
04a.	Entropy	in	Statistical	Mechanics:	Boltzmann
•	 Goal:	To	explain	the	behavior	of	macroscopic	systems	in	terms	of	
the	dynamical	laws	governing	their	microscopic	consituents.
-	 To	provide	a	micro-dynamical	explanation	of	the	Minus	1st	and	2nd	Laws.

1.	Boltzmann	Entropy	𝑆Boltz
Ludwig	Boltzmann
(1844-1906)

•	 Consider	different	"macrostates"	of	a	thermally	isolated	gas	at	constant	energy:

•	 Why	does	the	gas	prefer	to	be	in	the	
equilibrium	macrostate	(last	one)?

- Equilibrium macrostate = state characterized by 
thermodynamic properties (temp, volume, pressure, 
etc.) that do not change with time.

- Maximizes 𝑆TD!

1.	 Boltzmann	Entropy	𝑆Boltz
2.	 Max-Boltz	Distribution
3.	 	𝑆Boltz	vs.	𝑆TD
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Def.	1	(Microstate).	A	microstate	𝑥	of	an	𝑁-particle	system	is	a	specification	
of	the	position	(3	values)	and	momentum	(3	values)	for	each	of	its	𝑁	particles.

•	 Suppose	the	gas	consists	of	𝑁	particles	governed	by	Hamilton's	equations	of	
motion	(the	micro-dynamics).
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Can Minus 1st and 2nd Laws be 
explained in terms of this dynamics?

Let	Γ	=	phase	space	=	6𝑁-dim	space	of	all	possible	microstates.
Let	Γ𝐸	=	region	of	Γ	that	consists	of	all	microstates	with	constant	energy	𝐸.

• •
•

•

•

𝑥𝑖
𝑥𝑓

Γ𝐸

•

•

•

•

•
•

•
•

•

•
Hamiltonian dynamics maps 
initial microstate 𝑥𝑖 to final 
microstate 𝑥𝑓.

A point 𝑥 in Γ𝐸 is labeled by 6𝑁	numbers:

𝑥	=	(𝑥(1),	𝑦(1),	𝑧(1),	𝑝𝑥(1),	𝑝𝑦(1),	𝑝𝑧(1),	... ,

										𝑥(𝑁),	𝑦(𝑁),	𝑧(𝑁),	𝑝𝑥(𝑁),	𝑝𝑦(𝑁),	𝑝𝑧(𝑁))



Def.	2	(Macrostate).	A	macrostate	Γ𝑀	of	a	physical	system	is	a	specification	of	the	
system	in	terms	of	macroscopic	properties	(pressure,	temperature,	volume,	etc.).

•	 So:	 Γ𝐸	is	partitioned	into	a	finite	number	of	regions	Γ𝑀	corresponding	to	
macrostates,	with	each	microstate	𝑥	belonging	to	one	macrostate.

• •
•

•

• Γ𝐸

•

•

•

•

•
•

•
•

•

•
•

•

•
•

𝑥

Γ𝑀

macrostate

microstates
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•	 Relation	between	microstates	and	macrostates:

Macrostates supervene 
on microstates!

- To each microstate there 
corresponds exactly one macrostate.

- Many distinct microstates can 
correspond to the same macrostate.



Assumption.	The	equilibrium	macrostate	Γ𝑀eq
	

is	much	larger	than	any	other	macrostate.

•

•
•

•

•

•

•

•
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•

• •

•

• • ••
• •

Γ𝐸Γ𝑀eq

very small non-equilibrium 
macrostates 

Claim.	𝑆Boltz	increases	over	time	because,	for	any	initial	
microstate	𝑥𝑖,	the	dynamics	will	map	𝑥𝑖	into	Γ𝑀eq

	very	
quickly,	and	then	keep	it	there	for	an	extremely	long	time.
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Def.	3	(Boltzmann	entropy).	The	Boltzmann	entropy	𝑆Boltz(Γ𝑀)	of	a	
macrostate	Γ𝑀	of	a	thermally	isolated	physical	system	at	constant	
energy	is	given	by	𝑆Boltz(Γ𝑀)	≡	𝑘ln|Γ𝑀|,	where	|Γ𝑀|	is	the	size	of	Γ𝑀.

