
•	 Recall:	Gibbs'	approach	to	statistical	mechanics
-	 {Γ,	𝜌}	=	an	ensemble	of	classical	states
-	 Γ	=	a	phase	space	of	multi-particle	microstates	𝑥
-	 𝜌	=	a	Gibbs	probability	distribution	defined	on	Γ
-	 𝑆Gibbs(𝜌)	=	ensemble	average	of	−ln𝜌

1.	Motivation
05.	Entropy	in	Classical	Information	Theory 1.	 Motivation

2.	 𝑆Shan	as	Uncertainty
3.	 𝑆Shan	as	Message	Compression

•	 Shannon's	approach	to	classical	information
-	 Generalize	the	notion	of	a	classical	phase	space	Γ	of	
microstates	𝑥	to	a	random	variable	𝑋	with	possible	values	𝑥.

-	 View	𝜌	as	a	probability	distribution	that	assigns	probabilities	
to	the	possible	values	𝑥	of	𝑋.

Claude	Shannon
(1916-2001)

Intuition: The greater the probability 𝜌(𝑥), the 
more certain that the value of 𝑋 is 𝑥, and the 
less information associated with this result.

-	View	−ln𝜌	as	a	measure	of	"information"

•	 Ex:	Let	𝑋	=	{𝑥1,	...,	𝑥ℓ}	=	set	of	ℓ	messages.

The	amount	of	information	gained	
from	the	reception	of	a	message	
depends	on	how	likely	it	is.

Intuition: The less likely a message is, 
the more info gained upon its reception!
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Def.	1	(Shannon	entropy).	Let	𝑋	be	a	random	variable	with	possible	values	
{𝑥1,	...,	𝑥ℓ}	and	probability	distribution	{𝑝1,	...,	𝑝ℓ}.	The	Shannon	entropy	
𝑆Shan(𝑋)	of	𝑋	is	given	by

		 𝑆Shan(𝑋)	=	−∑ℓ
𝑖=1𝑝𝑖log2𝑝𝑖
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•	 Compare	with	𝑆Boltz:

	 	 𝑆Boltz(Γ𝑀)	=	−𝑁𝑘∑ℓ
𝑖=1𝑝𝑖ln𝑝𝑖	+	const.

𝑝𝑖 are probabilities defined on 
single-particle microstates

•	 Compare	with	𝑆Gibbs:

𝑆!"##$ 𝜌 = −𝑘:
%
𝜌 𝑥 ln𝜌 𝑥 𝑑𝑥

𝜌(𝑥) are probabilities defined 
on multi-particle microstates

Why the log2 in 𝑆Shan?
- Short answer: Classical info 

is measured in units of "bits".
- Long answer....

𝑆&'() 𝑋 = −:
*
𝜌 𝑥 log+𝜌 𝑥 𝑑𝑥

•	 Continuous	version	of	𝑆Shan:

𝑋 takes a continuum of values



Claim	(Shannon	1949).	𝑆Shan(𝑋)	=	−∑𝑖𝑝𝑖log2𝑝𝑖 is	the	unique	function	𝐻(𝑋)	:	{probability	
distributions	on	𝑋}	→	ℝ,	that	satisfies:
-	 Continuity.	𝐻(𝑝1,	...,	𝑝ℓ)	is	continuous.
-	 Additivity.	𝐻(𝑝1𝑞1,	...,	𝑝ℓ𝑞ℓ)	=	𝐻(𝑃)	+	𝐻(𝑄),	for	probability	distributions	𝑃,	𝑄.
-	Monoticity.	Info	increases	with	ℓ	for	uniform	distributions:	If	𝑚	>ℓ,	then	
𝐻(𝑄)>𝐻(𝑃),	for	any	𝑃	=	{1/ℓ,	...,	1/ℓ}	and	𝑄	=	{1/𝑚,	...,	1/𝑚}.

-	 Branching.	𝐻(𝑝1,	...,	𝑝ℓ)	is	independent	of	how	the	process	is	divided	into	parts.
-	 Bit	normalization.	The	average	info	gained	for	two	equally	likely	messages	is	one	bit:	
𝐻(½,	½)	=	1.

Bit	renormalization	requires	log2
-	 Suppose:	𝑋	=	{𝑥1,	𝑥2},	and	𝑃	=	{½,	½}.
-	Then:
	 	 𝐻(𝑋)	=	−(½log½	+	½log½)
	 	 	 =	log2
	 	 	 =	1
-	And:	log2	=	1	if	and	only	if	log	is	to	base	2.

bit renormalization
log2𝑥	=	𝑦	⇒	𝑥	=	2𝑦
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Why call this "entropy"?

