
04.	Entropy	in	Statistical	Mechanics
•	 Goal:	To	explain	the	behavior	of	macroscopic	systems	in	terms	of	
the	dynamical	laws	governing	their	microscopic	consituents.
-	 In	particular:	To	provide	a	micro-dynamical	explanation	of	the	2nd	Law.

1.	Boltzmann's	Approach	to	Statistical	Mechanics

Ludwig	Boltzmann
(1844-1906)

•	 Consider	different	"macrostates"	of	a	gas	at	constant	energy:

•	 Why	does	the	gas	prefer	to	be	in	the	
equilibrium	macrostate	(last	one)?

Thermodynamic equilibrium macrostate = state 
characterized by thermodynamic properties (temp, 
volume, pressure, etc.) that do not change with time.

1.	 Boltzmann's	Approach
2.	 Gibbs'	Approach
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Def.	1	(Microstate).	A	microstate	𝑥	of	an	𝑁-particle	system	is	a	specification	
of	the	position	(3	values)	and	momentum	(3	values)	for	each	of	its	𝑁	particles.

•	 Suppose	the	gas	consists	of	𝑁	particles	governed	by	Hamilton's	equations	of	
motion	(the	micro-dynamics).

Let	Γ	=	phase	space	=	6𝑁-dim	space	of	all	possible	microstates.
Let	Γ𝐸	=	region	of	Γ	that	consists	of	all	microstates	with	constant	energy	𝐸.

Hamiltonian dynamics maps 
initial microstate 𝑥𝑖 to final 
microstate 𝑥𝑓.

Can 2nd Law be explained in 
terms of this dynamics?

• •
•

•

•

𝑥𝑖
𝑥𝑓

Γ𝐸

•

•

•

•

•
•

•
•

•

•
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Def.	2	(Macrostate).	A	macrostate	Γ𝑀	of	a	physical	system	is	a	specification	of	the	
system	in	terms	of	macroscopic	properties	(pressure,	temperature,	volume,	etc.).

•	 So:	 Γ𝐸	is	partitioned	into	a	finite	number	of	regions	Γ𝑀	corresponding	to	
macrostates,	with	each	microstate	𝑥	belonging	to	one	macrostate.

• •
•

•

• Γ𝐸

•

•

•

•

•
•

•
•

•

•
•

•

•
•

𝑥

Γ𝑀

macrostate

microstates
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•	 Relation	between	microstates	and	macrostates:

Macrostates supervene 
on microstates!

- To each microstate there 
corresponds exactly one macrostate.

- Many distinct microstates can 
correspond to the same macrostate.



Assumption.	The	equilibrium	macrostate	Γ𝑀eq	is	much	larger	
than	any	other	macrostate.

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•
•

•

• •

•

• • ••
• •

Γ𝐸Γ𝑀eq

very small non-equilibrium 
macrostates 

Claim.	𝑆Boltz	increases	over	time	because,	for	any	initial	
microstate	𝑥𝑖,	the	dynamics	will	map	𝑥𝑖	into	Γ𝑀eq	very	
quickly,	and	then	keep	it	there	for	an	extremely	long	time.

4

Def.	3	(Boltzmann	entropy).	The	Boltzmann	entropy	𝑆Boltz(Γ𝑀)	of	
a	macrostate	Γ𝑀	of	an	isolated	physical	system	at	constant	energy	
is	given	by	𝑆Boltz(Γ𝑀)	≡	𝑘ln|Γ𝑀|,	where	|Γ𝑀|	is	the	size	of	Γ𝑀.

𝑆Boltz(Γ𝑀) obtains its 
maximum value for Γ𝑀eq

.

But why?



Two	Ways	to	Explain	the	Approach	to	Equilibrium:

•	Why?	For	large	𝑁,	Γ𝐸	is	almost	entirely	filled	up	with	equilibrium	
microstates.	Hence	they	are	"typical".

(a)	 Appeal	to	Typicality					Goldstein	(2001)

Claim.	A	system	approaches	equilibrium	because	equilibrium	
microstates	are	typical	and	nonequilibrium	microstates	are	atypical.

-	 But:	What	is	it	about	the	dynamics	that	evolves	atypical	states	to	typical	states?
-	 "If	a	system	is	in	an	atypical	microstate,	it	does	not	evolve	into	an	equilibrium	
microstate	just	because	the	latter	is	typical."	(Frigg	2009)

-	 Need	to	identify	properties	of	the	dynamics	that	guarantee	atypical	states	
evolve	into	typical	states.

