
Willard	Gibbs
(1839-1903)

Problem:	Observed	macro-properties	(temp,	pressure,	
volume,	etc)	are	time	averages	of	micro-properties.

Very difficult to calculate! (Must keep track of all positions and 
momenta of particles of the system over a given period of time!)

•	 Gibbs'	Solution:

Replace with

Time	average	of	a	
property	of	a	
single	system	over	
a	period	of	time.

"Ensemble	average"	of	the	
property	over	infinitely	
many	copies	of	the	system	
at	an	instant	of	time!

Much easier to calculate! All you need is a 
weighting system defined on all the copies; 
i.e., a distribution 𝜌(𝑥) defined on Γ!

Boltzmann:	Analysis	of	a	single	multiparticle	system.
-	 Point	𝑥	in	Γ𝐸:	microstate	of	system.
-	 Function	𝑓	on	Γ𝐸:	a	property	of	the	system	in	terms	of	its	
micro-properties	(positions/momenta	of	its	particles).
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Boltzmann:	Analysis	of	a	single	multiparticle	system.
-	 Point	𝑥	in	Γ𝐸:	microstate	of	system.
-	 Function	𝑓	on	Γ𝐸:	a	property	of	the	system	in	terms	of	its	
micro-properties	(positions/momenta	of	its	particles).

"And	here	we	may	set	the	problem,	not	to	follow	a	particular	
system	through	its	succession	of	configurations,	but	to	determine	
how	the	whole	number	of	systems	will	be	distributed	among	the	
various	conceivable	configurations	and	velocities	at	any	required	
time,	when	the	distribution	has	been	given	for	some	one	time."*

*Gibbs,	W.	(1902)	Elementary	Principles	in	Statistical	Mechanics,	Scribner,	pg.	v.

Gibbs:	Analysis	of	an	ensemble	of	infinitely	many	copies	of	same	system.
-	 Point	𝑥	in	Γ:	microstate	of	one	member	of	ensemble.
-	 Function	𝑓	on	Γ:	a	property	of	the	system	in	terms	of	its	micro-properties.
-	 Distribution	𝜌(𝑥)	on	Γ:	state	of	entire	ensemble.

- A "density" function: tells you how the points in Γ are spread out.
- Not Boltzmann's D	or 𝜌𝜇(𝑥𝜇)!
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Boltzmann:	Analysis	of	a	single	multiparticle	system.
-	 Point	𝑥	in	Γ𝐸:	microstate	of	system.
-	 Function	𝑓	on	Γ𝐸:	a	property	of	the	system	in	terms	of	its	
micro-properties	(positions/momenta	of	its	particles).

One	way	to	think	of	difference

-	 Boltzmann:	The	state	of	a	multiparticle	system	is	
represented	by	a	point	𝑥	in	Γ𝐸.

-	 Gibbs:	The	state	of	a	multiparticle	system	is	represented	by	
an	ensemble	{Γ,	𝜌(𝑥)},	which	is	a	collection	Γ	of	possible	
states,	with	each	state	𝑥	weighted	by	a	probability	𝜌(𝑥).

Definite 
"pure" state?

Indefinite 
"mixed" state?

Gibbs:	Analysis	of	an	ensemble	of	infinitely	many	copies	of	same	system.
-	 Point	𝑥	in	Γ:	microstate	of	one	member	of	ensemble.
-	 Function	𝑓	on	Γ:	a	property	of	the	system	in	terms	of	its	micro-properties.
-	 Distribution	𝜌(𝑥)	on	Γ:	state	of	entire	ensemble.

- A "density" function: tells you how the points in Γ are spread out.
- Not Boltzmann's D	or 𝜌𝜇(𝑥𝜇)!
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Boltzmann:	Analysis	of	a	single	multiparticle	system.
-	 Point	𝑥	in	Γ𝐸:	microstate	of	system.
-	 Function	𝑓	on	Γ𝐸:	a	property	of	the	system	in	terms	of	its	
micro-properties	(positions/momenta	of	its	particles).