𝑆Boltz(Γ𝑀) obtains its 
maximum value for Γ𝑀eq

But why?

But why?



Two	Ways	to	Explain	the	Approach	to	Equilibrium:

•	Why?	For	large	𝑁,	Γ	is	almost	entirely	filled	up	with	equilibrium	microstates.	
Hence	they	are	"typical".

(a)	 Appeal	to	typicality	of	microstates					Goldstein	(2001)

Claim.	A	system	approaches	equilibrium	because	equilibrium	
microstates	are	typical	and	nonequilibrium	microstates	are	atypical.

-	 But:	What	is	it	about	the	dynamics	that	evolves	atypical	states	to	typical	states?
-	 "If	a	system	is	in	an	atypical	microstate,	it	does	not	evolve	into	an	equilibrium	
microstate	just	because	the	latter	is	typical."	(Frigg	2009)

-	 Need	to	identify	properties	of	the	dynamics	that	guarantee	atypical	states	
evolve	into	typical	states.

-	 And:	Need	to	show	that	these	properties	are	typical.
-	 Ex:	If	the	dynamics	is	chaotic	(in	an	appropriate	"ergodic"	sense),	then	(under	certain	
conditions),	any	initial	microstate	𝑥𝑖	will	quickly	be	mapped	into	Γeq	and	remain	there	
for	long	periods	of	time.	(Frigg	2009)

Frigg,	R.	(2009)	'Typicality	and	the	Approach	to	Equilibrium	in	Boltzmannian	Statistical	Mechanics',	Philosophy	of	Science	76,	997-1008. 5



(b)		Appeal	to	probability	of	macrostates

Claim.	A	system	approaches	equilibrium	because	it	evolves	from	
low	probability	macrostates	to	high	probability	macrostates,	
and	the	equilibrium	macrostate	has	the	highest	probabililty.

"In	most	cases,	the	initial	state	will	be	a	very	
unlikely	state.	From	this	state	the	system	will	
steadily	evolve	towards	more	likely	states	
until	it	has	finally	reached	the	most	likely	
state,	i.e.,	the	state	of	thermal	equilibrium."

•	 Task:	Come	up	with	a	way	to	assign	probabilites	to	macrostates	such	that	the	
larger	the	macrostate,	the	greater	the	probability	of	finding	a	microstate	in	it.
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Story to come: Associate the probability of a macrostate with the 
number of microstates it contains!
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But: What determines the number of microstates in a macrostate?

•	 Boltzmann's	approach:
-	 A	point	in	a	macrostate	region	of	Γ𝐸	is	an	𝑁-particle	microstate,	and	it	
corresponds	to	𝑁	points	in	a	single-particle	phase	space,	call	it	Γ𝜇.

-	 A	macrostate	region	of	Γ𝐸	corresponds	to	a	distribution	of	𝑁	single-
particle	microstates.

-	 The	number	of	points	in	a	macrostate	region	then	is	the	number	of	
possible	ways	to	arrange	𝑁	single-particle	microstates	with	respect	to	
the	corresponding	single-particle	distribution!

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

• •

•

• • ••
• •

Γ𝐸Γ𝑀eq

- If we had a measure function 
defined on Γ (i.e., a "density" 
function), then we could use it to 
calculate the number of points in 
a given macrostate region.

Gibbs' 
approach!

To define this thing, Boltzmann coarse-
grains the single-particle phase space...



𝜔1 𝜔2 𝜔3

•	 Partition	Γ𝜇	into	ℓ	cells	𝜔1,	...,	𝜔ℓ	of	volume	Δ𝜔	=	Δ𝑥3Δ𝑝3.
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Coarse-graining	the	single-particle	phase	space

Arrangement	#1:
microstate	𝑠6	in	𝜔1,	microstate	𝑠89	in	𝜔3,	etc.

Def.	4.	An	arrangement	is	a	specification	of	which	
single-particle	microstates	lie	in	which	cells.

𝑠6

𝑠89

Γ𝜇
•	 Start	with	the	6-dim	phase	space	Γ𝜇	of	a	single	particle.

- A point in Γ𝜇 is a single-
particle microstate.