-	 And:	Need	to	show	that	these	properties	are	typical.
-	 Ex:	If	the	dynamics	is	chaotic	(in	an	appropriate	"ergodic"	sense),	then	(under	certain	
conditions),	any	initial	microstate	𝑥𝑖	will	quickly	be	mapped	into	Γeq	and	remain	there	
for	long	periods	of	time.	(Frigg	2009)

Frigg,	R.	(2009)	'Typicality	and	the	Approach	to	Equilibrium	in	Boltzmannian	Statistical	Mechanics',	Philosophy	of	Science	76,	997-1008. 5



(b)		Appeal	to	Probabilities

Claim.	A	system	approaches	equilibrium	because	it	evolves	
from	states	of	lower	toward	states	of	higher	probability,	and	
the	equilibrium	state	is	the	state	of	highest	probabililty.

"In	most	cases,	the	initial	state	will	be	a	very	unlikely	
state.	From	this	state	the	system	will	steadily	evolve	
towards	more	likely	states	until	it	has	finally	reached	the	
most	likely	state,	i.e.,	the	state	of	thermal	equilibrium."

•	 Associate	probabilities	with	macrostates:	the	larger	the	macrostate,	the	
greater	the	probability	of	finding	a	microstate	in	it.

Task: Make this a bit more precise (Boltzmann's combinatorial argument)...
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𝜔1 𝜔2 𝜔3

•	 Partition	Γ𝜇	into	ℓ	cells	𝜔1,	...,	𝜔ℓ	of	size	𝛿𝜔.

•

•

•

•
•

•

• •

••

•

•

•

•	 A	state	of	an	𝑁-particle	system	is	given	by	𝑁	points	in	Γ𝜇.

𝑠6

𝑠89
Arrangement	#1:
state	𝑠6	in	𝜔1,	state	𝑠89	in	𝜔3,	etc.

Def.	4.	An	arrangement	is	a	specification	
of	which	states	lie	in	which	cells.

7

•	 Start	with	the	6-dim	phase	space	Γ𝜇	of	a	single	particle.

Γ𝜇
- A point in Γ𝜇 is a single-

particle microstate.
- Γ𝐸	=	𝑁	copies of	Γ𝜇

Coarse-graining	the	single-particle	phase	space



Arrangement	#2:
state	𝑠89	in	𝜔1,	state	𝑠6	in	𝜔3,	etc.

𝜔1 𝜔2 𝜔3

•	 Partition	Γ𝜇	into	ℓ	cells	𝜔1,	...,	𝜔ℓ	of	size	𝛿𝜔.

•

•

•

•
•

•

• •

••

•

•

•

•	 A	state	of	an	𝑁-particle	system	is	given	by	𝑁	points	in	Γ𝜇.

Arrangement	#1:
state	𝑠6	in	𝜔1,	state	𝑠89	in	𝜔3,	etc.

More than one 
arrangement can 
correspond to the 
same distribution!

Def.	5.	A	distribution	𝐷	=	(𝑛1,	𝑛2,	...,	𝑛ℓ)	is	a	specification	of	
how	many	states	(regardless	of	which	ones)	lie	in	each	cell.

Distribution:
𝐷	=	(1,	0,	2,	0,	1,	1,	...)

1 state in 𝑤1, 0 states in 
𝜔2, 2 states in 𝜔3, etc.

Def.	4.	An	arrangement	is	a	specification	
of	which	states	lie	in	which	cells.
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•	 Start	with	the	6-dim	phase	space	Γ𝜇	of	a	single	particle.

Γ𝜇

Coarse-graining	the	single-particle	phase	space

𝑠89

𝑠6

- A point in Γ𝜇 is a single-
particle microstate.

- Γ𝐸	=	𝑁	copies of	Γ𝜇



How	many	arrangements	𝐺(𝐷)	are	compatible	with	a	given	𝐷	=	(𝑛1,	𝑛2,	...,	𝑛ℓ)?

Check:	Let	𝐷1	=	(𝑁,	0,	...,	0)	and	𝐷2	=	(𝑁	−	1,	1,	0,	...,	0).

9

𝑛!	 =	𝑛(𝑛	−	1)(𝑛	−	2)⋯1
	 =	#	of	ways	to	arrange	𝑛	

distinguishable	objects
0!	 =	1

•	 Answer:

𝐺 𝐷 =
𝑁!

𝑛!! 𝑛"!⋯𝑛ℓ!
=

Number	of	ways	to	arrange	𝑁	
distinguishable	objects	into	ℓ	
bins	with	capacities	𝑛1,	𝑛2,	...,	𝑛ℓ.

There are 𝑁 different ways 𝑤2 
could have one state in it; 
namely, if 𝑠1 was in it, or if 𝑠2 
was in it, or if 𝑠3 was in it, etc..

