and	soft).

•	There	are	as	many	spin	properties	as	there	are	possible	axes!

1.	Motivation
2.	States	as	Vectors
3.	Properties	as	Operators
4.	Dynamics	&	Projection	Postulate1.	Motivation
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Experimental	Result	#1:	There	is	no	correlation	between	Color	and	Hardness
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Experimental	Result	#2:
Hardness	measurements	"disrupt"	Color	measurements,	and	vice-versa.
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black	
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•	 Can	we	build	a	Hardness	measuring	box	that	doesn't	"disrupt"	Color	values?
- All evidence suggests "No"!

•	 Can	we	determine	which	electrons	get	their	Color	
values	"disrupted"	by	a	Hardness	measurement?
- All evidence suggests "No"!

•	 Thus:	All	evidence	suggests	Hardness	and	Color	
cannot	be	simultaneously	measured.
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Experimental	Result	#3:	The	"2-Path"	Experiment.

•	 From	previous	experiments,	we	should	expect	50%	white	and	50%	black...	

100%	white	
electrons	out

But: Experimentally, 100% are white!

Hardness
white	

electrons	in

•	 Feed	white	electrons	into	the	device	and	measure	their	Color	as	they	exit.
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𝑠

𝑠
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white	
electrons	in

Experimental	Result	#3:	The	"2-Path"	Experiment.
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•	 Now	insert	a	barrier	along	the	𝑠	path.

•	 50%	less	electrons	register	at	the	Exit.	

50%	white	
50%	black

•	 And:	Experimentally,	of	these	50%	are	white	and	50%	are	black.
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Experimental	Result	#3:	The	"2-Path"	Experiment.

Hardness
soft	

electrons

hard	
electrons

ℎ

mirror

mirror

Exit

white	
electrons	in

ℎ

𝑠

𝑠

100%	white	
electrons	out

What	path	does	an	individual	electron	take	without	the	barrier	present?
•	 Not	ℎ.	 The	Color	statistics	of	hard	electrons	is	50/50.
•	 Not	𝑠.	 The	Color	statistics	of	soft	electrons	is	50/50.
•	 Not	both.	 Place	detectors	along	the	paths	and	only	one	will	register.
•	 Not	neither.	 Block	both	paths	and	no	electrons	register	at	Exit.
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Experimental	Result	#3:	The	"2-Path"	Experiment.
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soft	
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hard	
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𝑠
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100%	white	
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What	path	does	an	individual	electron	take	without	the	barrier	present?
•	 Not	ℎ.
•	 Not	𝑠.
•	 Not	both.
•	 Not	neither.

Suggests that white electrons have 
no determinate value of Hardness.

8



How	to	Describe	Physical	Phenomena:	5	Basic	Notions

(a)	 Physical	system.
	 Classical	example:	baseball	 Quantum	example:	electron

(c)	 State	of	a	physical	system.	Description	of	system	at	an	instant	in	time	in	terms	
of	its	properties.

(b)	 Properties	of	a	physical	system.

(d)	 State	space.	The	collection	of	all	possible	states	of	a	system.

(e)	 Dynamics.	A	description	of	how	the	states	of	a	system	evolve	in	time.

Classical	examples	 Quantum	examples
-	momentum	 -	Hardness	(spin	along	a	given	direction)
-	position	 -	Color	(spin	along	another	direction)
-	energy	 -	momentum
	 -	position
	 -	energy

Classical	example	 Quantum	example
-	baseball	moving	at	95mph,	5	ft	from	batter	 -	white	electron	entering	a	Hardness	box
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Mathematical	Description	of	Classical	Physical	System	(baseball	example)

(i)	 A	state	of	the	baseball:	Specified	by	giving	momentum	(𝑝1,	𝑝2,	𝑝3)	
and	position	(𝑞1,	𝑞2,	𝑞3).	(Baseball	has	6	"degrees	of	freedom".)

(iii)	Properties	of	the	baseball:	Represented	by	functions	on	the	phase	space.		
These	are	in-principle	always	well-defined	for	any	point	in	phase	space.

