04a. Entropy in Statistical Mechanics: Boltzmann

- 1. Boltzmann Entropy S_{Boltz}
- 2. Max-Boltz Distribution
- 3. S_{Boltz} vs. S_{TD}
- *Goal*: To explain the behavior of *macroscopic* systems in terms of the dynamical laws governing their *microscopic* consituents.
 - To provide a micro-dynamical explanation of the Minus 1st and 2nd Laws.

Ludwig Boltzmann (1844-1906)

1. Boltzmann Entropy S_{Boltz}

Consider different "macrostates" of a thermally isolated gas at constant energy:

N

• Why does the gas prefer to be in the equilibrium macrostate (last one)?

- Equilibrium macrostate = state characterized by thermodynamic properties (temp, volume, pressure, etc.) that do not change with time.
- Maximizes S_{TD}!

 Suppose the gas consists of N particles governed by Hamilton's equations of motion (the micro-dynamics).

Def. 1 (*Microstate*). A **microstate** *x* of an *N*-particle system is a specification of the position (3 values) and momentum (3 values) for each of its *N* particles.

Let $\Gamma = phase \, space = 6N$ -dim space of all possible microstates.

Let Γ_E = region of Γ that consists of all microstates with constant energy E.

Def. 2 (*Macrostate*). A **macrostate** Γ_M of a physical system is a specification of the system in terms of macroscopic properties (pressure, temperature, volume, *etc.*).

• Relation between microstates and macrostates:

Macrostates supervene on microstates!

- To each microstate there corresponds exactly one macrostate.
- Many distinct microstates can correspond to the same macrostate.
- <u>So</u>: Γ_E is partitioned into a finite number of regions Γ_M corresponding to macrostates, with each microstate x belonging to one macrostate.

Assumption. The equilibrium macrostate $\Gamma_{M_{eq}}$ is *much larger* than any other macrostate.

Def. 3 (*Boltzmann entropy*). The **Boltzmann entropy** $S_{\text{Boltz}}(\Gamma_M)$ of a macrostate Γ_M of a thermally isolated physical system at constant energy is given by $S_{\text{Boltz}}(\Gamma_M) \equiv k \ln |\Gamma_M|$, where $|\Gamma_M|$ is the size of Γ_M .

Claim. S_{Boltz} increases over time because, for any initial microstate x_i , the dynamics will map x_i into $\Gamma_{M_{\text{eq}}}$ very quickly, and then keep it there for an extremely long time.

≤ But why?

Two Ways to Explain the Approach to Equilibrium:

(a) Appeal to typicality of microstates Goldstein (2001)

Claim. A system approaches equilibrium because equilibrium microstates are *typical* and nonequilibrium microstates are *atypical*.

- <u>Why?</u> For large N, Γ is almost entirely filled up with equilibrium microstates. Hence they are "typical".
 - <u>But</u>: What is it about the *dynamics* that evolves atypical states to typical states?
 - "If a system is in an atypical microstate, it does not evolve into an equilibrium microstate *just because* the latter is typical." (Frigg 2009)
 - Need to identify properties of the dynamics that guarantee atypical states evolve into typical states.
 - *And*: Need to show that these properties are typical.
 - \underline{Ex} : If the dynamics is *chaotic* (in an appropriate "ergodic" sense), then (under certain conditions), any initial microstate x_i will quickly be mapped into Γ_{eq} and remain there for long periods of time. (Frigg 2009)

(b) Appeal to probability of macrostates

Claim. A system approaches equilibrium because it evolves from low probability macrostates to high probability macrostates, and the equilibrium macrostate has the highest probability.

"In most cases, the initial state will be a very unlikely state. From this state the system will steadily evolve towards more likely states until it has finally reached the most likely state, i.e., the state of thermal equilibrium."

• <u>Task</u>: Come up with a way to assign probabilites to macrostates such that the larger the macrostate, the greater the probability of finding a microstate in it.

<u>Story to come</u>: Associate the probability of a macrostate with the number of microstates it contains!

But: What determines the number of microstates in a macrostate?

- If we had a measure function defined on Γ (i.e., a "density" function), then we could use it to calculate the number of points in a given macrostate region.

