05. Entropy in Classical Information Theory

1. Motivation

e Recall: Gibbs' approach to statistical mechanics

- {I, p} = an ensemble of classical states
- I' = a phase space of multi-particle microstates x
- p = a Gibbs probability distribution defined on I

- Scibbs(P) = ensemble average of —Inp

e Shannon's approach to classical information

- Generalize the notion of a classical phase space I" of
microstates x to a random variable X with possible values x.

- View p as a probability distribution that assigns probabilities
to the possible values x of X.
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- View —Inp as a measure of "information" <= Intuition: The greater the probability p(x), the
more certain that the value of X is x, and the

less information associated with this result.

e Ex:LetX ={x4,.., x,} = set of £ messages.

The amount of information gained

from the reception of a message — Intuition: The less likely a message is,
depends on how likely it is. the more info gained upon its reception!



Def. 1 (Shannon entropy). Let X be a random variable with possible values

{x4, .., x,} and probability distribution {p;, ..., p,}. The Shannon entropy
Sshan(X) of X is given by

Sshan(X) = _Zf:1 pilog,p;

e Compare with Sg

p; are probabilities defined on
single-particle microstates

Seottz(T'm) = _NkZi-):l pinp; + const.

e Continuous version of S¢.,:

SShan(X) = —j P(x)logzp(x)dx «_ << X takes a continuum of values
X

e Compare with Sgpps: Why the log, in S¢an ?

- Short answer: Classical info
is measured in units of "bits".

Scibbs(P) = —k f p(x)Inp(x)dx
I

4 - log,x = y means x = 2¥
p(x) are probabilities defined
on multi-particle microstates



Why the log, in Sep.n ?
- Long answer:

LN
Claim (Shannon 1949). S¢p.,(X) = —Zipilogzpi is the unique function H(X) : {probability
distributions on X} = R, that satisfies:

- Continuity. H(p4, ..., D,) is continuous.

Additivity. H(p1q4, - P¢q,) = H(P) + H(Q), for probability distributions P, Q.

- Monoticity. Info increases with £ for uniform distributions: If m > 2, then
H(Q)>H(P),forany P ={1/¢,..,1/¢f}and Q = {1/m, .., 1/m}.

- Branching. H(p, .., pp) is independent of how the process is divided into parts.

- Bit normalization. The average info gained for two equally likely messages is one bit:
H(Y%, %) = 1.

Bit renormalization requires log,
- Suppose: X = {x4, x5}, and P = {¥2, ¥2}.
- Then:
H(X) = —(Ylog¥2 + Y2logls)
= log2
— 1 <«—S— bit renormalization

- And: log2 = 1 ifand only iflog is to base 2. <— 10&X=y=>x=2’




Why call this "entropy"?

GNobody really knows

what entropy really is, so
in a debate you will always

have the advantK

~

\_

von Neumann



2. Sghan @S a Measure of Uncertainty

e Let X be arandom variable with possible values {x4, ..., x,} and probability
distribution {p4, ..., pe}-

Def. 3. The expected value E(X) of X is given by E(X) = Zlepixi T

Def. 4. The information gained if X is measured to have
the value x; is given by —log, p..

e Then the expected value of —log,p; is S¢,.,(X):

E(—log;p;) = _Zlepilogz Pi = Sshan(X)

- Sshan(X) is the expected information gained upon measuring X.

- The greater Sq,,.,(X), the greater the info gained upon measuring
X, and the greater the uncertainty of its measured value.



Uncertainty Interpretation Comparison

Shannon

Boltzmann

Gibbs

X = random variable

I', = single-particle phase space

[' = multi-particle phase space

{x1, ..., x,} = values of X

{x1, ..., x,} = single-particle
microstates.

x € I': multi-particle
microstates.

{p1, ., D¢} = probabilty
distribution over values.

{p1, ..., ¢} = probabilty
distribution on T,

p = probabilty distribution
onl.

p;, = probability that X has
value x; upon measurement.

p; = probability that microstate
x; of particle is in ith cell of T,

p(x,t) = prob that microstate
of system at time t is x.

—log, p; = info gained
upon measurement of
X with outcome x;,.

—Inp; = info gained upon
finding a particle to be in
microstate x; in ith cell of T',.

—Inp(x,t) = info gained upon
finding multi-particle system
to be in microstate x at time t.

Sshan(X) = _Zi Di lOgZ bi

SBOltZ(FMD) = _Nkzipilnpi

Seinns(0) = —J rpPlnpdx

Ssnan(X) = expected info gain
upon measurement of X.

Seoitz/ N = expected info gain
upon finding a single particle of
an N-particle system in
microstate x; in ith cell of T,

Scivbs(0) = expected info gain
upon finding multi-particle
system to be in microstate x
at time t.




3. Sshan @S Maximum Amount of Message Compression

e Let X = {x4, .., x,} be a set of letters from which we construct messages.

e Suppose the messages have N letters a piece.

e Let{p4, .. p,} be a probability distribution over X.

: What this means:

- Each letter x; has a probability of p; of occuring in a message.

- In other words: A typical message will contain p;N occurrences

of x4, p,N occurrences of x,, etc.

e Thus
Number of ways to
[Th e number of distin Ct] B N! «— arrar{zge N distinct letters
: _ into £ bins with
typical messages N)!--(p,N)! n
SP Y (pl ) (p{) ) capacities p1N, ..., pyN.
e S0

log,, | The number of distinct | _ | ( N'! )
2 . = log,
typical messages (P N)!--- (ppN)!