- Γ𝐸	=	𝑁	copies of	Γ𝜇

•

•

•

•
•

•

• •

••

•

•

•

•	 A	microstate	of	an	𝑁-particle	system	is	given	by	𝑁	points	in	Γ𝜇. 𝑁 points in Γ𝜇 
correspond to 
one point in Γ𝐸



Arrangement	#2:
microstate	𝑠89	in	𝜔1,	microstate	𝑠6	in	𝜔3,	etc.

•	 Partition	Γ𝜇	into	ℓ	cells	𝜔1,	...,	𝜔ℓ	of	volume	Δ𝜔	=	Δ𝑥3Δ𝑝3.
•	 A	microstate	of	an	𝑁-particle	system	is	given	by	𝑁	points	in	Γ𝜇.

Arrangement	#1:
microstate	𝑠6	in	𝜔1,	microstate	𝑠89	in	𝜔3,	etc.

More than one 
arrangement can 
correspond to the 
same distribution!

Def.	5.	A	single-particle	distribution	𝐷	=	(𝑛1,	𝑛2,	...,	𝑛ℓ)	
is	a	specification	of	how	many	single-particle	microstates	
(regardless	of	which	ones)	lie	in	each	cell.

Distribution:
𝐷	=	(1,	0,	2,	0,	1,	1,	...)

1 state in 𝜔1, 0 states in 
𝜔2, 2 states in 𝜔3, etc.

Def.	4.	An	arrangement	is	a	specification	of	which	
single-particle	microstates	lie	in	which	cells.
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Coarse-graining	the	single-particle	phase	space

•	 Start	with	the	6-dim	phase	space	Γ𝜇	of	a	single	particle.

•

•

•

•
•

•

• •

••

•

•

•

𝜔1 𝜔2 𝜔3

Γ𝜇

𝑠89

𝑠6

- A point in Γ𝜇 is a single-
particle microstate.

- Γ𝐸	=	𝑁	copies of	Γ𝜇

𝑁 points in Γ𝜇 
correspond to 
one point in Γ𝐸



How	many	arrangements	𝐺(𝐷)	are	compatible	with	a	given	𝐷	=	(𝑛1,	𝑛2,	...,	𝑛ℓ)?

Check:	Let	𝐷1	=	(𝑁,	0,	...,	0)	and	𝐷2	=	(𝑁	−	1,	1,	0,	...,	0).
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𝑛!	 =	𝑛(𝑛	−	1)(𝑛	−	2)⋯1
	 =	#	of	ways	to	arrange	𝑛	

distinguishable	objects
0!	 =	1

•	 Answer:

𝐺 𝐷 =
𝑁!

𝑛%! 𝑛&! ⋯ 𝑛ℓ!
=

Number	of	ways	to	arrange	𝑁	
distinguishable	objects	into	ℓ	
bins	with	capacities	𝑛1,	𝑛2,	...,	𝑛ℓ.

There are 𝑁 different ways 𝜔2 
could have one state in it; 
namely, if 𝑠1 was in it, or if 𝑠2 
was in it, or if 𝑠3 was in it, etc..

𝐺 𝐷. =
𝑁!

(𝑁 − 1)!
=
𝑁 𝑁 − 1 𝑁 − 2 ⋯1
(𝑁 − 1)(𝑁 − 2)⋯1

= 𝑁

𝐺 𝐷/ =
𝑁!
𝑁!

= 1 Only one way for all 𝑁 particle states to be in 𝜔1.



"The	probability	of	this	distribution	[𝐷]	is	then	given	by	the	number	
of	permutations	of	which	the	elements	of	this	distribution	are	
capable,	that	is	by	the	number	[𝐺(𝐷)].	As	the	most	probable	
distribution,	i.e.,	as	the	one	corresponding	to	thermal	equilibrium,	we	
again	regard	that	distribution	for	which	this	expression	is	maximal..."

Assumption	1.	The	probability	of	a	single-particle	
distribution	𝐷	is	given	by	𝐺(𝐷).

11

•	 Answer:

𝐺 𝐷 =
𝑁!