Gibbs:	Analysis	of	an	ensemble	of	infinitely	many	copies	of	same	system.
-	 Point	𝑥	in	Γ:	microstate	of	one	member	of	ensemble.
-	 Function	𝑓	on	Γ:	a	property	of	the	system	in	terms	of	its	micro-properties.
-	 Distribution	𝜌(𝑥)	on	Γ:	state	of	entire	ensemble.

- A "density" function: tells you how the points in Γ are spread out.
- Not Boltzmann's D	or 𝜌𝜇(𝑥𝜇)!

Roles	for	𝜌(𝑥):
Probability of finding 
microstate 𝑥 in region 𝒮&

𝒮
𝜌 𝑥 𝑑𝑥-	 Assigns	probabilities	to	microstates:

𝜌	is	an	equilibrium	state	just	when	it	is	stationary	
(i.e.,	constant	in	time).

⟨𝑓⟩ is constant just 
when 𝜌 is stationary.

-	 Defines	notion	of	equilibrium.

𝑓 ≡ &
#
𝑓 𝑥 𝜌 𝑥 𝑑𝑥-	 Determines	ensemble	averages: Represents a 

measurable property.
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Boltzmann:	Analysis	of	a	single	multiparticle	system.
-	 Point	𝑥	in	Γ𝐸:	microstate	of	system.
-	 Function	𝑓	on	Γ𝐸:	a	property	of	the	system	in	terms	of	its	
micro-properties	(positions/momenta	of	its	particles).

Gibbs:	Analysis	of	an	ensemble	of	infinitely	many	copies	of	same	system.
-	 Point	𝑥	in	Γ:	microstate	of	one	member	of	ensemble.
-	 Function	𝑓	on	Γ:	a	property	of	the	system	in	terms	of	its	micro-properties.
-	 Distribution	𝜌(𝑥)	on	Γ:	state	of	entire	ensemble.

Key	differences

-	 Boltzmann:	No	distribution	defined	on	Γ𝐸;	Γ𝐸	divided	into	macrostate	
regions;	equilibrium	state	defined	as	largest	macrostate	region.

-	 Gibbs:	Distribution	defined	on	Γ;	no	reference	to	macrostates;	equilibrium	
state	defined	in	terms	of	a	property	(stationarity)	of	a	distribution.

- A "density" function: tells you how the points in Γ are spread out.
- Not Boltzmann's D	or 𝜌𝜇(𝑥𝜇)!



Averaging	Principle:	The	measured	value	of	a	property	𝑓	of	a	system	in	
thermodynamic	equilibrium	is	the	ensemble	average	⟨𝑓⟩	of	an	ensemble	
in	statistical	equilibrium	(i.e.,	an	ensemble	with	a	stationary	distribution).

-	 And:	For	sufficiently	chaotic	("ergodic")	systems,	⟨𝑓⟩	=	𝑓∗(𝑥0).

Justification:	A	measurement	of	a	property	f	takes	some	amount	of	time,	
which	is	"infinite"	compared	to	molecular	processes.
-	 So:	What	gets	measured	in	the	lab	is	the	infinite	time	average	𝑓∗(𝑥0):

𝑓∗ 𝑥% = lim
&→(

1
𝜏
&
)7

)7*&
𝑓 𝜙) 𝑥% 𝑑𝑡
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Def.	1	(Gibbs	entropy).	The	Gibbs	entropy	𝑆Gibbs(𝜌)	of	an	ensemble	
distribution	𝜌	is	the	ensemble	average	of	the	quantity	−𝑘ln𝜌:

𝑆*+,,- 𝜌 ≡ −𝑘0
.
𝜌 𝑥 ln𝜌 𝑥 𝑑𝑥

𝑆/0123(Γ4) = −𝑁𝑘0
.(
𝜌5 𝑥5 ln𝜌5 𝑥5 𝑑𝑥5

•	 Compare	with	"continuous"	version	of	𝑆Boltz:

-	 𝑆Boltz	is	an	integral	over	the	single-particle	phase	space	Γ𝜇	of	the	constant-
energy	subregion	Γ𝐸	of	Γ.