Ex:		baseball's	energy	=	𝐸(𝑝𝑖,	𝑞𝑖)	=	(𝑝12	+	𝑝22	+	𝑝32)/2𝑚

(iv)	Dynamics	of	the	baseball:	Provided	by	Newton's	equations	of	motion	
(in	their	Hamiltonian	form).

Each point has 6 numbers 
associated with it and represents 
a state of the baseball

•
• •

•
•

•
•

• •

(ii)	 The	state	space	of	the	baseball:	Represented	by	a	6-dim	set	of	points	
(phase	space):
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Will this mathematical description work for electrons?
No!
-	 Experiments	suggest	the	"spin"	properties	of	Hardness	and	Color	are	not	
always	well-defined.

-	 So:	We	can't	represent	them	mathematically	as	functions	on	a	set	of	points.

Classical	mechanics	 Quantum	mechanics
states	 points	 vectors
state	space	 set	of	points	(phase	space)	 vector	space
properties	 functions	of	points	 operators	on	vectors

physical	
concept mathematical	representation

•	 Early	20th	century	task:	Construct	a	new	theory	(quantum	mechanics)	for	
physical	systems	like	electrons	that	represents	states,	state	space,	and	
properties	in	a	different	way	than	classical	mechanics:
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component	of	|𝑄⟩	along	|0⟩

component	of	
|𝑄⟩	along	|1⟩

|0⟩

|1⟩

|𝑄⟩
|𝑄⟩	=	𝑎|0⟩	+	𝑏|1⟩

Require	state	vector	|𝑄⟩	
to	have	unit	length:

|𝑎|2	+	|𝑏|2	=	1

•	 Set	of	all	vectors	decomposible	in	basis	{|0⟩,	|1⟩}	forms	a	vector	space	ℋ.

2.	States	as	vectors

•	 Restrict	attention	to	quantum	properties	with	only	two	values	
(like	Hardness	and	Color).
-	 Associated	state	vectors	are	2-dimensional:

quantum 2-
state system
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•	 Recall:	Black	electrons	appear	to	have	no	determinate	value	of	Hardness.
•	 Let's	represent	the	values	of	Color	and	Hardness	as	basis	vectors.

Upshot: Since an electron in the vector state |𝑤ℎ𝑖𝑡𝑒⟩ cannot be in either of the 
vector states |ℎ𝑎𝑟𝑑⟩, |soft⟩, it cannot be said to possess values of Hardness.

•	 Let's	assume:

Eigenvalue-eigenvector	Rule
A	quantum	system	possesses	the	value	of	a	property	if	
and	only	if	it	is	in	a	vector	state	associated	with	that	value.

Why is this helpful?

|soft⟩

|hard⟩
|black⟩

|white⟩

45°

•	 Let's	suppose	the	Hardness	basis	{|ℎ𝑎𝑟𝑑⟩,	|soft⟩}	is	rotated	by	45°	
with	respect	to	the	Color	basis	{|𝑤ℎ𝑖𝑡𝑒⟩,	|𝑏𝑙𝑎𝑐𝑘⟩}:

A black vector state 
of an electron...

... is in a "superposition" of 
hard and soft vector states.

Then:	|black⟩	=	 ½ | ⟩ℎ𝑎𝑟𝑑 + ½| ⟩soft

1

cos(45°)	=	 ½ 

sin(45°)	
=	 ½ 

( ½	, ½	)
•
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•	 Recall:	Experimental	Result	#1:	There	is	no	correlation	between	Hardness	
measurements	and	Color	measurements.
-	 If	the	Hardness	of	a	batch	of	white	electrons	is	measured,	50%	will	be	soft	and	50%	
will	be	hard.

•	 Let's	assume:

Born	Rule
The	probability	Pr|𝜓⟩(𝑏|𝐵)	that	a	quantum	system	in	a	vector	state	
|𝜓⟩	possesses	the	value	𝑏	of	a	property	𝐵	is	given	by	the	square	of	
the	expansion	coefficient	of	the	basis	state	|𝑏⟩	in	the	expansion	of	
|𝜓⟩	in	the	basis	corresponding	to	all	values	of	the	property. Max	Born

(1882-1970)

•	 So:	The	probability	Pr|black⟩(hard|Hardness)	that	a	black	
electron	has	the	value	hard	when	measured	for	Hardness	is	½!

