04a. Entropy in Statistical Mechanics: Boltzmann

e Goal: To explain the behavior of macroscopic systems in terms of
the dynamical laws governing their microscopic consituents.

- To provide a micro-dynamical explanation of the Minus 1st and 2nd Laws.

1. Boltzmann Entropy Sg,

1. Boltzmann Entropy Sg,,
2. Max-Boltz Distribution

3. SBoltz VS. STD

Ludwig Boltzmann
(1844-1906)

e Consider different "macrostates” of a thermally isolated gas at constant energy:
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e Why does the gas prefer to be in the
equilibrium macrostate (last one)?

- Equilibrium macrostate = state characterized by
thermodynamic properties (temp, volume, pressure,

efc.) that do not change with time.

- Maximizes Stp!



e Suppose the gas consists of N particles governed by Hamilton's equations of
motion (the micro-dynamics).

Def. 1 (Microstate). A microstate x of an N-particle system is a specification
of the position (3 values) and momentum (3 values) for each of its N particles.

LetI' = phase space = 6 N-dim space of all possible microstates.

Let I'r = region of I' that consists of all microstates with constant energy E.

A point x in Iy is labeled by 6N numbers:

X = (x(l), y(l), Z(l), x(l)’ py(l)’ pz(l), -

xN), y(N)’ zN), px(N)’ py(N), pZ(N))

Hamiltonian dynamics maps
initial microstate x; to final
microstate x .

Can Minus 1st and 2nd Laws be
explained in terms of this dynamics?




Def. 2 (Macrostate). A macrostate 'y, of a physical system is a specification of the
system in terms of macroscopic properties (pressure, temperature, volume, etc.).

e Relation between microstates and macrostates:

Macrostates supervene < - To each microstate there
. corresponds exactly one macrostate.
on microstates!

- Many distinct microstates can
correspond to the same macrostate.

e So: I'yis partitioned into a finite number of regions I'y, corresponding to
macrostates, with each microstate x belonging to one macrostate.
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Assumption. The equilibrium macrostate I'y, | < But why?
is much larger than any other macrostate.

very small non-equilibrium
macrostates

Sgoiz(T'y) obtains its

7 maximum value for I'y,,

Def. 3 (Boltzmann entropy). The Boltzmann entropy S;.;.,(I'y,) of a
macrostate 'y, of a thermally isolated physical system at constant
energy is given by Sg..,(I'y) = kIn|T'y|, where |T'),| is the size of FM'V

Claim. S}, increases over time because, for any initial
microstate x;, the dynamics will map x; into FMeq very

?
.S But why

quickly, and then keep it there for an extremely long time.




Two Ways to Explain the Approach to Equilibrium:

(a) Appeal to typicality of microstates Goldstein (2001)

Claim. A system approaches equilibrium because equilibrium
microstates are typical and nonequilibrium microstates are atypical.

e Why? For large N, I is almost entirely filled up with equilibrium microstates.
Hence they are "typical"”.
- But: What is it about the dynamics that evolves atypical states to typical states?

- "If a system is in an atypical microstate, it does not evolve into an equilibrium
microstate just because the latter is typical." (Frigg 2009)

- Need to identify properties of the dynamics that guarantee atypical states

- And: Need to show that these properties are typical.

- Ex: If the dynamics is chaotic (in an appropriate "ergodic” sense), then (under certain
conditions), any initial microstate x; will quickly be mapped into I'; and remain there
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Frigg, R. (2009) 'Typicality and the Approach to Equilibrium in Boltzmannian Statistical Mechanics', Philosophy of Science 76, 997-1008.



(b) Appeal to probability of macrostates

Claim. A system approaches equilibrium because it evolves from
low probability macrostates to high probability macrostates,

and the equilibrium macrostate has the highest probabililty. >

ﬁln most cases, the initial state will be a Very\
unlikely state. From this state the system will

steadily evolve towards more likely states
until it has finally reached the most likely
Qtate, i.e., the state of thermal equilibrium."

e Task: Come up with a way to assign probabilites to macrostates such that the
larger the macrostate, the greater the probability of finding a microstate in it.

Story to come: Associate the probability of a macrostate with the
number of microstates it contains!




But: What determines the number of microstates in a macrostate?

- If we had a measure function
defined on T’ (i.e., a "density"
function), then we could use it to

calculate the number of points in
a given macrostate region.

Gibbs'
approach!

e Boltzmann's approach:
- A point in a macrostate region of ['; is an N-particle microstate, and it

corresponds to N points in a single-particle phase space, call it T',,.

- A macrostate region of I'; corresponds to a distribution of N single-
particle microstates.

- The number of points in a macrostate region then is the number of
possible ways to arrange N single-particle microstates with respect to
the corresponding single-particle distribution!