-	 𝑆Gibbs	is	an	integral	over	the	full	phase	space	Γ	(not	even	restricted	to	Γ𝐸).

However: One can show that 𝑆Gibbs reduces to 𝑆Boltz for the case of a 
system of 𝑁 identical, weakly interacting particles at constant energy...
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2.	Gibbs	Entropy	𝑆Gibbs



•	 Consider:	A	system	of	𝑁	identical,	weakly	interacting	particles	at	constant	energy.	

•	 Characterized	by	distribution	given	by:

	 	 				𝜌(𝑥)	=	𝜌𝜇1(𝑥𝜇1)𝜌𝜇2(𝑥𝜇2)⋯𝜌𝜇𝑁(𝑥𝜇𝑁)	,							such	that	𝜌𝜇𝑖	=	𝜌𝜇𝑗	for	all	𝑖,	𝑗 

Single-particle distribution 
for constant-energy 
microstates of particle 1

Weakly interacting particles: 
"Total probability" = product 
of individual probabilities

Identical particles: all individual 
probabilities are equal

•	 For	this	distribution:	

𝑆Gibbs(𝜌)	 =	−𝑘∫Γ𝜌𝜇1(𝑥𝜇1)⋯𝜌𝜇𝑁(𝑥𝜇𝑁)ln[𝜌𝜇1(𝑥𝜇1)⋯𝜌𝜇𝑁(𝑥𝜇𝑁)]𝑑𝑥

3.	Gibbs	Entropy	𝑆Gibbs	vs.	Boltzmann	Entropy	𝑆Boltz
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Γ	=	Γ𝜇1	×	⋯	×	Γ𝜇𝑁
𝑑𝑥	=	𝑑𝑥𝜇1	⋯	𝑑𝑥𝜇𝑁 	=	−𝑘∫Γ𝜇1𝜌𝜇1(𝑥𝜇1)ln𝜌𝜇1(𝑥𝜇1)𝑑𝑥𝜇1	⋯	∫Γ𝜇𝑁𝜌𝜇𝑁(𝑥𝜇𝑁)𝑑𝑥𝜇𝑁 	−	⋯	

	 	−	𝑘∫Γ𝜇𝜌𝜇1(𝑥𝜇1)𝑑𝑥𝜇1	⋯	∫Γ𝜇𝜌𝜇𝑁(𝑥𝜇𝑁)ln𝜌𝜇𝑁(𝑥𝜇𝑁)𝑑𝑥𝜇𝑁

∫Γ𝜇𝜌𝜇𝑖(𝑥𝜇𝑖)𝑑𝑥𝜇𝑖 	=	1
=	−𝑘∫Γ𝜇𝜌𝜇1(𝑥𝜇1)𝑑𝑥𝜇1 ln𝜌𝜇1(𝑥𝜇1)	−	⋯	

	 	−	𝑘∫Γ𝜇𝜌𝜇𝑁(𝑥𝜇𝑁)𝑑𝑥𝜇𝑁 ln𝜌𝜇𝑁(𝑥𝜇𝑁)

=	−𝑁𝑘∫Γ𝜇𝜌𝜇(𝑥𝜇)ln𝜌𝜇(𝑥𝜇)𝑑𝑥𝜇	=	𝑆Boltz(Γ𝑀)
Suggests: 𝑆Boltz is a 
special case of 𝑆Gibbs



•	 For	any	given	physical	system,	there	can	be	many	different	ways	to	define	𝜌.
-	 Minimally,	we	want	a	𝜌	that	is	stationary	and	maximizes	𝑆Gibbs.