𝐺 𝐷- =
𝑁!

(𝑁 − 1)! =
𝑁 𝑁 − 1 𝑁 − 2 ⋯1
(𝑁 − 1)(𝑁 − 2)⋯1 = 𝑁

𝐺 𝐷. =
𝑁!
𝑁! = 1 Only one way for all 𝑁 particle states to be in 𝑤1.



"The	probability	of	this	distribution	[𝐷]	is	then	given	by	the	number	
of	permutations	of	which	the	elements	of	this	distribution	are	
capable,	that	is	by	the	number	[𝐺(𝐷)].	As	the	most	probable	
distribution,	i.e.,	as	the	one	corresponding	to	thermal	equilibrium,	we	
again	regard	that	distribution	for	which	this	expression	is	maximal..."

Assumption	1.	The	probability	of	a	distribution	𝐷	is	given	by	𝐺(𝐷).
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•	 Answer:

𝐺 𝐷 =
𝑁!

𝑛!! 𝑛"!⋯𝑛ℓ!
=

Number	of	ways	to	arrange	𝑁	
distinguishable	objects	into	ℓ	
bins	with	capacities	𝑛1,	𝑛2,	...,	𝑛ℓ.

𝑛!	 =	𝑛(𝑛	−	1)(𝑛	−	2)⋯1
	 =	#	of	ways	to	arrange	𝑛	

distinguishable	objects
0!	 =	1

How	many	arrangements	𝐺(𝐷)	are	compatible	with	a	given	𝐷	=	(𝑛1,	𝑛2,	...,	𝑛ℓ)?

Claim.	The	equilibrium	distribution	is	the	distribution	that	maximizes	𝐺(𝐷).

In other words:

Next task: What form does this distribution take?



𝑆Boltz as a measure of how 
probable a macrostate is.

Assumption	2.	Each	distribution	𝐷	
corresponds	to	a	macrostate	Γ𝑀𝐷.

What is the size of this macrostate?

-	 A	point	in	(the	big	phase	space)	Γ𝐸	corresponds	to	an	arrangement	in	(the	single-
particle	phase	space)	Γ𝜇.

-	 The	size	of	a	macrostate	Γ𝑀𝐷	in	Γ𝐸	is	given	by	the	number	of	points	it	contains	(the	
number	of	arrangements	compatible	with	𝐷)	multiplied	by	a	volume	element	of	Γ𝐸.

-	 A	volume	element	of	Γ𝐸	is	given	by	𝑁	copies	of	a	volume	element	𝛿𝜔	of	Γ𝜇.
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•	 So:	The	size	of	Γ𝑀𝐷	is	|Γ𝑀𝐷|	=

=	𝐺(𝐷)𝛿𝜔𝑁

×#	arrangements	
compatible	with	𝐷

volume	
element	of	Γ𝐸

The probability 𝐺(𝐷) of 𝐷 is 
proportional to the size of Γ𝑀𝐷

•	 Hence:			𝑆Boltz(Γ𝑀𝐷)	=	𝑘ln(𝐺(𝐷)𝛿𝜔𝑁)
	 	 =	𝑘ln(𝐺(𝐷))	+	𝑁𝑘ln(𝛿𝜔)

Why? A system's macroscopic properties (volume, 
pressure, temp, etc) only depend on how many 
particles are in particular microstates, and not on 
which particles are in which microstates.

=		𝑘ln(𝐺(𝐷))	+	const.



𝑆Boltz	in terms of single-particle 
microstate probabilities 𝑝𝑖.

𝑆Boltz in terms of single-particle 
microstate occupation numbers 𝑛𝑖.

𝑆Boltz(Γ𝑀𝐷)	=	𝑘ln(𝐺(𝐷))	+	const.

=	𝑘ln(𝑁!)	−	𝑘ln(𝑛1!)	−	⋯	−	𝑘ln(𝑛ℓ!)	+	const.

Stirling's	approx:
ln𝑛!	≈	𝑛ln𝑛	−	𝑛

≈	(𝑁𝑘ln𝑁	−	𝑁)	−	(𝑛1𝑘ln𝑛1	−	𝑛1)	−	⋯	−	(𝑛ℓ𝑘ln𝑛ℓ	−	𝑛ℓ)	+	const.

Other	formulations	of	𝑆Boltz:

•	 Let:		𝑝𝑖	=	𝑛𝑖/𝑁	=
probability	of	finding	a	
randomly	chosen	single-
particle	microstate	in	cell	𝜔𝑖

Probabilities for single-
particle micro-states (not 
macrostates or distributions)!

= 𝑘ln
𝑁!

𝑛.!⋯𝑛ℓ!
+ const.