𝑛%! 𝑛&! ⋯ 𝑛ℓ!
=

Number	of	ways	to	arrange	𝑁	
distinguishable	objects	into	ℓ	
bins	with	capacities	𝑛1,	𝑛2,	...,	𝑛ℓ.

𝑛!	 =	𝑛(𝑛	−	1)(𝑛	−	2)⋯1
	 =	#	of	ways	to	arrange	𝑛	

distinguishable	objects
0!	 =	1

How	many	arrangements	𝐺(𝐷)	are	compatible	with	a	given	𝐷	=	(𝑛1,	𝑛2,	...,	𝑛ℓ)?

Claim.	The	equilibrium	distribution	is	the	distribution	that	maximizes	𝐺(𝐷).

In other words:



𝑆Boltz as a measure of how 
probable a macrostate is.

Assumption	2.	Each	single-particle	
distribution	𝐷	corresponds	to	a	
macrostate	Γ𝑀𝐷.

What is the size of this macrostate?

-	 A	point	(multi-particle	microstate)	in	Γ𝐸	corresponds	to	an	arrangement	of	single-
particle	microstates	in	Γ𝜇.

-	 The	size	of	a	macrostate	Γ𝑀𝐷	in	Γ𝐸	is	given	by	the	number	of	points	it	contains	(the	
number	of	arrangements	compatible	with	𝐷)	multiplied	by	a	volume	element	of	Γ𝐸.

-	 A	volume	element	of	Γ𝐸	is	given	by	𝑁	copies	of	a	volume	element	Δ𝜔	of	Γ𝜇.
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•	 So:	The	size	of	Γ𝑀𝐷	is	|Γ𝑀𝐷|	=

=	𝐺(𝐷)Δ𝜔𝑁

×#	arrangements	
compatible	with	𝐷

volume	
element	of	Γ𝐸

The probability 𝐺(𝐷) of 𝐷 is 
proportional to the size of Γ𝑀𝐷

•	 Hence:			𝑆Boltz(Γ𝑀𝐷)	=	𝑘ln(𝐺(𝐷)Δ𝜔𝑁)

	 	 =	𝑘ln(𝐺(𝐷))	+	𝑁𝑘ln(Δ𝜔)

Why? A system's macroscopic properties (volume, 
pressure, temp, etc) only depend on how many 
particles are in particular microstates, and not on 
which particles are in which microstates.

=		𝑘ln(𝐺(𝐷))	+	const.



𝑆Boltz	in terms of single-particle 
microstate probabilities 𝑝𝑖.

𝑆Boltz in terms of single-particle 
microstate numbers 𝑛𝑖.

𝑆Boltz(Γ𝑀𝐷)	=	𝑘ln(𝐺(𝐷))	+	const.

=	𝑘ln(𝑁!)	−	𝑘ln(𝑛1!)	−	⋯	−	𝑘ln(𝑛ℓ!)	+	const.

Stirling's	approx:
ln𝑛!	≈	𝑛ln𝑛	−	𝑛

≈	(𝑁𝑘ln𝑁	−	𝑁)	−	(𝑛1𝑘ln𝑛1	−	𝑛1)	−	⋯	−	(𝑛ℓ𝑘ln𝑛ℓ	−	𝑛ℓ)	+	const.

Other	formulations	of	𝑆Boltz:

•	 Let:		𝑝𝑖	=	𝑛𝑖/𝑁	=
probability	of	finding	a	
randomly	chosen	single-
particle	microstate	in	cell	𝜔𝑖

Probabilities for single-particle 
microstates (not macrostates)!

= 𝑘ln
𝑁!

𝑛/!⋯ 𝑛ℓ!
+ const.

=	 −𝑘∑ℓ
𝑖=1𝑛𝑖ln𝑛𝑖	+	const.

𝑛1	+	⋯	+	𝑛ℓ	=	𝑁

•	 Then:	𝑆Boltz(Γ𝑀𝐷)	=		−𝑁𝑘∑ℓ
𝑖=1𝑝𝑖ln𝑝𝑖	+	const.

•	 Or: 𝑆12345(Γ𝑀𝐷) = −𝑁𝑘B
6?
𝜌7 𝑥7 ln𝜌7 𝑥7 𝑑𝑥7

single-particle probability distribution over Γ𝜇
13
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•	 What	distribution	𝐷*	=	(𝑛1*,	...,	𝑛ℓ*)	maximizes	𝑆Boltz(𝑛𝑖)?