"Nobody	really	knows	
what	entropy	really	is,	so	
in	a	debate	you	will	always	
have	the	advantage."

von	Neumann
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2.	𝑆Shan	as	a	Measure	of	Uncertainty

•	 Let	𝑋	be	a	random	variable	with	possible	values	{𝑥1,	...,	𝑥ℓ}	and	probability	
distribution	{𝑝1,	...,	𝑝ℓ}.

- 𝑆Shan(𝑋) is the expected information gained upon measuring 𝑋.
- The greater 𝑆Shan(𝑋), the greater the info gained upon measuring 
𝑋, and the greater the uncertainty of its measured value.

Def.	3.	The	expected	value	𝐸(𝑋)	of	𝑋	is	given	by	𝐸(𝑋)	=	∑ℓ
𝑖=1𝑝𝑖𝑥𝑖

Def.	4.	The	information	gained	if	𝑋	is	measured	to	have	
the	value	𝑥𝑖	is	given	by	−log2𝑝𝑖.

•	 Then	the	expected	value	of	−log2𝑝𝑖	is	𝑆Shan(𝑋):

	 	 𝐸(−log2𝑝𝑖)	=	−∑ℓ
𝑖=1𝑝𝑖log2𝑝𝑖	=	𝑆Shan(𝑋)
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Uncertainty	Interpretation	Comparison

Boltzmann

Γ𝜇	=	single-particle	phase	space

𝑆Boltz/𝑁	=	expected	info	gain	
upon	finding	a	single	particle	of	
an	𝑁-particle	system	in	
microstate	𝑥𝑖	in	𝑖th	cell	of	Γ𝜇.

Shannon

𝑋	=	random	variable

𝑆Shan(𝑋)	=	expected	info	gain	
upon	measurement	of	𝑋.

𝑆Shan(𝑋)	=	−∑𝑖𝑝𝑖 log2𝑝𝑖 𝑆Boltz(Γ𝑀𝐷)	=	−𝑁𝑘∑𝑖𝑝𝑖 ln𝑝𝑖 

Gibbs
Γ	=	multi-particle	phase	space

𝑆Gibbs(𝜌)	=	expected	info	gain	
upon	finding	multi-particle	
system	to	be	in	microstate	𝑥	
at	time	𝑡.

𝑆Gibbs(𝜌)	=	−∫Γ𝜌ln𝜌𝑑𝑥 

{𝑝1,	...,	𝑝ℓ}	=	probabilty	
distribution	over	values.

{𝑥1,	...,	𝑥ℓ}	=	values	of	𝑋

𝑝𝑖	=	probability	that	𝑋	has	
value	𝑥𝑖	upon	measurement.

−log2𝑝𝑖	=	info	gained	
upon	measurement	of	
𝑋	with	outcome	𝑥𝑖.

{𝑥1,	...,	𝑥ℓ}	=	single-particle	
microstates.
{𝑝1,	...,	𝑝ℓ}	=	probabilty	
distribution	on	Γ𝜇.

𝑝𝑖	=	probability	that	microstate	
𝑥𝑖	of	particle	is	in	𝑖th	cell	of	Γ𝜇.

−ln𝑝𝑖	=	info	gained	upon	
finding	a	particle	to	be	in	
microstate	𝑥𝑖	in	𝑖th	cell	of	Γ𝜇.

𝑥	∈	Γ:	multi-particle	
microstates.
𝜌	=	probabilty	distribution	
on	Γ.

𝜌(𝑥, 𝑡)	=	prob	that	microstate	
of	system	at	time	𝑡	is	𝑥.

−ln𝜌(𝑥, 𝑡)	=	info	gained	upon	
finding	multi-particle	system	
to	be	in	microstate	𝑥	at	time	𝑡.
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•	 Let	𝑋	=	{𝑥1,	...,	𝑥ℓ}	be	a	set	of	letters	from	which	we	construct	messages.
•	 Suppose	the	messages	have	𝑁	letters	a	piece.
•	 Let	{𝑝1,	...,	𝑝ℓ}	be	a	probability	distribution	over	𝑋.

Let's simplify the RHS...

3.	𝑆Shan	as	Maximum	Amount	of	Message	Compression

What	this	means:
-	 Each	letter	𝑥𝑖	has	a	probability	of	𝑝𝑖	of	occuring	in	a	message.
-	 In	other	words:	A	typical	message	will	contain	𝑝1𝑁	occurrences	
of	𝑥1,	𝑝2𝑁	occurrences	of	𝑥2,	etc.