=	 −𝑘∑ℓ
𝑖=1𝑛𝑖ln𝑛𝑖	+	const.

𝑛1	+	⋯	+	𝑛ℓ	=	𝑁

•	 Then:	𝑆Boltz(Γ𝑀𝐷)	=		−𝑁𝑘∑ℓ
𝑖=1𝑝𝑖ln𝑝𝑖	+	const.

•	 Or: 𝑆01234(Γ𝑀𝐷) = −𝑁𝑘B
51
𝜌6 𝑥6 ln𝜌6 𝑥6 𝑑𝑥6

probability distribution over Γ𝜇
12
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What	distribution	𝐷*	=	(𝑛1*,	...,	𝑛ℓ*)	maximizes	𝑆Boltz(𝑛𝑖)?

Assume:	The	𝑛𝑖	are	constrained	by

(a)		∑ℓ
𝑖=1𝑛𝑖	=	𝑁	 (b)		∑ℓ

𝑖=1𝜀𝑖𝑛𝑖	=	𝑈
Weak interaction assumption:
The total internal energy 𝑈	=	sum 
of the energies 𝜀𝑖 of each particle

•	 Can	add	arbitrary	multiples	of	the	constraints	and	still	get	zero:

	 	 𝑑𝑆Boltz	=	∑𝑖(−𝑘ln𝑛
∗
𝑖	−	𝛼	−	𝛽𝜀𝑖)𝑑𝑛𝑖	=	0

•	 So:			𝑘ln𝑛𝑖*	+	𝛼	+	𝛽𝜀𝑖	=	0					or					𝑛𝑖*	=	𝑒−(𝛼	+	𝛽𝜀𝑖)/𝑘	=	𝑒−𝛼/𝑘𝑒−𝛽𝜀𝑖/𝑘	

•	 Now	find	values	𝑛𝑖*	that	solve:

	 	 𝑑𝑆Boltz	=	−𝑘∑𝑖(ln𝑛
∗
𝑖	+	1)𝑑𝑛𝑖	=	0

subject to constraints
𝑑𝑁	=	∑𝑖𝑑𝑛𝑖	=	0

𝑑𝑈	=	∑𝑖 𝜀𝑖𝑑𝑛𝑖	=	0

•	 To	maximize	𝑆Boltz(𝑛𝑖),	set	its	derivative	to	zero	and	solve	for	𝑛𝑖:

Small changes to 𝑆Boltz due 
only to small changes 𝑑𝑛𝑖

-	 Or:			𝑑𝑆Boltz	=	−	𝑘∑𝑖(ln𝑛𝑖	+	1)𝑑𝑛𝑖

	 (𝑑/𝑑𝑛𝑖)𝑆Boltz(𝑛𝑖)	=	−𝑘∑𝑖(𝑑/𝑑𝑛𝑖)(𝑛𝑖ln𝑛𝑖	+	const.)	=	−𝑘∑𝑖(ln𝑛𝑖	+	1)

Now put this into a (slightly) nicer form...
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What	distribution	𝐷*	=	(𝑛1*,	...,	𝑛ℓ*)	maximizes	𝑆Boltz(𝑛𝑖)?

Assume:	The	𝑛𝑖	are	constrained	by

(a)		∑ℓ
𝑖=1𝑛𝑖	=	𝑁	 (b)		∑ℓ

𝑖=1𝜀𝑖𝑛𝑖	=	𝑈
Weak interaction assumption:
The total internal energy 𝑈	=	sum 
of the energies 𝜀𝑖 of each particle

•	 Enforce	(a)	on	𝑛𝑖*	=	𝑒−𝛼/𝑘𝑒−𝛽𝜀𝑖/𝑘

∑𝑖𝑛𝑖*	=	𝑁	=	𝑒−𝛼/𝑘∑𝑖𝑒−𝛽𝜀𝑖/𝑘					or					𝑒−𝛼/𝑘	=	𝑁/𝑍,						𝑍	≡	∑𝑖𝑒−𝛽𝜀𝑖/𝑘

•	 So:					𝑛𝑖*	=	(𝑁/𝑍)𝑒−𝛽𝜀𝑖/𝑘

•	 Hence:

Boltzmann's claim:
𝐷* is the equilibrium distribution

The "Maxwell-Boltzmann distribution"
𝐷*	=	(𝑛1*,	...,	𝑛ℓ*)	=	

8
9
𝑒:;<2/> , … , 8

9
𝑒:;<ℓ/>



How	𝑆Boltz relates	to	𝑆TD
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•	 Consider:	Small	changes	in	internal	energy	of	a	reversible	process:

𝑑𝑈	=	𝑑(∑𝑖𝜀𝑖𝑛𝑖)

