05. Entropy in Classical Information Theory

1. Motivation

- Recall: Gibbs' approach to statistical mechanics
- $\{\Gamma, \rho\}=$ an ensemble of classical states
- $\Gamma=$ a phase space of multi-particle microstates x
- $\rho=$ a Gibbs probability distribution defined on Γ
- $S_{\text {Gibbs }}(\rho)=$ ensemble average of $-\ln \rho$
- Shannon's approach to classical information
- Generalize the notion of a classical phase space Г of microstates x to a random variable X with possible values x.

Claude Shannon (1916-2001)

- View ρ as a probability distribution that assigns probabilities to the possible values x of X.
- View $-\ln \rho$ as a measure of "information" \longleftarrow Intuition: The greater the probability $\rho(x)$, the more certain that the value of X is x, and the less information associated with this result.
- $\underline{E x}:$ Let $X=\left\{x_{1}, \ldots, x_{\ell}\right\}=$ set of ℓ messages.

\longleftarrow Intuition: The less likely a message is, the more info gained upon its reception!

Def. 1 (Shannon entropy). Let X be a random variable with possible values $\left\{x_{1}, \ldots, x_{\ell}\right\}$ and probability distribution $\left\{p_{1}, \ldots, p_{\ell}\right\}$. The Shannon entropy $S_{\text {Shan }}(X)$ of X is given by

$$
S_{\text {Shan }}(X)=-\sum_{i=1}^{\ell} p_{i} \log _{2} p_{i}
$$

- Compare with $S_{\text {Boltz }}$:

$$
S_{\text {Boltz }}\left(\Gamma_{M}\right)=-N k \sum_{i=1}^{\ell} p_{i} \ln p_{i}+\text { const. } \longleftarrow \hookleftarrow \underset{\substack{p_{i} \\ \text { single-particle e microstates }}}{p_{i} \text { are probailies defined on }}
$$

- Continuous version of $S_{\text {Shan }}$:

$$
S_{\text {Shan }}(X)=-\int_{X} \rho(x) \log _{2} \rho(x) d x \longleftarrow \varsigma^{x} \text { takes a continuum of values }
$$

- Compare with $S_{\text {Gibbs }}$:

$$
S_{\text {Gibbs }}(\rho)=-k \int_{\Gamma} \rho(x) \ln \rho(x) d x
$$

Why the $\log _{2}$ in $S_{\text {Shan }}$?

- Short answer: Classical info is measured in units of "bits".
- Long answer....

Claim (Shannon 1949). $S_{\text {Shan }}(X)=-\sum_{i} p_{i} \log _{2} p_{i}$ is the unique function $H(X):\{$ probability distributions on $X\} \rightarrow \mathbb{R}$, that satisfies:

- Continuity. $H\left(p_{1}, \ldots, p_{\ell}\right)$ is continuous.
- Additivity. $H\left(p_{1} q_{1}, \ldots, p_{\ell} q_{\ell}\right)=H(P)+H(Q)$, for probability distributions P, Q.
- Monoticity. Info increases with ℓ for uniform distributions: If $m>\ell$, then $H(Q)>H(P)$, for any $P=\{1 / \ell, \ldots, 1 / \ell\}$ and $Q=\{1 / m, \ldots, 1 / m\}$.
- Branching. $H\left(p_{1}, \ldots, p_{\ell}\right)$ is independent of how the process is divided into parts.
- Bit normalization. The average info gained for two equally likely messages is one bit: $H(1 / 2,1 / 2)=1$.

Bit renormalization requires $\log _{2}$

- Suppose: $X=\left\{x_{1}, x_{2}\right\}$, and $P=\{1 / 2,1 / 2\}$.
- Then:

$$
\begin{aligned}
H(X) & =-(1 / 2 \log 1 / 2+1 / 2 \log 1 / 2) \\
& =\log 2 \\
& =1 \longleftrightarrow \text { bit renormalization }
\end{aligned}
$$

$-\underline{\text { And }}: \log 2=1$ if and only if \log is to base $2 . \longleftarrow \log _{2} x=y \Rightarrow x=2^{y}$

Why call this "entropy"?

von Neumann

2. $S_{\text {Shan }}$ as a Measure of Uncertainty

- Let X be a random variable with possible values $\left\{x_{1}, \ldots, x_{\ell}\right\}$ and probability distribution $\left\{p_{1}, \ldots, p_{\ell}\right\}$.