Two	standard	Gibbs	distributions

•	 Note:
	 𝑆Gibbs(𝜌mc)	=	−𝑘∫Γ𝜌mc(𝑥) ln𝜌mc(𝑥)𝑑𝑥
	 	 =	−𝑘∫Γ𝐸(1/Ω(𝐸)) ln[1/Ω(𝐸)]𝑑𝑥

	 	 =	−𝑘(1/Ω(𝐸)) ln[1/Ω(𝐸)]∫Γ𝐸𝑑𝑥
	 	 =	𝑘 lnΩ(𝐸)

A measure of the number of
microstates of the system

𝑆Boltz as a special case of 𝑆Gibbs, Part II: 
The Boltzmann entropy 𝑆Boltz(Γ𝑀) of a 
macrostate of an isolated 𝑁-particle 
system at constant energy can be thought 
of as the Gibbs entropy 𝑆Gibbs(𝜌mc) of the 
microcanonical distribution for an 
ensemble of 𝑁 weakly interacting systems.

Def.	2	(Microcanonical	distribution).	For	an	isolated	system	with	fixed	
energy	𝐻(𝑥)	=	𝐸,	the	microcanonical	distribution	𝜌mc	is	given	by:

𝜌mc	=
1/Ω(𝐸),	 for	𝐻(𝑥)	=	𝐸

0,	 otherwise

where	Ω(𝐸)	=	∫Γ𝐸𝑑𝑥	is	the	number	of	microstates	with	𝐻(𝑥)	=	𝐸.

Motivation: All microstates with 
same energy have equal probability
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Def.	3	(Canonical	distribution).	For	a	non-isolated	system	𝑆	in	equilibrium	
with	a	heat	bath	𝑅	at	fixed	temperature	𝑇	and	fixed	total	energy	𝐻(𝑥)	=	𝐸	
=	𝐸𝑅	+	𝐸𝑆,	𝐸𝑆	≪	𝐸,	the	canonical	distribution	𝜌c	is	given	by:

where	𝑍	=	∫𝑒−𝛽𝐻(𝑥)𝑑𝑥,	and	𝛽	=	1/𝑇.

𝜌c(𝑥)	=	𝑍−1𝑒−𝛽𝐻(𝑥)

•	 Note:
	 𝑆Gibbs(𝜌c)	 =	−𝑘∫Γ𝜌c(𝑥)ln𝜌c(𝑥)𝑑𝑥
	 	 =	∫Γ𝜌c[−𝑘ln(𝑒−𝛽𝐻(𝑥)/𝑍)]𝑑𝑥

	 	 =	∫Γ𝜌c[−𝑘(ln𝑒−𝛽𝐻(𝑥)	−	ln𝑍)]𝑑𝑥

	 	 =	∫Γ𝜌c[𝑘𝛽𝐻(𝑥)	+	𝑘ln𝑍)]𝑑𝑥

	 	 =	𝑘𝛽⟨𝐻⟩	+	𝑘ln𝑍∫Γ𝜌c𝑑𝑥
	 	 =	𝑘𝛽⟨𝐻⟩	+	𝑘ln𝑍 ∫Γ𝜌c𝑑𝑥	=	1 
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𝑆Boltz as a special case of 𝑆Gibbs, Part III: 
The Gibbs canonical distribution 𝜌c is the 
generalization of the Maxwell-Boltzmann 
distribution for a single system to an 
ensemble of systems consisting of one in 
equilibrium with the rest.



4.	Interpretive	Issues

(1)	Why	do	low-probability	states	evolve	into	high-probability	states?	What	
justifies	a	given	stationary,	𝑆Gibbs-maximizing	distribution	𝜌(𝑥)?
-	Characterizations	of	the	dynamics	are,	again,	required	to	justify	this.

(2)	 How	are	the	probabilities	to	be	interpreted?

(a)	 Ontic	probabilities	=	properties	of	physical	systems
-	Long	run	frequencies?
-	Single-case	propensities?

(b)	 Epistemic	probabilities	=	measures	of	degrees	of	belief
-	Objective	(rational)	degrees	of	belief?
-	 Subjective	degrees	of	belief?