	 =	∑𝑖𝜀𝑖𝑑𝑛𝑖	+	∑𝑖𝑛𝑖𝑑𝜀𝑖

𝑑𝑈	=	𝛿𝑄	−	𝑑𝑊

	 =	𝑇𝑑𝑆TD	−	𝑃𝑑𝑉

Macroscopic	point	of	view Microscopic	point	of	view

•	 Suggests:			𝑃𝑑𝑉	=	−∑𝑖𝑛𝑖𝑑𝜀𝑖			and			𝑑𝑆TD	=	(1/𝑇)∑𝑖𝜀𝑖𝑑𝑛𝑖

•	 So:	For	the	M-B	equilibrium	distribution,	𝑆Boltz	=	𝑆TD,	provided	𝛽	=	1/𝑇.

•	 Note:	For	the	Max-Boltz	equilibrium	distribution	𝑛𝑖*	=	
$
%
	𝑒−	𝛽𝜀𝑖/𝑘:

	 	 𝑑𝑆Boltz(𝑛𝑖*)	 =	−𝑘∑𝑖(ln𝑛𝑖*	+	1)𝑑𝑛𝑖 	=	−𝑘∑𝑖{ln
$
%
	+	1	−	𝛽𝜀𝑖/𝑘}𝑑𝑛𝑖

	 	 	 =	𝛽∑𝑖𝜀𝑖𝑑𝑛𝑖
(ln+

,
	+	1)∑𝑖𝑑𝑛𝑖	=	0

•	 Intuitions:
-	A	change	in	volume	𝑑𝑉	causes	a	change	in	energy	𝑑𝜀𝑖.
-	A	change	in	entropy	𝑑𝑆TD	is	related	to	a	change	in	microstate	number	𝑑𝑛𝑖.	
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What	this	shows:
•	 For	a	large	number	of	weakly	interacting	particles	in	an	equilibrium	state,	it	is	
consistent	to	identify	the	Boltzmann	entropy	𝑆Boltz	with	the	thermodynamic	
entropy	𝑆TD.

•	 But:
-	 Assumes	the	Maxwell-Boltzmann	distribution	𝐷*	that	maximizes	𝑆Boltz	is	
the	equilibrium	distribution	(i.e.,	just	another	way	of	assuming	that	the	
largest	macrostate	is	the	equilibrium	macrostate).

-	 𝑆TD	measures	absolute	changes	in	heat	per	temperature	of	a	reversible	
process;	whereas	𝑆Boltz	measures	the	size	of	a	macrostate.

-	 For	thermally	isolated	processes,	𝑆TD	absolutely	increases	or	remains	
constant;	whereas	there	is	no	absolute	law	that	requires	𝑆Boltz	to	increase	
or	remain	constant.

What about the dynamics of a system 
entails that it will evolve:
- to the largest macrostate?
- to the most typical macrostate?
- to the most probable macrostate?



2.	Gibbs'	Approach.

Willard	Gibbs
(1839-1903)

•	 Problem:	Observed	macro-properties	(temp,	pressure,	volume,	etc)	
are	time	averages	of	micro-properties.

Very difficult to calculate! (Must keep track of all positions and 
momenta of particles of the system over a given period of time!)

•	 Gibbs'	Solution:

Replace with

Time	average	of	a	
property	of	a	
single	system	over	
a	period	of	time.

"Ensemble	average"	of	the	
property	over	infinitely	
many	copies	of	the	system	
at	an	instant	of	time!

Much easier to calculate! All you need is a 
weighting system defined on all the copies; 
i.e., a distribution 𝜌(𝑥) defined on Γ!

Boltzmann:	Analysis	of	a	single	multiparticle	system.
•	 Point	𝑥	in	Γ𝐸:	possible	microstate	of	system.
•	 Function	𝑓	on	Γ𝐸:	a	property	of	the	system	in	terms	of	its	
micro-properties	(positions/momenta	of	its	particles).
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2.	Gibbs'	Approach.

Willard	Gibbs
(1839-1903)

Gibbs:	Analysis	of	an	ensemble	of	infinitely	many	copies	of	same	system.

Boltzmann:	Analysis	of	a	single	multiparticle	system.
•	 Point	𝑥	in	Γ𝐸:	possible	microstate	of	system.
•	 Function	𝑓	on	Γ𝐸:	a	property	of	the	system	in	terms	of	its	
micro-properties	(positions/momenta	of	its	particles).

Not Boltzmann's D	
or 𝜌𝜇(𝑥𝜇)!