Let's simplify the RHS...



N!
log: ((plN)! -+ (peN)!

) = 10ga(N1) - {log (s N)! + -+ + loga(p:N)'}
L; Stirling's approx:
logyn! = nlogon — n

~ (Nlog,N - N) - {(p1Nlog,p;N -p:N) + --- + (p,Nlog,p,N - p,N)}

= N{log;N -1 - p;log,p;1 - p1log;N + p1 - --- - pelogp, - pelog,N + p,}

— _NZipilngpi
— NSShan(X)

e Thus:
log, [The.number ofdzstmctj = NS0 (X)
typical messages

The number of distinct | — 2 NSshan(X) log,x=y = x=2V
typical messages



So: There are only 2VSsa(X) typical messages with N letters.

This means, at the message level, we can encode them using only NSg,.,(X) bits.

\ Check: 2 possible messages require 1 bit: 0, 1. :
: 4 possible messages require 2 bits: 00, 01, 10, 11. ,
r etc. )
1 |

Now: At the letter level, how many bits are needed to encode a message of N letters
drawn from an #-letter alphabet?

|

|

1

|

I :
I 2 letters 1bit: 0,1
|

|

1

|

|

1

|
£ = #letters x = #bits per letter :
|
|
4 letters 2 bits: 00,01, 10, 11 :
8 letters 3 bits: 000,001,010,011, 100,101,110, 111 :
|
|

0: {£=2% or x=log,?¥

Note: log,? bits per letter entails Nlog,¥ bits for a sequence of N letters.

Thus: If we know how probable each letter is, then instead of requiring Nlog, ¢
bits to encode our messages, we can get by with only NS, .,(X) bits.

Sshan(X) represents the maximum amount that typical messages drawn from
a set of letters with a probability distribution defined on it can be compressed.



Ex:LetX ={A,B,C,D} (£=4) ! For instance: ;

- Then: We need log,4 = 2 bits per letter.  1J__ -2 __ L. _________ |
- So: We need 2N bits to encode a message with N letters.

- Now: Suppose the probabilities for each letter to occur in a typical N-letter
message are the following:

pa=1/2, pp=1/4, pc=pp=1/8

- Then: The minimum number of bits needed to encode all possible N-letter
messages is:

NSshan(X) = —N(3log, + 3log,z + glog,= + zlog,g) = 1.75N

- Thus: If we know how probable each letter is, instead of requiring 2N bits
to encode all possible messages, we can get by with only 1.75N.

- Note: If all letters are equally likely (the equilibrium distribution), then
Pa=Pp=Dc=pp=1/4

- And: NS¢ ..(X) = —N(%logzé + %logzi + %logz}L + }LlogZ}T) = 2N
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Message Compression Interpretation Comparison

Shannon

Boltzmann

X = set of letters

I', = single-particle phase space

{x1, ..., x,} = letters

{x4, ..., Xx,} = single-particle microstates

N-letter message

N-particle microstate

N = # of letters in message

N = # single-particle microstates in a
multi-particle microstate

{p1, - P,} = probability
distribution over letters

{p1, .., D¢} = probabilty distribution
over single-particle microstates

p; = probability that letter x;
occurs in a message

p; = prob that single-particle microstate
x; occurs in an N-particle microstate

Np; = # of occurrences of letter
x; in typical message

Np; = # occurrences of single-particle
microstate x; in typical N-particle microstate

Sshan(X) = _ZipilOgZPi

SBoltz(FMD) = _Nkzipilnpi

NS¢, = minimum number of
base 2 numerals ("bits")
needed to encode a message
composed of N letters drawn
from set {xq, ..., x,}.

SBoltz ~ NSshan = minimum number of
base e numerals ("e-bits?") needed to
encode a multi-particle microstate
composed of N single-particle
microstates drawn from {x;, ..., X,}.

Gibbs?
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Interpretive Issues:

(1) How should the probabilities p; in S¢;,,,(X) = —Zipilogzpi be interpreted?

e Emphasis is on uncertainty: The information content of the value x; of a
random variable X is a function of how uncertain it is, with respect to the

receiver.
- So: Perhaps the probabilities are epistemic.

- In particular: p; is a measure of the receiver's degree of belief in the

accuracy of the value x;.

* But: The probabilities are set by the nature of the source.
- If the source is not probabilistic, then p; can be interpreted epistemically.

- If the source is inherently probabilistic, then p, can be interpreted as the
ontic probability that the source produces the value x;,.
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(2) How is Sg,,, related to other notions of entropy?

72 6Qp
Thermodynamic: Stp(02) :j T‘l'So

01
Boltzmann: Sgoltz(I'm) = kIn|Ty|

¢
= —kz n;lnn; + const.
i=1
¢
= —Nkz p;Inp; + const.
i=1

Sgoitz(Ty) = —NkJ ,ou(xu)lnp#(x,de,i
Ty

Gibbs: Scibbs (P) = —kf p(x)Inp(x)dx
r

y
Shannon: Sshan (X) = —Z_ 1pi10821?i
1=

Sshan(X) = — j p(x)log,p(x)dx

X

Can statistical mechanics be given an information-theoretic foundation?
Can the 2nd Law be given an information-theoretic foundation?
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