Boltzmann's approach:

- A point in a macrostate region of Γ_E is an N-particle microstate, and it corresponds to N points in a *single-particle phase space*, call it Γ_{μ} .
- A macrostate region of Γ_E corresponds to a *distribution* of N single-particle microstates.
- The number of points in a macrostate region then is the number of possible ways to arrange *N* single-particle microstates with respect to the corresponding *single-particle distribution!*

To define this thing, Boltzmann coarsegrains the single-particle phase space...

Coarse-graining the single-particle phase space

ω_1	ω_2	ω_3	
•	•	•	•
	•	•	•
•		•	

Arrangement #1:

microstate s_6 in ω_1 , microstate s_{89} in ω_3 , etc.

 Γ_{μ}

• Start with the 6-dim phase space Γ_{μ} of a single particle.

- Partition Γ_{μ} into ℓ cells ω_1 , ..., ω_{ℓ} of volume $\Delta \omega = \Delta x^3 \Delta p^3$.
- A microstate of an *N*-particle system is given by *N* points in Γ_{μ} .

 c_{μ} . correspond to $core point in <math>\Gamma_E$

Def. 4. An **arrangement** is a specification of *which* single-particle microstates lie in which cells.

Coarse-graining the single-particle phase space

ω_1	ω_2	ω_3	
•	•	•	•
	•	•	•
•		•	

Arrangement #1:

microstate s_6 in ω_1 , microstate s_{89} in ω_3 , etc.

Arrangement #2:

microstate s_{89} in ω_1 , microstate s_6 in ω_3 , etc.

Distribution:

$$D = (1, 0, 2, 0, 1, 1, ...)$$

1 state in ω_1 , 0 states in ω_2 , 2 states in ω_3 , etc.

- A point in Γ_μ is a single-

particle microstate.

- $\Gamma_E = N$ copies of Γ_u

 Γ_{μ}

- Start with the 6-dim phase space Γ_{μ} of a single particle.
- Partition Γ_{μ} into ℓ cells ω_1 , ..., ω_{ℓ} of volume $\Delta \omega = \Delta x^3 \Delta p^3$.

• A microstate of an N-particle system is given by N points in Γ_{μ} . \longleftarrow N points in Γ_{μ} correspond to

one point in Γ_F

Def. 4. An **arrangement** is a specification of *which* single-particle microstates lie in which cells.

Def. 5. A single-particle distribution $D = (n_1, n_2, ..., n_\ell)$ is a specification of *how many* single-particle microstates (regardless of which ones) lie in each cell.

More than one arrangement can correspond to the same distribution!

How many arrangements G(D) are compatible with a given $D = (n_1, n_2, ..., n_\ell)$?

• Answer:

$$G(D) = \frac{N!}{n_1! \, n_2! \cdots n_\ell!} = \begin{cases} Number \ of \ ways \ to \ arrange \ N \\ distinguishable \ objects \ into \ \ell \\ bins \ with \ capacities \ n_1, \ n_2, \ ..., \ n_\ell. \end{cases}$$

$$\begin{bmatrix} n! = n(n-1)(n-2)\cdots 1 \\ = \# \ of \ ways \ to \ arrange \ n \\ distinguishable \ objects \\ 0! = 1 \end{cases}$$

$$n! = n(n-1)(n-2)\cdots 1$$

= # of ways to arrange n
distinguishable objects
 $0! = 1$

Check: Let
$$D_1 = (N, 0, ..., 0)$$
 and $D_2 = (N - 1, 1, 0, ..., 0)$.

$$G(D_1) = \frac{N!}{N!} = 1$$
 Conly one way for all N particle states to be in ω_1 .

$$G(D_2) = \frac{N!}{(N-1)!} = \frac{N(N-1)(N-2)\cdots 1}{(N-1)(N-2)\cdots 1} = N$$

$$= \frac{N!}{(N-1)!} = \frac{N(N-1)(N-2)\cdots 1}{(N-1)(N-2)\cdots 1} = N$$

$$= \frac{N!}{(N-1)!} = \frac{N(N-1)(N-2)\cdots 1}{(N-1)(N-2)\cdots 1} = N$$

$$= \frac{N!}{(N-1)!} = \frac{N(N-1)(N-2)\cdots 1}{(N-1)!} = \frac{N}{(N-1)!} = \frac{N}$$

How many arrangements G(D) are compatible with a given $D = (n_1, n_2, ..., n_\ell)$?