•	 Distribution	𝜌(𝑥)	on	Γ:	state	of	entire	ensemble.
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•	 Point	𝑥	in	Γ:	microstate	of	one	member	of	ensemble.
•	 Function	𝑓	on	Γ:	a	property	of	the	system	in	terms	of	its	micro-properties.

"And	here	we	may	set	the	problem,	not	to	follow	a	particular	
system	through	its	succession	of	configurations,	but	to	determine	
how	the	whole	number	of	systems	will	be	distributed	among	the	
various	conceivable	configurations	and	velocities	at	any	required	
time,	when	the	distribution	has	been	given	for	some	one	time."	



2.	Gibbs'	Approach.

Willard	Gibbs
(1839-1903)

Gibbs:	Analysis	of	an	ensemble	of	infinitely	many	copies	of	same	system.

Boltzmann:	Analysis	of	a	single	multiparticle	system.
•	 Point	𝑥	in	Γ𝐸:	possible	microstate	of	system.
•	 Function	𝑓	on	Γ𝐸:	a	property	of	the	system	in	terms	of	its	
micro-properties	(positions/momenta	of	its	particles).

Not Boltzmann's D	
or 𝜌𝜇(𝑥𝜇)!

•	 Distribution	𝜌(𝑥)	on	Γ:	state	of	entire	ensemble.
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One	way	to	think	of	difference

-	 Boltzmann:	The	state	of	a	multiparticle	system	is	
represented	by	a	point	𝑥	in	Γ𝐸.

-	 Gibbs:	The	state	of	a	multiparticle	system	is	represented	by	
an	ensemble	{Γ,	𝜌(𝑥)},	which	is	a	collection	Γ	of	possible	
states,	with	each	state	𝑥	weighted	by	a	probability	𝜌(𝑥).

Definite 
"pure" state?

Indefinite 
"mixed" state?

•	 Point	𝑥	in	Γ:	microstate	of	one	member	of	ensemble.
•	 Function	𝑓	on	Γ:	a	property	of	the	system	in	terms	of	its	micro-properties.



2.	Gibbs'	Approach.

Willard	Gibbs
(1839-1903)

Gibbs:	Analysis	of	an	ensemble	of	infinitely	many	copies	of	same	system.

Boltzmann:	Analysis	of	a	single	multiparticle	system.
•	 Point	𝑥	in	Γ𝐸:	possible	microstate	of	system.
•	 Function	𝑓	on	Γ𝐸:	a	property	of	the	system	in	terms	of	its	
micro-properties	(positions/momenta	of	its	particles).

•	 Stationary	distribution:	constant	in	time.
-	Note:	⟨𝑓⟩	is	constant	just	when	𝜌	is	stationary.

If macro-properties are repre-
sented by ensemble averages, 
then they don't change in time 
for stationary distributions.
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Not Boltzmann's D	
or 𝜌𝜇(𝑥𝜇)!

•	 Distribution	𝜌(𝑥)	on	Γ:	state	of	entire	ensemble.

•	 Point	𝑥	in	Γ:	microstate	of	one	member	of	ensemble.
•	 Function	𝑓	on	Γ:	a	property	of	the	system	in	terms	of	its	micro-properties.

S
𝒮
𝜌 𝑥 𝑑𝑥

𝑓 ≡ S
'
𝑓 𝑥 𝜌 𝑥 𝑑𝑥

Probability of finding state 
of a system in region 𝒮

Ensemble average of 𝑓



Averaging	Principle:	The	measured	value	of	a	property	𝑓	of	a	system	in	
thermodynamic	equilibrium	is	the	ensemble	average	⟨𝑓⟩	of	an	ensemble	
in	statistical	equilibrium	(i.e.,	an	ensemble	with	a	stationary	distribution).

-	 And:	For	sufficiently	chaotic	("ergodic")	systems,	⟨𝑓⟩	=	𝑓∗(𝑥0).

Justification:	A	measurement	of	a	property	f	takes	some	amount	of	time,	
which	is	"infinite"	compared	to	molecular	processes.
-	 So:	What	gets	measured	in	the	lab	is	the	infinite	time	average	𝑓∗(𝑥0):

𝑓∗ 𝑥G = lim
H→J

1
𝜏 BK3

K3LH
𝑓 𝜙K 𝑥G 𝑑𝑡
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Def.	6	(Gibbs	entropy).	The	Gibbs	entropy	𝑆Gibbs(𝜌)	of	an	ensemble	
distribution	𝜌	is	the	ensemble	average	of	the	quantity	−𝑘ln𝜌:

𝑆()**+ 𝜌 ≡ −𝑘S
'
𝜌 𝑥 ln𝜌 𝑥 𝑑𝑥

𝑆,-./0(Γ1) = −𝑁𝑘S
'E
𝜌2 𝑥2 ln𝜌2 𝑥2 𝑑𝑥2

•	 Compare	with	"continuous"	version	of	𝑆Boltz:

-	 𝑆Boltz	is	an	integral	over	the	single-particle	phase	space	Γ𝜇	of	the	constant-
energy	subregion	Γ𝐸	of	Γ.