To define this thing, Boltzmann coarse-
grains the single-particle phase space...



Coarse-qgraining the single-particle phase space
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< - ApointinT, is a single-
e Start with the 6-dim phase space I', of a single particle. particle microstate.

" . -I'y = N copies of I’
e Partition T, into £ cells wy, ..., w, of volume Aw = Ax3Ap>. g P :

A microstate of an N-particle system is given by N points in . «= N pointsinT,
correspond to

Def. 4. An arrangement is a specification of which one point in T’y
single-particle microstates lie in which cells.




Coarse-qgraining the single-particle phase space

Se
[ ] [ ]
S89 ¢ Arrangement #1:
wq ) w3 . . ) i
microstate s, in w;, microstate sgo in ws, etc.
° ° . Arrangement #2:

microstate sgg in w¢, microstate sq in w3, etc.

Distribution:
D=(10,2011,..)
[ ?
1 state in w4, 0 states in
[ .
w-,, 2 states in w3, etc.

r
_ . H _ _ =" A pqint in .I‘M is a single-
e Start with the 6-dim phase space I', of a single particle. particle microstate.
" : - I'r = N copies of
e Partition T, into £ cells wy, ..., w, of volume Aw = Ax3Ap>. g P :
e A microstate of an N-particle system is given by N points in ', <= N poinisinl,
K correspond to
Def. 4. An arrangement is a specification of which one point in I'y
single-particle microstates lie in which cells.
: : o .. More than one

Def. 5. A single-particle distribution D = (14, n,, ..., n,) arrangement can

is a specification of how many single-particle microstates correspond to the

(regardless of which ones) lie in each cell. same distribution!




How many arrangements G(D) are compatible with a given D = (n4, n,, .., n,)?

e Answer:
N! Number of ways to arrange N
G(D) = — - = | distinguishable objects into ¢
My Ng: Ny bins with capacities ny, n,, ..., n.

Check: Let D, = (N, 0,..,0)and D,= (N —1, 1,0, ..., 0).

G(D;) = N <« Only one way for all N particle states to be in w.
) =—

N!

N! NN = 1)(N = 2) 1
(N — 1)! = (N—1)(N—2)-1 = could have one state in it;

namely, if s; was in it, or if s,
was in it, or if S3 was in it, etc..

< There are N different ways w-
G(D;) =

nl =nn—1)(n-2)---1
= # of ways to arrange n
distinguishable objects
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How many arrangements G(D) are compatible with a given D = (n4, n,, .., n,)?

e Answer:
N! Number of ways to arrange N
G(D) = = | distinguishable objects into ¢
n«ln-1--n,l ) ; .
1002 ¢ bins with capacities ny, n, ..., n,.

nl =nn—1)(n-2)---1 !
= # of ways to arrangen 1

distinguishable objects |

Assumption 1. The probability of a single-particle
distribution D is given by G(D).

ﬁThe probability of this distribution [D] is then given by the number\
of permutations of which the elements of this distribution are
capable, that is by the number [G(D)]. As the most probable

distribution, i.e., as the one corresponding to thermal equilibrium, we

anin regard that distribution for which this expression is maximal..."

In other words:

Claim. The equilibrium distribution is the distribution that maximizes G(D).
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distribution D corresponds to a

macrostate I'y,.

What is the size of this macrostate?
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- A point (multi-particle microstate) in I'; corresponds to an arrangement of single-

particle microstates in T',,

|

|

|

|

|

' - The size of a macrostate I'y;, in I'; is given by the number of points it contains (the
' number of arrangements compatible with D) multiplied by a volume element of I';.
|
|

- Avolume element of ['; is given by N copies of a volume element Aw of T,

e So: The size of I'y;, is |T'y, |

e Hence: Sp,,(I'y,) = kIn(G(D)Aw")

# arrangements
compatible with D

|

element of T'g

volume ]

XX The probability G(D) of D is
proportional to the size of 'y,

= kIn(G(D)) + Nkln(Aw)

= |kIn(G(D)) + const.

—

Sgoitz @S @ measure of how
probable a macrostate is.

Assumption 2. Each single-particle S Why? A system's macroscopic properties (volume,
pressure, temp, etc) only depend on how many

particles are in particular microstates, and not on
which particles are in which microstates.

12



Other formulations of Sy

R .
Sgoitz(Ty) = kIn (G(D)) + const. ! Stirling's approx: |
N 'Innl ~nlnn—n |
= in (————) + const. ittt
nl'".nf' |n1+.-+n€=N:
= kIn(N!) — kIn(ny!) — - — kln (n,!) + const.
~ (NklnN — N) — (n;klnny — ny) — --- — (nyklnn, — n,) + const.