• Answer:

$$G(D) = \frac{N!}{n_1! \, n_2! \cdots n_\ell!} = \begin{pmatrix} \text{Number of ways to arrange N} \\ \text{distinguishable objects into } \ell \\ \text{bins with capacities } n_1, n_2, ..., n_\ell. \end{pmatrix}$$

```
 n! = n(n-1)(n-2)\cdots 1 
 = \# of ways to arrange n 
 distinguishable objects 
 0! = 1
```

Assumption 1. The *probability* of a single-particle distribution D is given by G(D).

"The probability of this distribution [D] is then given by the number of permutations of which the elements of this distribution are capable, that is by the number [G(D)]. As the most probable distribution, i.e., as the one corresponding to thermal equilibrium, we again regard that distribution for which this expression is maximal..."

In other words:

Claim. The equilibrium distribution is the distribution that maximizes G(D).

Assumption 2. Each single-particle distribution D corresponds to a macrostate Γ_{M_D} .

What is the size of this macrostate?

- A point (multi-particle microstate) in Γ_E corresponds to an arrangement of single-particle microstates in Γ_μ .
- The size of a macrostate Γ_{M_D} in Γ_E is given by the number of points it contains (the number of arrangements compatible with D) multiplied by a *volume element* of Γ_E .
- A volume element of Γ_E is given by N copies of a volume element $\Delta\omega$ of Γ_{μ} .

• So: The size of
$$\Gamma_{M_D}$$
 is $|\Gamma_{M_D}| = \begin{bmatrix} \# \ arrangements \\ compatible \ with \ D \end{bmatrix} \times \begin{bmatrix} volume \\ element \ of \ \Gamma_E \end{bmatrix}$

$$= G(D)\Delta\omega^N$$
The probability $G(D)$ of D is proportional to the size of Γ_{M_D}

• Hence:
$$S_{\text{Boltz}}(\Gamma_{M_D}) = k \ln(G(D)\Delta\omega^N)$$

$$= k \ln(G(D)) + Nk \ln(\Delta\omega)$$

$$= k \ln(G(D)) + const.$$

$$= S_{\text{Boltz}} \text{ as a measure of how probable a macrostate is.}$$

*Other formulations of S*_{Boltz}:

$$S_{\text{Boltz}}(\Gamma_{M_D}) = k \ln (G(D)) + \text{const.}$$

$$= k \ln \left(\frac{N!}{n_1! \cdots n_\ell!}\right) + \text{const.}$$

$$= k \ln (N!) - k \ln (n_1!) - \cdots - k \ln (n_\ell!) + \text{const.}$$

$$\approx (Nk \ln N - N) - (n_1 k \ln n_1 - n_1) - \cdots - (n_\ell k \ln n_\ell - n_\ell) + \text{const.}$$

$$= -k \sum_{i=1}^{\ell} n_i \ln n_i + \text{const.}$$

$$S_{\text{Boltz}} \text{ in terms of single-particle}$$

• Let:
$$p_i = n_i/N = \begin{cases} probability of finding a \\ randomly chosen single- \\ particle microstate in cell $\omega_i \end{cases}$ Probabilities for single-particle microstates (not macrostates)!$$

•
$$\underline{Then}$$
: $S_{\text{Boltz}}(\Gamma_{M_D}) = \frac{-Nk\sum_{i=1}^{\ell}p_i\ln p_i + \text{const.}}{microstate\ probabilities\ p_i}$

•
$$\underline{Or}$$
: $S_{\text{Boltz}}(\Gamma_{M_D}) = -Nk \int_{\Gamma_{\mu}} \rho_{\mu}(x_{\mu}) \ln \rho_{\mu}(x_{\mu}) dx_{\mu}$

microstate numbers n_i .

2. The Maxwell-Boltzmann Equilibrium Distribution

• What distribution $D^* = (n_1^*, ..., n_\ell^*)$ maximizes $S_{\text{Boltz}}(n_i)$?