-	 𝑆Gibbs	is	an	integral	over	the	full	phase	space	Γ	(not	even	restricted	to	Γ𝐸).

However: One can show that 𝑆Gibbs reduces to 𝑆Boltz for the case of a 
system of 𝑁 identical, weakly interacting particles at constant energy...

22



•	 Consider:	A	system	of	𝑁	identical,	weakly	interacting	particles	at	constant	energy.	

•	 Characterized	by	distribution	given	by:

	 	 	𝜌(𝑥)	=	𝜌𝜇1(𝑥𝜇1)𝜌𝜇2(𝑥𝜇2)⋯𝜌𝜇𝑁(𝑥𝜇𝑁)	,					such	that	𝜌𝜇𝑖	=	𝜌𝜇𝑗	for	all	𝑖,	𝑗 

Single-particle distribution 
for constant-energy 
microstates of particle 1

Weakly interacting particles: 
"Total probability" = product 
of individual probabilities

Identical particles: all individual 
probabilities are equal

•	 For	this	distribution:	

𝑆Gibbs(𝜌)	 =	−𝑘∫Γ𝜌𝜇1(𝑥𝜇1)⋯𝜌𝜇𝑁(𝑥𝜇𝑁)ln[𝜌𝜇1(𝑥𝜇1)⋯𝜌𝜇𝑁(𝑥𝜇𝑁)]𝑑𝑥

How	𝑆Gibbs relates	to	𝑆Boltz
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Γ	=	Γ𝜇1	×	⋯	×	Γ𝜇𝑁
𝑑𝑥	=	𝑑𝑥𝜇1	⋯	𝑑𝑥𝜇𝑁 	=	−𝑘∫Γ𝜇1𝜌𝜇1(𝑥𝜇1)ln𝜌𝜇1(𝑥𝜇1)𝑑𝑥𝜇1	⋯	∫Γ𝜇𝑁𝜌𝜇𝑁(𝑥𝜇𝑁)𝑑𝑥𝜇𝑁 	−	⋯	

	 	−	𝑘∫Γ𝜇𝜌𝜇1(𝑥𝜇1)𝑑𝑥𝜇1	⋯	∫Γ𝜇𝜌𝜇𝑁(𝑥𝜇𝑁)ln𝜌𝜇𝑁(𝑥𝜇𝑁)𝑑𝑥𝜇𝑁

∫Γ𝜇𝜌𝜇𝑖(𝑥𝜇𝑖)𝑑𝑥𝜇𝑖 	=	1
=	−𝑘∫Γ𝜇𝜌𝜇1(𝑥𝜇1)𝑑𝑥𝜇1 ln𝜌𝜇1(𝑥𝜇1)	−	⋯	

	 	−	𝑘∫Γ𝜇𝜌𝜇𝑁(𝑥𝜇𝑁)𝑑𝑥𝜇𝑁 ln𝜌𝜇𝑁(𝑥𝜇𝑁)

=	−𝑁𝑘∫Γ𝜇𝜌𝜇(𝑥𝜇)ln𝜌𝜇(𝑥𝜇)𝑑𝑥𝜇	=	𝑆Boltz(Γ𝑀)
Suggests: 𝑆Boltz is a 
special case of 𝑆Gibbs



•	 For	any	given	physical	system,	there	can	be	many	different	ways	to	define	𝜌.
-	 Minimally,	we	want	a	𝜌	that	is	stationary	and	maximizes	𝑆Gibbs.

Two	standard	Gibbs	distributions

•	 Note:
	 𝑆Gibbs(𝜌mc)	=	−𝑘∫Γ𝜌mc(𝑥) ln𝜌mc(𝑥)𝑑𝑥
	 	 =	−𝑘∫Γ𝐸 (1/Ω(𝐸)) ln[1/Ω(𝐸)]𝑑𝑥

	 	 =	−𝑘(1/Ω(𝐸)) ln[1/Ω(𝐸)]∫Γ𝐸𝑑𝑥
	 	 =	𝑘lnΩ(𝐸)

A measure of the number of
microstates of the system

𝑆Boltz as a special case of 𝑆Gibbs, Part II: 
The Boltzmann entropy 𝑆Boltz(Γ𝑀) of a 
macrostate of an isolated 𝑁-particle 
system at constant energy can be thought 
of as the Gibbs entropy 𝑆Gibbs(𝜌mc) of the 
microcanonical distribution for an 
ensemble of 𝑁 weakly interacting systems.