An electron in a black vector state... ... has a probability of ½ of being in a hard 
vector state upon measurement for Hardness.

|black⟩	=	 ½ | ⟩ℎ𝑎𝑟𝑑 + ½| ⟩soft
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3.	Properties	as	operators

Def.	1	(Linear	operator).	A	linear	operator	𝑂	is	a	map	
that	assigns	to	any	vector	|𝐴⟩,	another	vector	𝑂|𝐴⟩,	
such	that,	for	any	other	vector	|𝐵⟩	and	numbers	𝑛,	𝑚,
		 𝑂(𝑛|𝐴⟩	+	𝑚|𝐵⟩)	=	𝑛(𝑂|𝐴⟩)	+	𝑚(𝑂|𝐵⟩)
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•	Motivation:	A	property	has	values.
-	And:	We've	associating	these	values	with	basis	vectors.
-	And:	A	certain	type	of	linear	operator	(a	"Hermitian	operator")	can	be	
associated	with	a	set	of	basis	vectors.

To understand the notion of a Hermitian operator, let's first 
consider matrix representations of vectors and linear operators…



⟩𝑂|𝑄 = 𝑂!! 𝑂!"
𝑂"! 𝑂""

𝑎
𝑏 = 𝑂!!𝑎 + 𝑂!"𝑏

𝑂"!𝑎 + 𝑂""𝑏

⟨ |𝑄 𝑂# = 𝑎∗, 𝑏∗
𝑂!!∗ 𝑂"!∗
𝑂!"∗ 𝑂""∗

= 𝑂!!∗ 𝑎∗ + 𝑂!"∗ 𝑏∗, 𝑂"!∗ 𝑎∗ + 𝑂""∗ 𝑏∗

𝑂† is complex-transpose 
(or "adjoint") of 𝑂

Operator on 2-dim vectors as 2	×	2 matrix𝑂 = 𝑂!! 𝑂!"
𝑂"! 𝑂""

Def.	2	(Hermitian	operator).	An	operator	𝑂	is	
Hermitian	(or	"self-adjoint")	just	when	𝑂	=	𝑂†.

Matrix	representations
2-dim vector as 2	×	1 
"column" matrix⟩|𝑄 = 𝑎

𝑏
⟨ |𝑄 = 𝑎∗, 𝑏∗ complex-transpose of |𝑄⟩ 

as 1	×	2 "row" matrix

⟨ |𝑄 ⟩𝑄 = 𝑎∗, 𝑏∗ 𝑎
𝑏 = 𝑎∗𝑎 + 𝑏∗𝑏 = 𝑎 " + 𝑏 " = 1

Matrix multiplication

Now: In what sense can 
a Hermitian operator be 
associated with a set of 
basis vectors…
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Def.	3	(Eigenvector).	An	eigenvector	of	an	operator	𝑂	is	a	vector	|𝜆⟩	that	does	
not	change	its	direction	when	𝑂	acts	on	it:	𝑂|𝜆⟩	=	𝜆|𝜆⟩,	for	some	number	𝜆.

Def.	4	(Eigenvalue).	An	eigenvalue	𝜆	of	an	operator	𝑂	is	the	
number	that	results	when	𝑂	acts	on	one	of	its	eigenvectors.
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Claim.	The	eigenvectors	of	a	Hermitian	operator	on	a	vector	
space	ℋ	form	a	basis	of	ℋ,	and	its	eigenvalues	are	real	numbers.

This	suggests	the	following	correspondences

-	 Let	a	Hermitian	operator	𝑂	represent	a	property.
-	 Let	its	eigenvectors	|𝜆⟩	represent	the	value	states	("eigenstates")	
associated	with	the	property.

-	 Let	its	eigenvalues	𝜆	represent	the	(real	number)	values	of	the	property.