Assume: The n_i are constrained by

(a)
$$\sum_{i=1}^{\ell} n_i = N$$

(b)
$$\sum_{i=1}^{\ell} \varepsilon_i n_i = U$$

• To maximize $S_{\text{Boltz}}(n_i)$, set its derivative to zero and solve for n_i :

$$(d/dn_i)S_{\text{Boltz}}(n_i) = -k\sum_i (d/dn_i)(n_i \ln n_i + \text{const.}) = -k\sum_i (\ln n_i + 1)$$

-
$$\underline{Or}$$
: $dS_{\mathrm{Boltz}} = -k\sum_{i}(\ln n_{i}+1)dn_{i}$ Small changes to S_{Boltz} due only to small changes to n_{i}

• Now find values n_i^* that solve:

Indivalues
$$n_i^*$$
 that solve:
$$dS_{\text{Boltz}} = -k\sum_i (\ln n_i^* + 1) dn_i = 0 \qquad \qquad \text{subject to constraints} \begin{cases} dN = \sum_i dn_i = 0 \\ dU = \sum_i \varepsilon_i dn_i = 0 \end{cases}$$

Can add arbitrary multiples of the constraints and still get zero:

$$dS_{\text{Boltz}} = \sum_{i} (-k \ln n_i^* - \alpha - \beta \varepsilon_i) dn_i = 0$$

• So:
$$k \ln n_i^* + \alpha + \beta \varepsilon_i = 0$$
 or $n_i^* = e^{-(\alpha + \beta \varepsilon_i)/k} = e^{-\alpha/k} e^{-\beta \varepsilon_i/k}$

$$n_i^* = e^{-(\alpha + \beta \varepsilon_i)/k} = e^{-\alpha/k} e^{-\beta \varepsilon_i/k}$$

(a)
$$\sum_{i=1}^{\ell} n_i = N$$
 (b) $\sum_{i=1}^{\ell} \varepsilon_i n_i = U$

Enforce (a) on n_i^*

$$\sum_{i} n_{i}^{*} = N = e^{-\alpha/k} \sum_{i} e^{-\beta \varepsilon_{i}/k}$$
 or $e^{-\alpha/k} = N/Z$, $Z \equiv \sum_{i} e^{-\beta \varepsilon_{i}/k}$

- <u>So</u>: $n_i^* = (N/Z)e^{-\beta \varepsilon_i/k}$

• Hence:
$$D^* = (n_1^*, ..., n_\ell^*) = \left(\frac{N}{Z}e^{-\beta\varepsilon_1/k}, ..., \frac{N}{Z}e^{-\beta\varepsilon_\ell/k}\right)$$

Boltzmann's claim: D* is the equilibrium distribution

3. Boltzmann Entropy S_{Boltz} vs. Thermodynamic Entropy S_{TD} Attempt #1

• *Consider*: Small changes in internal energy of a reversible process:

Assume:

- A change in V is related to a change in single-particle energies ε_i .
- A change in S_{TD} is related to a change in microstate number n_i .
- <u>Suggests</u>: $PdV = -\sum_{i} n_i d\varepsilon_i$ and $dS_{TD} = (1/T)\sum_{i} \varepsilon_i dn_i$
- *Note*: For the Max-Boltz equilibrium distribution $n_i^* = \frac{N}{Z} e^{-\beta \varepsilon_i/k}$:

$$dS_{\text{Boltz}}(n_i^*) = -k\sum_i (\ln n_i^* + 1) dn_i = -k\sum_i \{\ln \frac{N}{Z} + 1 - \beta \varepsilon_i / k\} dn_i$$
$$= \beta \sum_i \varepsilon_i dn_i$$
$$(\ln \frac{N}{Z} + 1) \sum_i dn_i = 0$$

• <u>So</u>: For the M-B equilibrium distribution, $S_{\text{Boltz}} = S_{\text{TD}}$, provided $\beta = 1/T$.

What this shows:

• For a *large number* of *weakly interacting* particles in an equilibrium state, it is consistent to identify the Boltzmann entropy S_{Boltz} with the thermodynamic entropy S_{TD} .

But:

- Assumes the Maxwell-Boltzmann distribution D^* that maximizes S_{Boltz} is the equilibrium distribution.
- Just another way of assuming that the largest macrostate is the equilibrium macrostate.
- Assumes a change in S_{TD} is related to a change in microstate number n_i .
- Isn't this what we're trying to show (i.e., $S_{TD} = S_{Boltz}$)?
- For thermally isolated processes, S_{TD} absolutely increases or remains constant; whereas there is no absolute law that requires S_{Boltz} to increase or remain constant. What about the dynamics of a system
 - entails that it will evolve:
 - to the largest macrostate?
 - to the most typical macrostate?
 - to the most probable macrostate?