•	 Thus:

The	number	of	distinct	
typical	messages

Number of ways to 
arrange 𝑁 distinct letters 
into ℓ bins with 
capacities 𝑝1𝑁, ..., 𝑝ℓ𝑁.

=
𝑁!

𝑝,𝑁 !⋯ 𝑝ℓ𝑁 !

•	 So:

log2 The	number	of	distinct	
typical	messages

= log+
𝑁!

𝑝,𝑁 !⋯ 𝑝ℓ𝑁 !
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=	𝑁𝑆Shan(𝑋)

•	 Thus:
The	number	of	distinct	
typical	messages

log2 =	𝑁𝑆Shan(𝑋)

log+
𝑁!

𝑝,𝑁 !⋯ 𝑝ℓ𝑁 !
==	log2(𝑁!)	–	{log2(𝑝1𝑁)!	+	⋯	+	log2(𝑝ℓ𝑁)!}

≈	(𝑁log2𝑁	–	𝑁)	–	{(𝑝1𝑁log2𝑝1𝑁	–	𝑝1𝑁)	+	⋯	+	(𝑝ℓ𝑁log2𝑝ℓ𝑁	–	𝑝ℓ𝑁)}

=	𝑁{log2𝑁	–	1	–	𝑝1log2𝑝1	–	𝑝1log2𝑁	+	𝑝1	–	⋯	–	𝑝ℓlog2𝑝ℓ	–	𝑝ℓlog2𝑁	+	𝑝ℓ}

=	–𝑁∑𝑖𝑝𝑖log2𝑝𝑖

Stirling's approx:
log2𝑛!	≈	𝑛log2𝑛	−	𝑛

•	 So:
The	number	of	distinct	
typical	messages

=	2𝑁𝑆Shan(𝑋) log2𝑥	=	𝑦	⇒	𝑥	=	2𝑦
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•	 So:	There	are	only	2𝑁𝑆Shan(𝑋)	typical	messages	with	𝑁	letters.

•	 Now:	At	the	letter	level,	how	many	bits	are	needed	to	encode	a	message	of	𝑁	letters	
drawn	from	an	ℓ-letter	alphabet?

First:	 How	many	bits	are	needed	to	encode	each	letter	in	an	ℓ-letter	alphabet?
ℓ	=	#letters	 𝑥	=	#bits	per	letter
2	letters	 1	bit:	 0,	1
4	letters	 2	bits:	 00,	01,	10,	11
8	letters	 3	bits:	 000,	001,	010,	011,	100,	101,	110,	111

So:	 ℓ	=	2𝑥,			or			𝑥	=	log2ℓ

Check:	 2	possible	messages	require	1	bit:	0,	1.
	 4	possible	messages	require	2	bits:	00,	01,	10,	11.
	 etc.

•	 This	means,	at	the	message	level,	we	can	encode	them	using	only	𝑁𝑆Shan(𝑋)	bits.

•	 Note:	 log2ℓ	bits	per	letter	entails	𝑁log2ℓ	bits	for	a	sequence	of	𝑁	letters.
•	 Thus:	 If	we	know	how	probable	each	letter	is,	then	instead	of	requiring	𝑁log2ℓ	

bits	to	encode	our	messages,	we	can	get	by	with	only	𝑁𝑆Shan(𝑋)	bits.
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•	 So:
𝑆Shan(𝑋) represents the maximum amount that typical messages drawn from 
a set of letters with a probability distribution defined on it can be compressed.



Ex:	Let	𝑋	=	{𝐴,	𝐵,	𝐶,	𝐷}			(ℓ	=	4)

-	 Now:	Suppose	the	probabilities	for	each	letter	to	occur	in	a	typical	𝑁-letter	
message	are	the	following:

	 	 𝑝𝐴	=	1/2,			𝑝𝐵	=	1/4,			𝑝𝐶	=	𝑝𝐷	=	1/8

-	 Thus:	If	we	know	how	probable	each	letter	is,	instead	of	requiring	2𝑁	bits	
to	encode	all	possible	messages,	we	can	get	by	with	only	1.75𝑁.

-	 So:	We	need	2𝑁	bits	to	encode	a	message	with	𝑁	letters.

-	 Then:	We	need	log24	=	2	bits	per	letter.
For	instance:
𝐴	=	00,	𝐵	=	01,	𝐶	=	10,	𝐷	=	11

-	 Then:	The	minimum	number	of	bits	needed	to	encode	all	possible	𝑁-letter	
messages	is:

= −𝑁 :
;log;

:
; +

:
<log;

:
< +

:
=log;

:
= +

:
=log;

:
= = 1.75𝑁𝑁𝑆Shan(𝑋)

-	 And:

-	 Note:	If	all	letters	are	equally	likely	(the	equilibrium	distribution),	then	
𝑝𝐴	=	𝑝𝐵	=	𝑝𝐶	=	𝑝𝐷	=	1/4.