Def. 3. The expected value $E(X)$ of X is given by $E(X)=\sum_{i=1}^{\ell} p_{i} x_{i}$

Def. 4. The information gained if X is measured to have the value x_{i} is given by $-\log _{2} p_{i}$.

- Then the expected value of $-\log _{2} p_{i}$ is $S_{\text {Shan }}(X)$:

$$
E\left(-\log _{2} p_{i}\right)=-\sum_{i=1}^{\ell} p_{i} \log _{2} p_{i}=S_{\text {Shan }}(X)
$$

- $S_{\text {Shan }}(X)$ is the expected information gained upon measuring X.
- The greater $S_{\text {Shan }}(X)$, the greater the info gained upon measuring X, and the greater the uncertainty of its measured value.

Uncertainty Interpretation Comparison

Shannon	Boltzmann	Gibbs
$X=$ random variable	$\Gamma_{\mu}=$ single-particle phase space	$\Gamma=$ multi-particle phase space
$\left\{x_{1}, \ldots, x_{\ell}\right\}=$ values of X	$\left\{x_{1}, \ldots, x_{\ell}\right\}=$ single-particle microstates.	$x \in \Gamma:$ multi-particle microstates.
$\left\{p_{1}, \ldots, p_{\ell}\right\}=$ probabilty distribution over values.	$\left\{p_{1}, \ldots, p_{\ell}\right\}=$ probabilty distribution on Γ_{μ}.	$\rho=$ probabilty distribution on Γ.
$p_{i}=$ probability that X has value x_{i} upon measurement.	$p_{i}=$ probability that microstate x_{i} of particle is in i th cell of Γ_{μ}.	$\rho(x, t)=$ prob that microstate of system at time t is x.
$-\log _{2} p_{i}=$ info gained upon measurement of X with outcome x_{i}.	$-\ln p_{i}=$ info gained upon finding a particle to be in microstate x_{i} in i th cell of Γ_{μ}.	$-\ln \rho(x, t)=$ info gained upon finding multi-particle system to be in microstate x at time t.
$S_{\text {Shan }}(X)=-\sum_{i} p_{i} \log p_{2} p_{i}$	$S_{\text {Boltz }}\left(\Gamma_{M_{D}}\right)=-N k \sum_{i} p_{i} \ln p_{i}$	$S_{\text {Gibbs }}(\rho)=-\iint_{\Gamma} \rho \ln \rho d x$
$S_{\text {Shan }}(X)=$ expected info gain upon measurement of X.	$S_{\text {Boltz }} / N=$ expected info gain upon finding a single particle of an N-particle system in microstate x_{i} in i th cell of $\Gamma_{\mu .}$	$S_{\text {Gibbs }}(\rho)=$ expected info gain upon finding multi-particle system to be in microstate x at time t.

3. $S_{\text {Shan }}$ as Maximum Amount of Message Compression

- Let $X=\left\{x_{1}, \ldots, x_{\ell}\right\}$ be a set of letters from which we construct messages.
- Suppose the messages have N letters a piece.
- Let $\left\{p_{1}, \ldots, p_{\ell}\right\}$ be a probability distribution over X.

What this means:

- Each letter x_{i} has a probability of p_{i} of occuring in a message.
- In other words: A typical message will contain $p_{1} N$ occurrences of $x_{1}, p_{2} N$ occurrences of x_{2}, etc.
- Thus:

$$
\binom{\text { The number of distinct }}{\text { typical messages }}=\frac{N!}{\left(p_{1} N\right)!\cdots\left(p_{\ell} N\right)!}
$$

$\longleftarrow \begin{aligned} & \text { Number of ways to } \\ & \text { arrange } N \text { distinct letters }\end{aligned}$ into ℓ bins with capacities $p_{1} N, \ldots, p_{t} N$.

