1. Clausius' Inequality

1854. "On a modified form of the second fundamental theorem in the mechanical theory of heat". 1865. "On several convenient forms of the fundamental equations of the mechanical theory of heat."

• <u>Clausius' "Fundamental Principle" (1854)</u>:

"Heat can never pass from a colder to a warmer body *without some other change, connected therewith*, occuring at the same time."

Now formulate this "algebraically"...

- Consider a cyclic process involving infinitesimal transfers of heat $\delta Q/T$ between a system and a reservoir at lower temperature:
 - Let $+\delta Q/T$ represent an emission of heat by the system to the reservoir.
 - Let $-\delta Q/T$ represent an absorption of heat by the system from the reservoir.

("The algebraic sum of all the transformations which occur in a cyclical process can only be positive." (1854)

$$Or: \oint \frac{\delta Q}{T} \ge 0$$

<u>*Why*</u>? If the sum were negative, then the overall effect would be a passage of heat from lower to higher temp.

<u>Moreover</u>: If the process is reversible, then the sum is zero.

- It can't be negative.
- If it were positive, the process could be reversed to produce a negative result.
- <u>1865: Change of sign convention</u>:
 - Let $+\delta Q/T$ represent absorption of heat by the system.
 - Let $-\delta Q/T$ represent emission of heat by the system.

system

reservoi

 $+\frac{\delta Q}{T}$ \Downarrow

Clausius' Inequality

• For reversible processes, let $dS = \delta Q_R/T$. Call *S* "entropy".

"... I propose to call the magnitude *S* the *entropy* of the body... I have intentionally formed the word *entropy* so as to be as similar as possible to the word *energy*; for the two magnitudes to be denoted by these words are so nearly allied in their physical meanings, that a certain similarity in designation appears to be desirable." (1865)

• For a thermally isolated system, can show that the 2nd Law entails: $\int_{\sigma_1}^{\sigma_2} dS = S($

$$\int_{\sigma_1}^{\sigma_2} dS = S(\sigma_2) - S(\sigma_1) \ge 0$$

<u>What this means</u>: For a thermally isolated system undergoing an energy transformation, the entropy of the final state σ_2 cannot be less than the entropy of the initial state σ_1 .

("... [W]e may express in the following manner the fundamental laws of the universe which correspond to the two fundamental theorems of the mechanical theory of heat: 1. *The energy of the universe is constant*.

<u>Contemporary Derivation of Clausius' inequality</u>

• *First*: Let's derive the important relation for reversible heat engines

$$\frac{Q_{\text{out}}}{Q_{\text{in}}} = \frac{T_C}{T_H}$$

where the temperature is measured by the absolute Kelvin scale.

• <u>Recall (Carnot's Claim #2)</u>: The efficiency of a reversible heat engine is a function *only* of the temperatures of the hot and cold places.

$$\begin{array}{c} T_{H} \\ \downarrow Q_{\text{in}} \\ \hline W \\ \hline W \\ \hline W \\ \downarrow Q_{\text{out}} \\ \hline W \\ \hline V \\ \downarrow Q_{\text{out}} \\ \hline T_{C} \end{array} \end{array} \qquad \begin{array}{c} Q_{\text{out}} = Q_{\text{in}} - W \\ Efficiency = \frac{W}{Q_{\text{in}}} = 1 - \frac{Q_{\text{out}}}{Q_{\text{in}}} = F(T_{C}, T_{H}) \\ \hline Q_{\text{out}} \\ \hline T_{C} \\ \hline \end{array}$$

• Consider a multi-stage *reversible* heat engine:

$$\begin{array}{c} \hline T_{H} \\ \Downarrow & Q_{\text{in}} \end{array} & \bullet \ \underline{Note}: \ \frac{Q_{\text{out}}}{Q_{\text{in}}} = \frac{Q_{\text{out}}}{Q_{0}} \frac{Q_{0}}{Q_{\text{in}}} \\ \hline & & Q_{\text{out}} \\ \hline & & Q_{0} \end{array} & \bullet \ \underline{So}: \quad \frac{Q_{\text{out}}}{Q_{\text{in}}} = f(T_{C}, T_{H}) = f(T_{C}, T_{0}) \left(\frac{1}{f(T_{H}, T_{0})}\right) = \frac{f(T_{C})}{f(T_{H})} \\ \hline & & \frac{T_{0}}{T_{0}} \\ \hline & \bullet \ \underline{Now \ choose}: \ f(T_{C}) = T_{C}, \ f(T_{H}) = T_{H} \qquad \swarrow \ \underline{Thomson's} \ (1848) \\ \hline & \text{"absolute" temp scale.} \\ \hline & & \frac{Q_{0}}{Q_{0}} \\ \hline & \bullet \ \underline{For \ this \ "Kelvin" \ temp \ scale, \ and \ for \ reversible \ heat \ engines:} \\ \hline & & \frac{Q_{0}}{Q_{\text{in}}} = \frac{T_{C}}{T_{H}} \qquad or \qquad Q_{\text{in}} = Q_{\text{out}} \ \frac{T_{H}}{T_{C}} \end{array}$$

<u>Now</u>: Let's derive Clausius' Inequality...

• Consider the following engine working in a cycle in which the initial and final states are identical.

$$Q_{\rm in} = Q_{\rm out} \frac{T_H}{T_C}$$

- Initial state 1 of working substance at temp T_1 .
- Use reservoir at T_1 to inject heat δQ_1 to move to state 2 at temp T_2 .
- Resupply T₁ using reversible heat engine C₁, which takes heat δQ₁(T̃/T₁) from reservoir at T̃, and performs work δW₁.
- Resupply reservoir at \tilde{T} with heat $\delta Q_1(\tilde{T}/T_1)$ from principle reservoir.
- Repeat process.