Assume:	The	𝑛𝑖	are	constrained	by

(a)		∑ℓ
𝑖=1𝑛𝑖	=	𝑁	 (b)		∑ℓ

𝑖=1𝜀𝑖𝑛𝑖	=	𝑈
Weak interaction assumption:
The total internal energy 𝑈	=	sum of the 
energies 𝜀𝑖 of single-particle microstates

•	 Can	add	arbitrary	multiples	of	the	constraints	and	still	get	zero:

	 	 𝑑𝑆Boltz	=	∑𝑖(−𝑘ln𝑛
∗
𝑖	−	𝛼	−	𝛽𝜀𝑖)𝑑𝑛𝑖	=	0

•	 So:			𝑘ln𝑛𝑖*	+	𝛼	+	𝛽𝜀𝑖	=	0					or					𝑛𝑖*	=	𝑒−(𝛼	+	𝛽𝜀𝑖)/𝑘	=	𝑒−𝛼/𝑘𝑒−𝛽𝜀𝑖/𝑘	

•	 Now	find	values	𝑛𝑖*	that	solve:

	 	 𝑑𝑆Boltz	=	−𝑘∑𝑖(ln𝑛
∗
𝑖	+	1)𝑑𝑛𝑖	=	0

subject to constraints
𝑑𝑁	=	∑𝑖𝑑𝑛𝑖	=	0
𝑑𝑈	=	∑𝑖 𝜀𝑖𝑑𝑛𝑖	=	0

•	 To	maximize	𝑆Boltz(𝑛𝑖),	set	its	derivative	to	zero	and	solve	for	𝑛𝑖:

Small changes to 𝑆Boltz due 
only to small changes to 𝑛𝑖

-	 Or:			𝑑𝑆Boltz	=	−	𝑘∑𝑖(ln𝑛𝑖	+	1)𝑑𝑛𝑖

	 (𝑑/𝑑𝑛𝑖)𝑆Boltz(𝑛𝑖)	=	−𝑘∑𝑖(𝑑/𝑑𝑛𝑖)(𝑛𝑖ln𝑛𝑖	+	const.)	=	−𝑘∑𝑖(ln𝑛𝑖	+	1)

Now put this into a 
(slightly) nicer form...

2.	The	Maxwell-Boltzmann	Equilibrium	Distribution
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(a)		∑ℓ
𝑖=1𝑛𝑖	=	𝑁	 (b)		∑ℓ

𝑖=1𝜀𝑖𝑛𝑖	=	𝑈

•	 Enforce	(a)	on	𝑛𝑖*

∑𝑖𝑛𝑖*	=	𝑁	=	𝑒−𝛼/𝑘∑𝑖𝑒−𝛽𝜀𝑖/𝑘					or					𝑒−𝛼/𝑘	=	𝑁/𝑍,						𝑍	≡	∑𝑖𝑒−𝛽𝜀𝑖/𝑘

•	 So:					𝑛𝑖*	=	(𝑁/𝑍)𝑒−𝛽𝜀𝑖/𝑘

•	 Hence: Boltzmann's claim: 𝐷* is 
the equilibrium distribution

The "Maxwell-Boltzmann 
distribution"

𝐷*	=	(𝑛1*,	...,	𝑛ℓ*)	=	
9
:
𝑒;<=@/? , … , 9

:
𝑒;<=ℓ/?

M-B distribution in terms 
of velocity (with 𝛽	=	1/𝑇)

𝑛𝑖*	=	𝑒−(𝛼	+	𝛽𝜀𝑖)/𝑘	=	𝑒−𝛼/𝑘𝑒−𝛽𝜀𝑖/𝑘	



3.	Boltzmann	Entropy	𝑆Boltz	vs.	Thermodynamic	Entropy	𝑆TD
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•	 Consider:	Small	changes	in	internal	energy	of	a	reversible	process:

𝑑𝑈	=	𝑑(∑𝑖𝜀𝑖𝑛𝑖)