Def.	7	(Microcanonical	distribution).	For	an	isolated	system	with	fixed	
energy	𝐻(𝑥)	=	𝐸,	the	microcanonical	distribution	𝜌mc	is	given	by:

𝜌mc	=
1/Ω(𝐸),	 for	𝐻(𝑥)	=	𝐸

0,	 otherwise

where	Ω(𝐸)	=	∫Γ𝐸𝑑𝑥	is	the	number	of	microstates	with	𝐻(𝑥)	=	𝐸.

Motivation: All microstates with 
same energy have equal probability
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Def.	8	(Canonical	distribution).	For	a	non-isolated	system	𝑆	in	equilibrium	
with	a	heat	bath	𝑅	at	fixed	temperature	𝑇	and	fixed	total	energy	𝐻(𝑥)	=	𝐸	
=	𝐸𝑅	+	𝐸𝑆,	𝐸𝑆	≪	𝐸,	the	canonical	distribution	𝜌c	is	given	by:

where	𝑍	=	∫𝑒−𝛽𝐻(𝑥)𝑑𝑥,	and	𝛽	=	1/𝑇.

𝜌c(𝑥)	=	𝑍−1𝑒−𝛽𝐻(𝑥)

•	 Note:
	 𝑆Gibbs(𝜌c)	 =	−𝑘∫Γ𝜌c(𝑥)ln𝜌c(𝑥)𝑑𝑥
	 	 =	∫Γ𝜌c[−𝑘ln(𝑒−𝛽𝐻(𝑥)/𝑍)]𝑑𝑥

	 	 =	∫Γ𝜌c[−𝑘(ln𝑒−𝛽𝐻(𝑥)	−	ln𝑍)]𝑑𝑥

	 	 =	∫Γ𝜌c[𝑘𝛽𝐻(𝑥)	+	𝑘ln𝑍)]𝑑𝑥

	 	 =	𝑘𝛽⟨𝐻⟩	+	𝑘ln𝑍∫Γ𝜌c𝑑𝑥
	 	 =	𝑘𝛽⟨𝐻⟩	+	𝑘ln𝑍 ∫Γ𝜌c𝑑𝑥	=	1 
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𝑆Boltz as a special case of 𝑆Gibbs, Part III: 
The Gibbs canonical distribution 𝜌c is the 
generalization of the Maxwell-Boltzmann 
distribution for a single system to an 
ensemble of systems consisting of one in 
equilibrium with the rest.



Interpretive	Issues:

(1)	Why	do	low-probability	states	evolve	into	high-probability	states?	What	
justifies	a	given	stationary,	𝑆Gibbs-maximizing	distribution	𝜌(𝑥,	𝑡)?
-	Characterizations	of	the	dynamics	are,	again,	required	to	justify	this.

(2)	 How	are	the	probabilities	to	be	interpreted?

(a)	 Ontic	probabilities	=	properties	of	physical	systems
-	Long	run	frequencies?
-	Single-case	propensities?

(b)	 Epistemic	probabilities	=	measures	of	degrees	of	belief
-	Objective	(rational)	degrees	of	belief?
-	 Subjective	degrees	of	belief?

26
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(3)	 How	should	the	approach	to	equilibrium	be	understood?
-	A	Gibbs	distribution	𝜌(𝑥)	is	required	to	be	stationary. constant 

in time!

Claim	1.			𝑆Gibbs(𝜌coarse)	≥	𝑆Gibbs(𝜌)

Claim	2.	Under	various	assumptions	(ergodicity,	
"molecular	randomness",	etc.),	for	𝑡1	>	𝑡0,
		 𝑆Gibbs(𝜌coarse)|𝑡	=	𝑡1	≥	𝑆Gibbs(𝜌coarse)|𝑡	=	𝑡0

Task: Justify these 
assumptions!

So how can the Gibbs entropy 𝑆Gibbs(𝜌) increase?

Standard	response:	Coarse-grain	it!
-	 Partition	phase	space	Γ	into	cells	𝜔	each	of	size	𝛿𝜔.
-	 For	any	𝜌,	define	a	coarse-grained	version	𝜌coarse	by:

𝜌3-45+6(𝑥) ≡
1
𝛿𝜔S7(9)

𝜌 𝑥; 𝑑𝑥′

Just like Boltzmann 
coarse-graining, 
except on Γ and not Γ𝜇

𝜌coarse assigns to every 
state 𝑥 in cell 𝜔 the 
average of the values that 
𝜌 assigns to all states in 𝜔.