- $\underline{\text { So }}$
$\log _{2}\binom{$ The number of distinct }{ typical messages }$=\log _{2}\left(\frac{N!}{\left(p_{1} N\right)!\cdots\left(p_{\ell} N\right)!}\right)$
Let's simplify the RHS...

$$
\begin{aligned}
\log _{2}(& \left.\frac{N!}{\left(p_{1} N\right)!\cdots\left(p_{\ell} N\right)!}\right)=\log _{2}(N!)-\left\{\log _{2}\left(p_{1} N\right)!+\cdots+\log _{2}\left(p_{\ell} N\right)!\right\} \\
& \approx\left(N \log _{2} N-N\right)-\left\{\left(p_{1} N \log _{2} p_{1} N-p_{1} N\right)+\cdots+\left(p_{\ell} N \log _{2} p_{\ell} N-p_{\ell} N\right)\right\} \\
& =N\left\{\log _{2} N-1-p_{1} \log _{2} p_{1}-p_{1} \log _{2} N+p_{1}-\cdots-p_{\ell} \log _{2} p_{\ell}-p_{\ell} \log _{2} N+p_{\ell}\right\} \\
& =-N \sum_{i} p_{i} \log _{2} p_{i} \\
& =N S_{\text {Shan }}(X)
\end{aligned}
$$

- Thus:

$$
\log _{2}\binom{\text { The number of distinct }}{\text { typical messages }}=N S_{\text {Shan }}(X)
$$

- So:

$$
\binom{\text { The number of distinct }}{\text { typical messages }}=2^{N S_{\text {Shan }}(X)} \quad \log _{2} x=y \Rightarrow x=2^{y}
$$

- So: There are only $2^{N S_{\text {Shan }}(X)}$ typical messages with N letters.
- This means, at the message level, we can encode them using only $N S_{\text {Shan }}(X)$ bits.

```
Check: 2 possible messages require 1 bit: 0,1.
    4 possible messages require 2 bits: 00,01,10,11.
    etc.
```

- Now: At the letter level, how many bits are needed to encode a message of N letters drawn from an ℓ-letter alphabet?

- Note: $\log _{2} \ell$ bits per letter entails $N \log _{2} \ell$ bits for a sequence of N letters.
- Thus: If we know how probable each letter is, then instead of requiring $N \log _{2} \ell$ bits to encode our messages, we can get by with only $N S_{\text {Shan }}(X)$ bits.
- So:
$S_{\text {Shan }}(X)$ represents the maximum amount that typical messages drawn from a set of letters with a probability distribution defined on it can be compressed.

Ex: Let $X=\{A, B, C, D\} \quad(\quad=4)$

- Then: We need $\log _{2} 4=2$ bits per letter.
- So: We need $2 N$ bits to encode a message with N letters.
- Now: Suppose the probabilities for each letter to occur in a typical N-letter message are the following:

$$
p_{A}=1 / 2, \quad p_{B}=1 / 4, \quad p_{C}=p_{D}=1 / 8
$$

- Then: The minimum number of bits needed to encode all possible N-letter messages is:

$$
N S_{\text {Shan }}(X)=-N\left(\frac{1}{2} \log _{2} \frac{1}{2}+\frac{1}{4} \log _{2} \frac{1}{4}+\frac{1}{8} \log _{2} \frac{1}{8}+\frac{1}{8} \log _{2} \frac{1}{8}\right)=1.75 N
$$

- Thus: If we know how probable each letter is, instead of requiring $2 N$ bits to encode all possible messages, we can get by with only 1.75 N .
- Note: If all letters are equally likely (the equilibrium distribution), then $p_{A}=p_{B}=p_{C}=p_{D}=1 / 4$.
- And: $N S_{\text {Shan }}(X)=-N\left(\frac{1}{4} \log _{2} \frac{1}{4}+\frac{1}{4} \log _{2} \frac{1}{4}+\frac{1}{4} \log _{2} \frac{1}{4}+\frac{1}{4} \log _{2} \frac{1}{4}\right)=2 N$