Attempt #2

Claim. $\Delta S_{\text{Boltz}} = \Delta S_{\text{TD}}$ for free expansion of an ideal gas.

- Macroscopic point of view
 - Irreversible: W = 0, T = const., $\Delta U = 0$.
 - Reversible: $\delta W = -PdV$, T = const., $\Delta U = 0$.

$$dS_{TD} = \delta Q/T$$

$$= (P/T)dV$$

$$= (0R/V)dV$$

$$= (0R/V)dV$$

$$= 0 + PdV$$

$$= 0 + PdV$$

$$= 0 + PdV$$

n =#moles R =const.

 $\Delta S_{\rm TD} = nR \int_{V}^{2V} \frac{dV}{V} = nR \ln 2$

irreversible free expansion

reversible free expansion

- <u>Microscopic point of view</u>
 - N = number of gas particles.
 - Ω = # arrangements of single-particle microstates before expansion.

Claim. $2^N\Omega = \#$ arrangements of single-particle microstates after expansion.

Why?

- Each cell in coarse-grained Γ_{μ} has volume $\Delta p^3 \Delta x^3$.
- During expansion:
 - Momentum part doesn't change. T = const. = ave. kinetic energy $= \frac{1}{2m} \overline{p^2}$
 - Position part changes, since volume doubles.
- After expansion:
 - Each particle has twice as many possible single-particle position microstates it can be in; so for N particles, there are 2^N as many possible single-particle position microstates.
- <u>So</u>:

$$\Delta S_{\text{Boltz}} = k \ln(2^N \Omega) - k \ln \Omega = k \ln 2^N = Nk \ln 2 = nR \ln 2$$

Same expression as ΔS_{TD} !

What this shows:

• For the free expansion of an ideal gas, it is consistent to identify $\Delta S_{\rm TD}$ with $\Delta S_{\rm Boltz}$.

But:

- For this particular physical system, ΔS_{TD} and ΔS_{Boltz} take the same value.
- Does this necessarily entail they measure the same quantity?
- For thermally isolated processes, S_{TD} absolutely increases or remains constant; whereas there is no absolute law that requires S_{Boltz} to increase or remain constant. \sim What about the dynamics of a system
 - entails that it will evolve:
 - to the largest macrostate?
 - to the most typical macrostate?
 - to the most probable macrostate?

Attempt #3

Claim. $S_{\text{Boltz}} = S_{\text{TD}}$ for an ideal gas.

Macroscopic point of view

$$dU = \delta Q + \delta W = T dS_{\text{TD}} - P dV$$

$$= dU/T + (P/T) dV$$

$$= (C_V/T) dT + (nR/V) dV$$

$$= dU/dT, \text{ for } U = U(T)$$

- <u>Or</u>:

$$ds_{\text{TD}} = (c_v/T)dT + (R/v)dv \qquad \qquad \underbrace{\qquad \qquad \frac{\text{Molar quantities}}{s_{\text{TD}} = S_{\text{TD}}/n}}_{S_{\text{TD}} = C_V/n}$$

$$v = V/n$$

Def. The **heat capacity** C of a physical system is the amount of absorbed heat δQ needed to change the temperature of the system by dT: $C \equiv \delta Q/dT$.

- <u>So</u>:

$$s_{\rm TD} = c_v \ln T + R \ln v + \text{const.}$$

• <u>Microscopic point of view</u>

- What is S_{Boltz} of a macrostate of an ideal gas with N particles at temp T, heat capacity C_V , volume V?
- Need to first determine number of possible microstates Ω it can be in.

Claim.
$$\Omega = \Omega_{\text{position}} \Omega_{\text{momentum}} = [V/\Delta x^3]^N [p_{\text{rms}}^3/\Delta p^3]^N$$

Position multi-particle microstates Ω_{position}

- $V = \text{region in } \Gamma_{\mu}$.
- $V/\Delta x^3$ = # occupied cells in V. = coarse-grained # position single-particle microstates in V.
- $[V/\Delta x^3]^N$ = coarse-grained # position multi-particle microstates.