?
= —kz i=1niln n; + const. —— == S In terms of single-particle
microstate numbers n,.

probability of ﬁ"dif’lg a L= Probabilities for single-particle
o Let: pj=mn/N=|T a”de’J’ ghosen S”?gle' microstates (not macrostates)!
particle microstate in cell w,

' : . i .
e Then: Sg,,(Ty,) = —Nkz _ pdnp, + const. | « = Seoltz in terms of single-particle
microstate probabilities p;.

o Or: Spoitz(I'y,) = _Nkj p,u(xu)lnpu(xu)dxu

ru\‘\

single-particle probability distribution over I’
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2. The Maxwell-Boltzmann Equilibrium Distribution

What distribution D* = (nj, .., n,) maximizes Sg,,(1;)?

(@) Y ,m=N

Assume: The n; are constrained by

(b) ¥ en=U

Weak interaction assumption:
The total internal energy U = sum of the
energies &; of single-particle microstates

To maximize Sg,,(n;), set its derivative to zero and solve for n;:

(d/dn)Sgo(ny) = —k),;(d/dn)(nlnn; + const.) = —k), (Inn; + 1)

- Or: dSgoi, = — kzi(ln n; + 1)dn; <— == Small changes to Sgy, due

Now find values n; that solve:

bject t traint.
ASpoit; = —kzi(lnnf +1)dn,=0 == Subject to constraints

only to small changes to n;

{szZidnizo

dU = Zisidni =0

Can add arbitrary multiples of the constraints and still get zero:

dSgoiz = Zi(—klnn? —a— Pe)dn;=0

So: klnn;+a+ pg;=0

or

n;." = g~ (a+Be)/k = p—a/kpo—Pei/k

X~ Now put this into a

(slightly) nicer form...
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lek — e~ (a+fe)/k = p—a/kp—Pe/k

@ Y. n=N (b)) ¥ en=U

e Enforce (a) onn;

Zin;'k = N = e_a/kzie_ﬁsi/k

e So: nz‘ = (N/Z)e_ﬁfi/k

or e k=N/Z, Z=) e balk

The "Maxwell-Boltzmann

L; distribution”

N

* Hence: | D* = (nj, .., n})) = (—e

Z

—Ber/k Ile—ﬁee/k)

' Boltzmann's claim: D* is

f)

the equilibrium distribution

T=300K

fv) /
T = 600K

M-B distribution in terms
of velocity (with § =1/T)

Speed v 0 500 1000 1500 2000
Speed v (m/s)
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3. Boltzmann Entropy Sy, VS. Thermodynamic Entropy Stp

Attempt #1

e Consider: Small changes in internal energy of a reversible process:

Macroscopic point of view

Microscopic point of view

dU = 8Q + W dU = d(), eny)
“ — TdSTD - PdV — Zié‘idni + Zinid&‘i
Assume:

e Suggests: PdV = —), nde; and dSyp = (1/T)); &dn,

R s N
e Note: For the Max-Boltz equilibrium distribution nf = e~ beifk,

dSon(n)) = —kY. (Innf + 1)dn; = —kzi{lnlzl+ 1 — Be;/k}dn,

— ,le gidni

N\ (InZ+ DY, dn =0

e So: For the M-B equilibrium distribution, Sz, = Stp, provided g = 1/T.
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What this shows:

e For alarge number of weakly interacting particles in an equilibrium state, it is
consistent to identify the Boltzmann entropy Sg,, with the thermodynamic
entropy Stp.

 But:

- Assumes the Maxwell-Boltzmann distribution ~X~ Just another way of assuming

D* that maximizes S, is the equilibrium that the largest macrostate is
. . . the equilibrium macrostate.
distribution.

- Assumes a change in St is related to a change

: : Isn't this what we're trying to
in microstate number n,.

show (i.e., Stp = Sgoltz)?
- For thermally isolated processes, Stp

absolutely increases or remains constant;

whereas there is no absolute law that

requires Sg,), to increase or remain constant. > What about the dynamics of a system
entails that it will evolve:
- to the largest macrostate?
- to the most typical macrostate?

- to the most probable macrostate?

17



Attempt #2

Claim. ASg,, = AStp for free expansion of an ideal gas.

e Macroscopic point of view
- Irreversible: W =0, T = const.,, AU = 0. % — 2V
- Reversible: W = —PdV, T = const., AU = 0.

irreversible free expansion

2V
=MR/V)AV  <~pv=nrT = .
n = #moles
R = const.

reversible free expansion
2V dV

ASTD — nRj e annZ
vy V




e Microscopic point of view
- N = number of gas particles.

- (L = # arrangements of single-particle microstates before expansion.

Claim. 2V = # arrangements of single-particle microstates after expansion.

Why?
- Each cell in coarse-grained I', has volume Ap3Ax>.