Shannon	Boltzmann
$X=$ set of letters	$\Gamma_{\mu}=$ single-particle phase space
$\left\{x_{1}, \ldots, x_{\ell}\right\}$ = letters	$\left\{x_{1}, \ldots, x_{\ell}\right\}=$ single-particle microstates
N-letter message	N-particle microstate
$N=\#$ of letters in message	$N=$ \# single-particle microstates in a multi-particle microstate
$\left\{p_{1}, \ldots, p_{\ell}\right\}=$ probability distribution over letters	$\left\{p_{1}, \ldots, p_{\ell}\right\}=$ probabilty distribution over single-particle microstates
$p_{i}=$ probability that letter x_{i} occurs in a message	$p_{i}=$ prob that single-particle microstate x_{i} occurs in an N-particle microstate
$N p_{i}=\#$ of occurrences of letter x_{i} in typical message	$N p_{i}=\#$ occurrences of single-particle microstate x_{i} in typical N-particle microstate
$S_{\text {Shan }}(X)=-\sum_{i} p_{i}$ log $p_{2} p_{i}$	$S_{\text {Boltz }}\left(\Gamma_{M_{D}}\right)=-N k \sum_{i} p_{i}$ In p_{i}
$N S_{\text {Shan }}=$ minimum number of base 2 numerals ("bits") needed to encode a message composed of N letters drawn from set $\left\{x_{1}, \ldots, x_{\ell}\right\}$.	$S_{\text {Boltz }} \sim N S_{\text {Shan }}=$ minimum number of base e numerals (" e-bits?") needed to encode a multi-particle microstate composed of N single-particle microstates drawn from $\left\{x_{1}, \ldots, x_{\ell}\right\}$.

Interpretive Issues:

(1) How should the probabilities p_{i} in $S_{\text {Shan }}(X)=-\sum_{i} p_{i} \log _{2} p_{i}$ be interpreted?

- Emphasis is on uncertainty: The information content of the value x_{i} of a random variable X is a function of how uncertain it is, with respect to the receiver.
- So: Perhaps the probabilities are epistemic.
- In particular: p_{i} is a measure of the receiver's degree of belief in the accuracy of the value x_{i}.
- But: The probabilities are set by the nature of the source.
- If the source is not probabilistic, then p_{i} can be interpreted epistemically.
- If the source is inherently probabilistic, then p_{i} can be interpreted as the ontic probability that the source produces the value x_{i}.

(2) How is $S_{\text {Shan }}$ related to other notions of entropy?

$$
\begin{array}{lrl}
\text { Thermodynamic: } \quad S_{\mathrm{TD}}\left(\sigma_{2}\right) & =\int_{\sigma_{1}}^{\sigma_{2}} \frac{\delta Q_{R}}{T}+S_{0} \\
\hline \text { Boltzmann: } \quad \begin{aligned}
S_{\mathrm{Boltz}}\left(\Gamma_{M}\right) & =k \ln \left|\Gamma_{M}\right| \\
& =-k \sum_{i=1}^{\ell} n_{i} \ln n_{i}+\text { const. } \\
& =-N k \sum_{i=1}^{\ell} p_{i} \ln p_{i}+\text { const. } \\
& \\
& \\
\hline \text { Gibbs: } & \\
\hline \text { Shannon: } \quad & \\
& S_{\mathrm{Gibbs}}\left(\Gamma_{M}\right)
\end{aligned}=-N k \int_{\Gamma_{\mu}} \rho_{\mu}\left(x_{\mu}\right) \ln \rho_{\mu}\left(x_{\mu}\right) d x_{\mu} \\
\hline
\end{array}
$$

Can statistical mechanics be given an information-theoretic foundation?
Can the 2nd Law be given an information-theoretic foundation?