•	 The	Eigenvalue-Eigenvector	Rule	can	now	be	stated	as:

Eigenvalue-Eigenvector	Rule.	A	quantum	system	possesses	the	value	
𝜆	of	a	property	represented	by	a	Hermitian	operator	𝑂	if	and	only	if	it	
is	in	a	vector	state	|𝜆⟩	that	is	an	eigenvector	of	𝑂	with	eigenvalue	𝜆.



4.	Dynamics	and	Projection	Postulate

Erwin	Schrödinger
(1887-1961)

Schrödinger	Dynamics
Vector	states	evolve	in	time	via	the	Schrödinger	equation.

Schrödinger
evolution

|𝜓(𝑡1)⟩		¾¾¾®		|𝜓(𝑡2)⟩

vector state 
at later time t2

vector state 
at time t1

•	 The	Schrödinger	equation	can	be	encoded	in	an	operator	𝑆 ≡ 𝑒%&'()E%)F)/ℏ	
(where	𝐻	is	the	Hamiltonian	operator	that	encodes	the	energy).

vector state at t1 vector state at t2

| ⟩𝐴 	¾¾¾®	| ⟩𝐴- = 𝑆| ⟩𝐴

Important	property:	𝑆	is	a	linear	operator.
			𝑆(𝑛|𝐴⟩	+	𝑚|𝐵⟩)	=	𝑛(𝑆|𝐴⟩)	+	𝑚(𝑆|𝐵⟩),			where	𝑛,	𝑚	are	numbers.
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Example:	Suppose	we	measure	a	black	electron	for	Hardness.

Motivations:
-	 Guarantees	that	measurements	have	unique	outcomes.
-	 Guarantees	that	if	we	obtain	the	value	𝜆1	once,	then	we	should	get	the	same	
value	𝜆1	on	a	second	measurement	(provided	the	system	is	not	interferred	with).

Projection	Postulate	(2-state	systems)
When	a	measurement	of	a	property	represented	by	an	operator	
𝐵	is	made	on	a	system	in	the	vector	state	|𝑄⟩	=	𝑎|𝜆1⟩	+	𝑏|𝜆2⟩	
expanded	in	the	eigenvector	basis	of	B,	and	the	result	is	the	
value	𝜆1,	then	|𝑄⟩	collapses	to	the	state	|𝜆1⟩:
	 |𝑄⟩		¾¾¾®		|𝜆1⟩collapse

John	von	Neumann
(1903-1957)

-	Suppose:	The	outcome	of	the	measurement	is	the	value	hard.
-	Then:	The	post-measurement	state	is	given	by	|hard⟩.

-	The	pre-measurement	state	is	given	by:

|black⟩	=	 ½ | ⟩ℎ𝑎𝑟𝑑 + ½| ⟩soft
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Recap: 5 Principles of Quantum Mechanics

(1)	 States	are	represented	by	vectors	of	length	1.

(2)	 Properties	are	represented	by	Hermitian	operators.
Eigenvalue-Eigenvector	Rule:	A	quantum	system	possesses	the	value	
𝜆	of	a	property	represented	by	a	Hermitian	operator	𝑂	if	and	only	if	
it	is	in	a	vector	state	|𝜆⟩	that	is	an	eigenvector	of	𝑂	with	eigenvalue	𝜆.

(3)	Dynamics	is	given	by	the	linear	Schrödinger	equation.

Schrödinger
evolution

|𝜓(𝑡1)⟩		¾¾¾®		|𝜓(𝑡2)⟩

(4)	 Born	Rule.
	 Pr|𝜓⟩(𝑏|𝐵)	=	|⟨𝜓|𝑏𝑖⟩|2	where	|𝑏𝑖⟩	is	an	eigenvector	of	𝐵	with	eigenvalue	𝑏𝑖

(5)	 Projection	Postulate.
	 When	a	measurement	of	a	property	represented	by	an	operator	𝐵	is	made	on	

a	system	in	the	vector	state	|𝑄⟩	=	𝑎|𝜆1⟩	+	𝑏|𝜆2⟩	expanded	in	the	eigenvector	
basis	of	B,	and	the	result	is	the	value	𝜆1,	then	|𝑄⟩	collapses	to	the	state	|𝜆1⟩:

|𝑄⟩		¾¾¾®		|𝜆1⟩collapse