	 =	∑𝑖𝜀𝑖𝑑𝑛𝑖	+	∑𝑖𝑛𝑖𝑑𝜀𝑖

𝑑𝑈	=	𝛿𝑄	+	𝛿𝑊

	 =	𝑇𝑑𝑆TD	−	𝑃𝑑𝑉

Macroscopic	point	of	view Microscopic	point	of	view

•	 Suggests:			𝑃𝑑𝑉	=	−∑𝑖𝑛𝑖𝑑𝜀𝑖			and			𝑑𝑆TD	=	(1/𝑇)∑𝑖𝜀𝑖𝑑𝑛𝑖

•	 So:	For	the	M-B	equilibrium	distribution,	𝑆Boltz	=	𝑆TD,	provided	𝛽	=	1/𝑇.

•	 Note:	For	the	Max-Boltz	equilibrium	distribution	𝑛𝑖*	=	
/
0
	𝑒−	𝛽𝜀𝑖/𝑘:

	 	 𝑑𝑆Boltz(𝑛𝑖*)	 =	−𝑘∑𝑖(ln𝑛𝑖*	+	1)𝑑𝑛𝑖 	=	−𝑘∑𝑖{ln
/
0
	+	1	−	𝛽𝜀𝑖/𝑘}𝑑𝑛𝑖

	 	 	 =	𝛽∑𝑖𝜀𝑖𝑑𝑛𝑖
(lnA

B
	+	1)∑𝑖𝑑𝑛𝑖	=	0

Assume:
-	 A	change	in	𝑉	is	related	to	a	change	in	single-particle	energies	𝜀𝑖.
-	 A	change	in	𝑆TD	is	related	to	a	change	in	microstate	number	𝑛𝑖.	

Attempt	#1
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What	this	shows:
•	 For	a	large	number	of	weakly	interacting	particles	in	an	equilibrium	state,	it	is	
consistent	to	identify	the	Boltzmann	entropy	𝑆Boltz	with	the	thermodynamic	
entropy	𝑆TD.

•	 But:

-	 Assumes	the	Maxwell-Boltzmann	distribution	
𝐷*	that	maximizes	𝑆Boltz	is	the	equilibrium	
distribution.

Just another way of assuming 
that the largest macrostate is 
the equilibrium macrostate.

Isn't this what we're trying to 
show (i.e., 𝑆TD	=	𝑆Boltz)?

-	 Assumes	a	change	in	𝑆TD	is	related	to	a	change	
in	microstate	number	𝑛𝑖.

What about the dynamics of a system 
entails that it will evolve:
- to the largest macrostate?
- to the most typical macrostate?
- to the most probable macrostate?

-	 For	thermally	isolated	processes,	𝑆TD	
absolutely	increases	or	remains	constant;	
whereas	there	is	no	absolute	law	that	
requires	𝑆Boltz	to	increase	or	remain	constant.



Attempt	#2

Claim.	Δ𝑆Boltz	=	Δ𝑆TD	for	free	expansion	of	an	ideal	gas.

Δ𝑆TD = 𝑛𝑅Q
7

&7 𝑑𝑉
𝑉
= 𝑛𝑅ln2

•	 Macroscopic	point	of	view
-	 Irreversible:	𝑊	=	0,	𝑇	=	const.,		Δ𝑈	=	0.
-	Reversible:	𝛿𝑊	=	−𝑃𝑑𝑉,	𝑇	=	const.,		Δ𝑈	=	0.

𝑉 2𝑉

irreversible free expansion

𝑇

𝑉

𝑇

2𝑉

reversible free expansion

𝛿𝑄	=	𝑑𝑈	−	𝛿𝑊
	 =	0	+	𝑃𝑑𝑉

𝑑𝑆TD	=	𝛿𝑄/𝑇
	 =	(𝑃/𝑇)𝑑𝑉
	 =	(𝑛𝑅/𝑉)𝑑𝑉  𝑃𝑉	=	𝑛𝑅𝑇

𝑛	=	#moles
𝑅	=	const.
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•	 Microscopic	point	of	view
-	𝑁	=	number	of	gas	particles.
-	Ω	=	#	arrangements	of	single-particle	microstates	before	expansion.

Claim.	2𝑁Ω	=	#	arrangements	of	single-particle	microstates	after	expansion.