= −𝑁 :
<log;

:
< +

:
<log;

:
< +

:
<log;

:
< +

:
<log;

:
< = 2𝑁𝑁𝑆Shan(𝑋)
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Message	Compression	Interpretation	Comparison

Boltzmann

Γ𝜇	=	single-particle	phase	space

𝑆Boltz	∼	N𝑆Shan	=	minimum	number	of	
base	e	numerals	("e-bits?")	needed	to	
encode	a	multi-particle	microstate	
composed	of	N	single-particle	
microstates	drawn	from	{𝑥1,	...,	𝑥ℓ}.

Shannon

𝑋	=	set	of	letters

𝑁𝑆Shan	=	minimum	number	of	
base	2	numerals	("bits")	
needed	to	encode	a	message	
composed	of	𝑁	letters	drawn	
from	set	{𝑥1,	...,	𝑥ℓ}.

𝑆Shan(𝑋)	=	−∑𝑖𝑝𝑖log2𝑝𝑖 𝑆Boltz(Γ𝑀𝐷)	=	−𝑁𝑘∑𝑖𝑝𝑖ln𝑝𝑖

𝑁-letter	message

𝑁	=	#	of	letters	in	message

{𝑝1,	...,	𝑝ℓ}	=	probability	
distribution	over	letters

𝑝𝑖	=	probability	that	letter	𝑥𝑖	
occurs	in	a	message

𝑁𝑝𝑖	=	#	of	occurrences	of	letter	
𝑥𝑖	in	typical	message

{𝑥1,	...,	𝑥ℓ}	=	single-particle	microstates

𝑁-particle	microstate

𝑁	=	#	single-particle	microstates	in	a	
multi-particle	microstate

{𝑝1,	...,	𝑝ℓ}	=	probabilty	distribution	
over	single-particle	microstates

𝑝𝑖	=	prob	that	single-particle	microstate	
𝑥𝑖	occurs	in	an	𝑁-particle	microstate

𝑁𝑝𝑖	=	#	occurrences	of	single-particle	
microstate	𝑥𝑖	in	typical	𝑁-particle	microstate

{𝑥1,	...,	𝑥ℓ}	=	letters

Gibbs?
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Interpretive	Issues:

(1)	How	should	the	probabilities	𝑝𝑖	in	𝑆Shan(𝑋)	=	–∑𝑖𝑝𝑖log2𝑝𝑖	be	interpreted?

•	 Emphasis	is	on	uncertainty:	The	information	content	of	the	value	𝑥𝑖	of	a	
random	variable	𝑋	is	a	function	of	how	uncertain	it	is,	with	respect	to	the	
receiver.
-	 So:	Perhaps	the	probabilities	are	epistemic.
-	 In	particular:	𝑝𝑖	is	a	measure	of	the	receiver's	degree	of	belief	in	the	
accuracy	of	the	value	𝑥𝑖.

•	 But:	The	probabilities	are	set	by	the	nature	of	the	source.
-	 If	the	source	is	not	probabilistic,	then	𝑝𝑖	can	be	interpreted	epistemically.
-	 If	the	source	is	inherently	probabilistic,	then	𝑝𝑖	can	be	interpreted	as	the	
ontic	probability	that	the	source	produces	the	value	𝑥𝑖.
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(2)	How	is	𝑆Shan	related	to	other	notions	of	entropy?

Can statistical mechanics be given an information-theoretic foundation?
Can the 2nd Law be given an information-theoretic foundation?

Thermodynamic:

Boltzmann:

Gibbs:

Shannon:

𝑆>? 𝜎@ = S
A*

A+ 𝛿𝑄B
𝑇

+ 𝑆C

𝑆DEFFG 𝜌 = −𝑘S
H
𝜌 𝑥 ln𝜌 𝑥 𝑑𝑥

𝑆IJKL 𝑋 = −X
MNO

ℓ
𝑝Mlog@𝑝M

𝑆IJKL 𝑋 = −S
P
𝜌 𝑥 log@𝜌 𝑥 𝑑𝑥

𝑆QRSTU(Γ𝑀) = 𝑘ln|Γ𝑀|

𝑆QRSTU(ΓV) = −𝑁𝑘S
H,
𝜌W 𝑥W ln𝜌W 𝑥W 𝑑𝑥W

= −𝑁𝑘X
MNO

ℓ
𝑝Mln𝑝M + const.

= −𝑘X
MNO

ℓ
𝑛Mln𝑛M + const.
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