- During expansion: (_5 T = const.= ave. kinetic energy
- Momentum part doesn't change. _ 13

- Position part changes, since volume doubles.
- After expansion:

- Each particle has twice as many possible single-particle position
microstates it can be in; so for N particles, there are 2" as many
possible single-particle position microstates.

_&:

ASgoi, = kKIn(2VQ) — kInQ = kIn2¥ = NkIn2 = nRIn2

g

Same expression as AStp!
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What this shows:
e For the free expansion of an ideal gas, it is consistent to

ldentlfy ASTD with ASBOltZ'

e But:

- For this particular physical system, AStp and _ _ _
O Does this necessarily entail they
ASp,1, take the same value. measure the same quantity ?

- For thermally isolated processes, Stp
absolutely increases or remains constant;

whereas there is no absolute law that

requires Sg.y, to increase or remain constant. ™ What about the dynamics of a system
entails that it will evolve:

- to the largest macrostate?
- to the most typical macrostate?
- to the most probable macrostate?
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Attempt #3

Claim. S}, = Stp for an ideal gas.

e Macroscopic point of view

S 1st Law for reversible process

d STD =dU /T + ( P /T) dV Constant volume heat capacity
Cy =(@U/AT)y
= (Cy/T)dT + (nR/V)dV = dU/dT, for U = U(T)
- &: Def. The heat capacity C of a
. physical system is the amount
Molar quantities
dSTD — (CU/T)dT + (R/v)dv > S1o= Sp/M of absorbed heat 6Q needed
—C to change the temperature of
¢y, = Cy/n the system by dT: C = 6Q/dT.
v=V/n

- So:

stp = ¢,InT + RInv + const.
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e Microscopic point of view
- What is S, 0f a macrostate of an ideal gas with N particles at temp T,

heat capacity Cy, volume /?
- Need to first determine number of possible microstates (1 it can be in.

Claim' Q — ‘QpOSition'Qmomentum — [V/AXS]N[p?'mS/APB]N

Position multi-particle microstates £, .ition

- V =regioninT,,

- V/Ax3 = # occupied cellsin V.
= coarse-grained # position single-particle microstates in V.

- [V/Ax3]N = coarse-grained # position multi-particle microstates.

Momentuni multi-particle microstates Q. omentum
- Poms = (p?)* = root mean square momentum. <«——

What gets measured:
. . _ i —2 _ L 2
Ave. Kkinetic energy = 5 P° = 5 Pims

- p3,_./Ap3 = # occupied cells in region of single-particle momentum phase space.
= coarse-grained # momentum single-particle microstates.

- [p3.../Ap®]" = coarse-grained # momentum multi-particle microstates.

22



e Now simplify Q)
Qposmo = [V/ BN [D3ns/ BP]Y = [DnsV /Ax*AP3]"

N
1 [ p3asV ] . —=—Assume indistinguishable particles, so

N!|(AxAp)3 need "overcount" correction factor 1 /N'!
3 N
| € VPrms == Stirling's approx: N! =~ (N /e)", for large N
N(AxAp)3

— (n2\%

evemu)32 " = P » )/2 1

— =77 = (Zl p; / N ) & Assume weakly interacting: Total
N5/ (AxAp)3 = (2mU/N)* ; U = sum of single-patrticle U's.

eV (2mU)3/?
N YEEE

N
] —— quantum hypothesis: AxAp = h

N
eV (2mU)3/? A <= N=nN,,n=#moles, N, = Avogadro's number
(nN,)>/2h3

3/2

e(2m)3/2 mha
N;/?R3

BI6
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e Can now calculate Sg !

S. = kinQ = kl (V)(U)
Boltz — n — n n n

VN 5. (U
= nkN, [ln (—) + 5In (—) + const.]
n n

3/2

e(2m)3/? i
N;/?h3

- Or
/ Molar quantities
SBoltz = Spoz/ LV =V/n,u=U/n
Spoitz = R [Inv + Zlnu + const.] Boltz = Spoe/ / /
= Rlnv + ;R InT + const. Ideal monotomic gas
} u=:RT

= RInv + ¢,InT + const. ¢, =R

- So

Sgoltz = RInv + ¢,InT + const. e

Same expression as Stp!



What this shows:

e Stp and Sy, take the same value for an N particle gas under the following
assumptions:

(i) The gas particles are indistinguishable.
(ii) N isvery large (Stirling's approx.).
(iii) The gas particles are weakly interacting.

(iv) The gas particles obey the (quantum) uncertainty relation AxAp = h.
(v) The gasis monatomic.

(vi) The gas obeys the ideal gas law.

e But(again):

- Does this mean S;p and S, measure the same quantity?

- Stp absolutely obeys 2nd Law, while Si;, does not.
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