11
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(3)	 How	should	the	approach	to	equilibrium	be	understood?
-	A	Gibbs	distribution	𝜌(𝑥)	is	constant	in	time. entailed by Liouville's Theorem

Claim	1.			𝑆Gibbs(𝜌coarse)	≥	𝑆Gibbs(𝜌)

Claim	2.	Under	various	assumptions	(ergodicity,	
"molecular	randomness",	etc.),	for	𝑡1	>	𝑡0,
		 𝑆Gibbs(𝜌coarse)|𝑡	=	𝑡1	≥	𝑆Gibbs(𝜌coarse)|𝑡	=	𝑡0

Task: Justify these 
assumptions!

So how can the Gibbs entropy 𝑆Gibbs(𝜌) increase?

Standard	response:	Coarse-grain	it!
-	 Partition	phase	space	Γ	into	cells	𝜔	each	of	size	𝛿𝜔.
-	 For	any	𝜌,	define	a	coarse-grained	version	𝜌coarse	by:

𝜌<0=>-?(𝑥) ≡
1
𝛿𝜔

0
@(A)

𝜌 𝑥B 𝑑𝑥′

Just like Boltzmann 
coarse-graining, 
except on Γ and not Γ𝜇

𝜌coarse assigns to every 
state 𝑥 in cell 𝜔 the 
average of the values that 
𝜌 assigns to all states in 𝜔.



(4)	 Can	𝑆Gibbs	 and/or	𝑆Boltz	be	interpreted	as	a	measure	of	"disorder"?
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-	 Idea:	𝑆Boltz(Γ𝑀)	=	𝑆Gibbs(𝜌mc)	=	𝑘 lnΩ	is	a	measure	of	the	number	Ω	of	possible	
microstates	of	a	system	in	a	macrostate	Γ𝑀	(Boltzmann),	or	characterized	by	a	
microcanonical	Gibbs	distribution	(Gibbs).

-	 And:	Ω	reflects	the	system's	"order":	The	greater	Ω	is,	the	less-ordered	the	system	is.

More ordered? Less ordered?

•

•
•

•

•
•

•

• •

• •

•
•

•

•

•

•

•

- Initial equilibrium state: particles located 
behind partition in small region of chamber.

- Ω𝑖 given by small range of position values 
and some given range of momentum values.

- Final equilibrium state: particles evenly 
distributed throughout chamber.

- Ω𝑓 given by larger range of position values 
and same range of momentum values.

• ••
•

•
•
•• •

• •
•
••

•
•
••

initial constraints 
removed

- Counter-example	#1:
-	Initial	state:	Disorderly	protesters	behind	police	barricades.
-	Final	state:	More	orderly	protesters	allowed	to	march	down	street.

-	 But:	Why	should	initial	state	be	thought	of	as	more	ordered?

More constrained? But final state 
is constrained equilibrium state, 
too (just different constraints).



- Counter-example	#2:	Ice	cubes	melting	in	water.
-	Initial	state:	Disorderly	mixture	of	irregular-shaped	ice	cubes	floating	in	liquid	water.
-	Final	state:	More	orderly	homogeneous	transparent	liquid.
-		Ω𝑖	<	 Ω𝑓

More ordered?Less ordered?

initial constraints 
removed
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- Counter-example	#3:	Crystalization	of	supercooled	water.
-	Initial	state:	Disorderly	supercooled	water	at	temp	≪	0∘C.
-	Final	state:	More	orderly	ice
-		Ω𝑖	<	 Ω𝑓

More ordered?Less ordered?

initial constraints 
removed



- Counter-example	#4:	Separation	of	oil	and	water.
-	Initial	state:	Disorderly	emulsion	of	water/oil.
-	Final	state:	More	orderly	separation	of	water	and	oil	into	distinct	layers.
-		Ω𝑖	<	 Ω𝑓

More ordered?Less ordered?

initial constraints 
removed

Moral: "Order" isn't necessarily a reflection 
of a system's possible microstates.
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