Why?
-	 Each	cell	in	coarse-grained	Γ𝜇	has	volume	Δ𝑝3Δ𝑥3.
-	 During	expansion:
-	 Momentum	part	doesn't	change.
-	 Position	part	changes,	since	volume	doubles.

-	 After	expansion:
-	 Each	particle	has	twice	as	many	possible	single-particle	position	
microstates	it	can	be	in;	so	for	𝑁	particles,	there	are	2𝑁	as	many	
possible	single-particle	position	microstates.

𝑇	=	const.	=	ave. kinetic energy
	 =	 G

HI
𝑝H

19

-	So:

Δ𝑆Boltz	=	𝑘ln(2𝑁Ω)	−	𝑘lnΩ	=	𝑘ln2𝑁	=	𝑁𝑘ln2	=	𝑛𝑅ln2

Same expression as Δ𝑆TD!



What	this	shows:
•	 For	the	free	expansion	of	an	ideal	gas,	it	is	consistent	to	
identify	Δ𝑆TD	with	Δ𝑆Boltz.

What about the dynamics of a system 
entails that it will evolve:
- to the largest macrostate?
- to the most typical macrostate?
- to the most probable macrostate?

-	 For	thermally	isolated	processes,	𝑆TD	
absolutely	increases	or	remains	constant;	
whereas	there	is	no	absolute	law	that	
requires	𝑆Boltz	to	increase	or	remain	constant.

•	 But:

-	 For	this	particular	physical	system,	Δ𝑆TD	and	
Δ𝑆Boltz	take	the	same	value.

Does this necessarily entail they 
measure the same quantity?

20



Attempt	#3

Claim.	𝑆Boltz	=	𝑆TD	for	an	ideal	gas.

•	 Macroscopic	point	of	view

𝑑𝑈	=	𝛿𝑄	+	𝛿𝑊	=	𝑇𝑑𝑆TD	−	𝑃𝑑𝑉
1st Law for reversible process

𝑑𝑆TD	=	𝑑𝑈/𝑇	+	(𝑃/𝑇)𝑑𝑉

	 =	(𝐶𝑉/𝑇)𝑑𝑇	+	(𝑛𝑅/𝑉)𝑑𝑉

Constant volume heat capacity
𝐶𝑉	 ≡	(∂𝑈/∂𝑇)𝑉
		 =	𝑑𝑈/𝑑𝑇,	for	𝑈	=	𝑈(𝑇)	

Def.	The	heat	capacity	𝐶	of	a	
physical	system	is	the	amount	
of	absorbed	heat	𝛿𝑄	needed	
to	change	the	temperature	of	
the	system	by	𝑑𝑇:	𝐶	≡	𝛿𝑄/𝑑𝑇. 

-	So:

𝑠TD	=	𝑐𝑣ln𝑇	+	𝑅ln𝑣	+	const. 

-	Or:

𝑑𝑠TD	=	(𝑐𝑣/𝑇)𝑑𝑇	+	(𝑅/𝑣)𝑑𝑣
Molar quantities
𝑠TD	=	𝑆TD/𝑛
𝑐𝑣	=	𝐶𝑉/𝑛
𝑣	=	𝑉/𝑛
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•	 Microscopic	point	of	view
-	What	is	𝑆Boltz	of	a	macrostate	of	an	ideal	gas	with	𝑁	particles	at	temp	𝑇,	
heat	capacity	𝐶𝑉,	volume	𝑉?

-	Need	to	first	determine	number	of	possible	microstates	Ω	it	can	be	in.

Claim.	Ω	=	ΩpositionΩmomentum	=	[𝑉/Δ𝑥3]𝑁[𝑝3rms/Δ𝑝3]𝑁

Position	multi-particle	microstates	Ωposition
-	 𝑉	=	region	in	Γ𝜇.

-	 𝑉/Δ𝑥3	=	#	occupied	cells	in	𝑉.
	 	 =	coarse-grained	#	position	single-particle	microstates	in	𝑉.

-	 [𝑉/Δ𝑥3]𝑁	=	coarse-grained	#	position	multi-particle	microstates.