• Consider the following engine working in a cycle in which the initial and final states are identical.

<u>So</u>:

- Either *W* and *Q* must be negative, *work is done to the system and an equal*

amount of heat is extracted from it

- Or *W* and *Q* must be zero.

• Thus:
$$W = Q \le 0$$
, or $\tilde{T} \sum_{i} \frac{\delta Q_i}{T_i} \le 0$ or $\sum_{i} \frac{\delta Q_i}{T_i} \le 0$

- <u>Hence</u>: $\oint \frac{\delta Q}{T} \leq 0$ Clausius' Inequality
- <u>What if the cycle is reversible?</u>

- Then:
$$-\oint \frac{\delta Q_R}{T} \le 0$$
 or $\oint \frac{\delta Q_R}{T} \ge 0$

- <u>So</u>: In order to be consistent with the first result, $\oint \frac{\delta Q_R}{T} = 0$.

W

2. Thermodynamic Entropy

• Consider a *reversible* cycle:

- Start in initial state σ_1 .
- Take reversible path R_1 to state σ_2 .
- Return to σ_1 *via* reversible path R_2 .
- Clausius' inequality is $\oint \frac{\delta Q_R}{T} = \int_{R_1}^{\sigma_2} \frac{\delta Q_R}{T} + \int_{R_2}^{\sigma_1} \frac{\delta Q_R}{T} = 0$

• Thus:
$$\int_{\sigma_1}^{\sigma_2} \frac{\delta Q_R}{T} = -\int_{\sigma_2}^{\sigma_1} \frac{\delta Q_R}{T} = \int_{\sigma_2}^{\sigma_2} \frac{\delta Q_R}{T}$$

- <u>So</u>: $\int_{\sigma_1}^{\sigma_2} \frac{\delta Q_R}{T}$ is path-independent!
- <u>Which means</u>: It can be represented by a path-independent function, call it S_{TD} :

$$\Delta S_{\rm TD} = S_{\rm TD}(\sigma_2) - S_{\rm TD}(\sigma_1) \equiv \int_{\sigma_1}^{\sigma_2} \frac{\delta Q_R}{T}$$

11

Def. 1 (*Thermodynamic entropy*). The **thermodynamic entropy** $S_{\text{TD}}(\sigma_2)$ of a state σ_2 is the ratio of the change in heat to temperature of a *reversible* process that connects an initial state σ_1 to σ_2 : $S_{\text{TD}}(\sigma_2) \equiv \int_{\sigma_1}^{\sigma_2} \frac{\delta Q_R}{T} + S_0$ *arbitrary constant*

<u>Characteristics</u>

- 1. Only defined for *reversible processes*; *i.e.*, processes that are "quasi-static".
 - *Quasi-static process* = succession of equilibrium states.
 - *Equilibrium state* = state of system in which macroscopic properties (*i.e.*, temp, volume, pressure, *etc.*) are constant.
- 2. Only defined for *equilibrium states*.
- 3. For infinitesimal changes in S_{TD} , can write $dS_{\text{TD}} = \delta Q_{\text{R}}/T$

1/T is an 'integrating factor" that converts a path-dependent function Qinto a path-independent function S_{TD} For an *irreversible* process connecting σ_1 and σ_2 , ΔS can still be calculated if there is, in principle, a reversible process that connects σ_1 and σ_2 . <u>Ex</u>: Heating a beaker of water.

- No reference to "disorder" or "chaos"!
- No reference to molecules or particles (gas or otherwise)!
- No reference to "information"!

Principle of Increasing Thermodynamic Entropy

Consider an *irreversible* cycle:

- <u>Now</u>: Suppose the path from σ_1 to σ_2 is *thermally isolated*; *i.e.*, $\delta Q = 0$.
- <u>Then</u>: $S_{\text{TD}} \ge 0$ or $S_{\text{TD}}(\sigma_2) \ge S_{\text{TD}}(\sigma_1)$

The entropy of a thermally isolated irreversible process increases, and is unalterted in a thermally isolated reversible process.

Summary of 2nd Law of Thermodynamics

 <u>Clausius Form</u>: No heat transfer from cold to hot place without work input:

<u>Consequence of 2nd Law:</u> The thermodynamic entropy S_{TD} of a thermally isolated system increases in any irreversible process and is unalterted in a reversible process.

Absolute statements!

Meant to hold for any system subject to thermodynamical analysis.

Summary of Entailments

2nd Law (Clausius Version)

There can be no cyclic process whose sole effect is the transfer of heat from a cold place to a hot place.

 \mathbf{r}

2nd Law (Thomson Version)

There can be no cyclic process whose sole effect is the extraction of heat from a source and the performance of an equivalent amount of heat.

Carnot's Claim #2

In a reversible cyclic process, the work produced depends only on the temperature of the hot and cold places, and not on the working fluid.

Clausius' Inequality

In a cyclic process, the sum of all transformations $\delta Q/T$, consisting of an element of heat δQ absorbed by the system at temperature T, must be less than or equal to zero:

$$\oint \frac{\delta Q}{T} \le 0$$

2nd Law (Entropy Version)

The thermodynamic entropy of a thermally isolated system increases in any irreversible process and is unalterted in a reversible process: $\Delta S_{\text{TD}} \ge 0$