Momentum multi-particle microstates $\Omega_{ m momentum}$

- $-p_{\rm rms} \equiv (\overline{p^2})^{1/2} = {\rm root\ mean\ square\ momentum}. \qquad \qquad \underbrace{\frac{\textit{What\ gets\ measured}:}{\textit{Ave.\ kinetic\ energy} = \frac{1}{2m}\overline{p^2} = \frac{1}{2m}p_{\rm rms}^2}}_{}$
- $p_{\rm rms}^3/\Delta p^3=$ # occupied cells in region of single-particle momentum phase space. = coarse-grained # momentum single-particle microstates.
- $[p_{\rm rms}^3/\Delta p^3]^N$ = coarse-grained # momentum multi-particle microstates.

• *Now simplify* Ω

$$\begin{split} &\Omega_{\mathrm{pos}}\Omega_{\mathrm{mo}} &= [V/\Delta x^3]^N [p_{\mathrm{rms}}^3/\Delta p^3]^N = [p_{\mathrm{rms}}^3 V/\Delta x^3 \Delta p^3]^N \\ &= \frac{1}{N!} \left[\frac{p_{\mathrm{rms}}^3 V}{(\Delta x \Delta p)^3} \right]^N & \qquad \qquad \text{Assume indistinguishable particles, so} \\ &= \left[\frac{eV p_{\mathrm{rms}}^3}{N(\Delta x \Delta p)^3} \right]^N & \qquad \qquad \qquad \text{Stirling's approx: } N! \approx (N/e)^N, \text{ for large } N \\ &= \left[\frac{eV (2mU)^{3/2}}{N^{5/2} (\Delta x \Delta p)^3} \right]^N & \qquad \qquad \qquad p_{\mathrm{rms}} = (\overline{p^2})^{\frac{1}{2}} \\ &= (\sum_i p_i^2/N)^{\frac{1}{2}} & \qquad \qquad \text{Assume weakly interacting: Total} \\ &= (2mU/N)^{\frac{1}{2}} & \qquad \qquad \qquad \text{If } u = \text{sum of single-particle } U \text{ is.} \end{split}$$

$$&= \left[\frac{eV (2mU)^{3/2}}{N^{5/2}h^3} \right]^N & \qquad \qquad quantum \ hypothesis: \Delta x \Delta p = h \\ &= \left[\frac{eV (2mU)^{3/2}}{(nN_A)^{5/2}h^3} \right]^{nN_A} & \qquad \qquad N = nN_A, n = \#\text{moles, } N_A = \text{Avogadro's number} \end{split}$$

$$&= \left\{ \left(\frac{V}{n} \right) \left(\frac{U}{n} \right)^{3/2} \left[\frac{e(2m)^{3/2}}{N_A^{5/2}h^3} \right]^{nN_A} & \qquad N = nN_A, n = \#\text{moles, } N_A = \text{Avogadro's number} \right\}$$

Can now calculate S_{Boltz}!

$$S_{\text{Boltz}} = k \ln \Omega = k \ln \left\{ \left(\frac{V}{n} \right) \left(\frac{U}{n} \right)^{3/2} \left[\frac{e(2m)^{3/2}}{N_A^{5/2} h^3} \right] \right\}^{nNA}$$
$$= nk N_A \left[\ln \left(\frac{V}{n} \right) + \frac{3}{2} \ln \left(\frac{U}{n} \right) + \text{const.} \right]$$

- <u>Or</u>:

$$s_{\text{Boltz}} = R \left[\ln v + \frac{3}{2} \ln u + \text{const.} \right]$$

$$= R \ln v + \frac{3}{2} R \ln T + \text{const.}$$

$$= R \ln v + c_v \ln T + \text{const.}$$

$$= R \ln v + c_v \ln T + \text{const.}$$

$$c_v = \frac{3}{2} R$$

- <u>So</u>:

$$s_{\text{Boltz}} = R \ln v + c_v \ln T + \text{const.}$$
Same expression as $s_{\text{TD}}!$

What this shows:

- S_{TD} and S_{Boltz} take the same value for an N particle gas under the following assumptions:
 - (i) The gas particles are indistinguishable.
 - (ii) *N* is very large (Stirling's approx.).
 - (iii) The gas particles are weakly interacting.
 - (iv) The gas particles obey the (quantum) uncertainty relation $\Delta x \Delta p = h$.
 - (v) The gas is monatomic.
 - (vi) The gas obeys the ideal gas law.

But (again):

- Does this mean S_{TD} and S_{Boltz} measure the same quantity?
- $S_{\rm TD}$ absolutely obeys 2nd Law, while $S_{\rm Boltz}$ does not.