Momentum	multi-particle	microstates	Ωmomentum
-	 𝑝rms	≡	(𝑝.)½	=	root	mean	square	momentum.

-	 𝑝3rms/Δ𝑝3	 =	#	occupied	cells	in	region	of	single-particle	momentum	phase	space.
	 	 =	coarse-grained	#	momentum	single-particle	microstates.

-	 [𝑝3rms/Δ𝑝3]𝑁	=	coarse-grained	#	momentum	multi-particle	microstates.

What gets measured:
Ave. kinetic energy =	 $

%&
𝑝% = $

%&
	𝑝2rms
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•	 Now	simplify	Ω

ΩposΩmo	 =	[𝑉/Δ𝑥3]𝑁[𝑝3rms/Δ𝑝3]𝑁	=	[𝑝3rms𝑉/Δ𝑥3Δ𝑝3]𝑁

Stirling's approx: 𝑁!	≈	(𝑁/𝑒)𝑁, for large	𝑁	≈
𝑒𝑉𝑝RSTU

𝑁 ∆𝑥∆𝑝 U

9

quantum hypothesis:	Δ𝑥Δ𝑝	=	ℎ=
𝑒𝑉 2𝑚𝑈 U/.

𝑁V/.ℎU

9

𝑁	=	𝑛𝑁𝐴,	𝑛	=	#moles,	𝑁𝐴	= Avogadro's number	
=

𝑒𝑉 2𝑚𝑈 U/.

𝑛𝑁W V/.ℎU

X9K

=
𝑉
𝑛

𝑈
𝑛

U/. 𝑒 2𝑚 U/.

𝑁W
V/.ℎU

X9K

Assume indistinguishable particles, so 
need "overcount" correction factor 1/𝑁!=

1
𝑁!

𝑝RSTU 𝑉
∆𝑥∆𝑝 U

9

𝑝rms	=	(𝑝!)½

	 =	 ∑" 𝑝"!/𝑁 ½

	 =	(2𝑚𝑈/𝑁)½
=

𝑒𝑉 2𝑚𝑈 U/.

𝑁V/. ∆𝑥∆𝑝 U

9

Assume weakly interacting: Total 
𝑈	= sum of single-particle 𝑈's.
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•	 Can	now	calculate	𝑆Boltz!

𝑆Boltz	=	𝑘lnΩ = 𝑘ln
𝑉
𝑛

𝑈
𝑛

@/& 𝑒 2𝑚 @/&

𝑁B
C/&ℎ@

D/T

= 𝑛𝑘𝑁B ln
𝑉
𝑛

+ @
&ln

𝑈
𝑛

+ const.

𝑠Boltz	=	𝑅[ ln𝑣	+	PQln𝑢	+	const.]

	 =	𝑅ln𝑣	+		PQ𝑅ln𝑇	+	const.

	 =	𝑅ln𝑣	+	𝑐𝑣ln𝑇	+	const.

-	Or:
Molar quantities
𝑠Boltz	=	𝑆Boltz/𝑛,	𝑣	=	𝑉/𝑛,	𝑢	=	𝑈/𝑛

Ideal monotomic gas
𝑢	=	/0𝑅𝑇
𝑐𝑣	=	/0𝑅

𝑠Boltz	=	𝑅ln𝑣	+	𝑐𝑣ln𝑇	+	const.

-	So:

Same expression as 𝑠TD!
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What	this	shows:
•	 𝑆TD	and	𝑆Boltz.	take	the	same	value	for	an	𝑁	particle	gas	under	the	following	
assumptions:
(i)	 The	gas	particles	are	indistinguishable.
(ii)	 	𝑁	is	very	large	(Stirling's	approx.).
(iii)	 The	gas	particles	are	weakly	interacting.
(iv)	 The	gas	particles	obey	the	(quantum)	uncertainty	relation	Δ𝑥Δ𝑝	=	ℎ.
(v)	 The	gas	is	monatomic.
(vi)	 The	gas	obeys	the	ideal	gas	law.

25

•	 But	(again):
-	 Does	this	mean	𝑆TD	and	𝑆Boltz	measure	the	same	quantity?
-	 	𝑆TD	absolutely	obeys	2nd	Law,	while	𝑆Boltz	does	not.


