
On the Equivalence of von Neumann
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In 1932, John von Neumann argued for the equivalence of the thermodynamic entropy
and 2Trrlnr, since known as the von Neumann entropy. Meir Hemmo and Orly R.
Shenker recently challenged this argument by pointing out an alleged discrepancy be-
tween the two entropies in the single-particle case, concluding that they must be distinct.
In this article, their argument is shown to be problematic as it (a) allows for a violation of
the second law of thermodynamics and (b) is based on an incorrect calculation of the von
Neumann entropy.

1. Introduction. InMathematische Grundlagen der Quantenmechanik von

Neumann (1996) introduces 2Trrlnr as the quantum mechanical general-
ization of the phenomenological thermodynamic entropy, where r is the

quantummechanical density operator.1 In his argument, he considers the cy-
clic transformation of a quantum gas confined to a box. By demanding that
the overall entropy change of system and heat bath must be zero by the end
of the cycle,2 von Neumann concludes that the entropy of the quantum gas
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1. Von Neumann considers two types of processes that describe how the quantum state
changes in time. The first, ‘Prozess 1’, is associated with the probabilistic outcome of a
measurement, whereas ‘Prozess 2’ refers to the evolution of the system via the Schrö-
dinger equation: 2Trrlnr is shown to be nondecreasing for both of them.

2. An explicit assumption of the validity of the second law.
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ought to be given by 2Trrlnr. Hemmo and Shenker (2006) recently chal-
lenged this argument by pointing out an alleged discrepancy between the
two entropies in the single-particle case, concluding that they must be dis-
tinct. In this article I demonstrate that their argument against the equivalence
of thermodynamic and von Neumann entropy is problematic, as it (a) allows
for a violation of the second law of thermodynamics and (b) is based on an
incorrect calculation of the vonNeumann entropy. The article is structured as
follows: after a summary of von Neumann’s original argument, I quickly re-
visit the debate that has been lead to date by Shenker (1999) and Henderson
(2003) before moving on to an analysis of Hemmo and Shenker’s (2006)
most recent contribution, which will be shown to be problematic.

2. The Argument. To fully appreciate Hemmo and Shenker’s criticism, it
is helpful to begin by recapitulating von Neumann’s (1996) argument.

2.1. The Setup. Von Neumann begins by considering N noninteracting,
quantum systems, denoted by S1, ... , SN. For the purpose of this article, we
take these systems to be two-state quantum systems and only consider, say,
the spin states of a spin half particle.3 Each of these systems is placed in a box
Ki, with i 5 1, ... N, whose walls shield its contained system off from its
environment and thus prevent any interaction between systems. The boxes
K1, ... , KN are now all placed into another much larger box �K of volume V.
For simplification, von Neumann assumes that there are no force fields, in
particular no gravitational fields, present in �K. This in turn means that there
is no gravitational interaction between the boxes K1, ... , KN, even though
theymay exchange kinetic energy via collisions. The boxes can thus be taken
to behave just like molecules of a gas. VonNeumann calls this ‘quantum gas’
a [S1, ... , SN] gas, where [S1, ... , SN] is the statistical ensemble associated
with the systems. A more detailed analysis of von Neumann’s understanding
of such an ensemble, or Gesamtheit, will be presented in the appendix. The
large box �K can be brought into thermal contact with a heat bath at temper-
ature T, and in that case, after some equilibration time, the [S1, ... , SN] gas
itself will be at temperature T.4 Finally, we add an empty box �K0 of equal vol-
ume V to the right of �K.

2.2. The Process. The [S , ... , S ] gas now undergoes a series of tran-
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1 N

sitions. The following various stages are also illustrated in figure 1.5

3. A generalization to more degrees of freedom is straight forward and may be found in
von Neumann (1996, 191–201).

4. For a more detailed account of this equilibration process, see von Neumann (1996,
192–93).

5. The presentation of the argument given here slightly differs from its original. Instead
of having the gas undergo a cyclic process (in fig. 1, the system is in the same state at
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Stage I: Each of the two-level quantum systems Si initially is in the pure
state j0 i 5 w1j 1 i1w2j 2 i, where the states F1i and F2i can be taken
to be spin eigenstates of a spin half particle. Given the lack of interaction
between the quantum systems, the density matrix of the overall system fac-
torizes as r 5 r1 � :::� rN with ri 5 j0 i h 0j.

Stage II: Each system is now measured in the {F1i, F2i} basis, resulting
in a mixture withw2

1N particles in state F1i andw2
2N particles in state F2i.

Stages III and IV: The F1i and F2i systems are now separated in the fol-
lowingmanner. The wall between �K and �K0 is replaced with a movable par-
tition and a fixed semipermeable membrane.6 This first semipermeable
membrane is transparent to F2i systems but impermeable to F1i systems.
From the very left of �K, another semipermeable membrane is inserted. It is
movable and furthermore transparent to F1i systems, while being imper-
meable to F2i systems. The F2i systems are now ‘pushed’ into the right
box �K0 by moving this second semipermeable membrane and the movable
partition in the center simultaneously and quasi-statically to the right, keep-
ing the enclosed volume constant at all times (see fig. 1, stage III, for an il-
lustration of this step). During this process, no work is done on the gas, and
no heat is exchangedwith the heat bath. Eventually, all the F2i systemswill
be in �K0, while the F1i systems remain in the left box (fig. 1, stage IV).

Stage V: The two boxes are now isothermally compressed to volumes w2
1V

andw2
2V . Figure 1 illustrates this step forw2

1 5 w2
2 5 1=2. The particle den-

sities in �K and �K0 change from w2
1N=V and w2

2N=V to N/V, where, as be-
fore, N is the total number of systems. The entropy of the heat reservoir in-
creases by NkBw2

1 lnw2
1 and NkBw2

2 lnw2
2, respectively, where kB is the

Boltzmann constant.

Stage VI: The F1i and F2i gases are then reversibly transformed back
into a F0i gas via unitary operations.

Stage VII: Finally, the partition between the two chambers is removed,
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restoring the original state of the gas.

r such a semipermeable membrane to exist in principle, the two states need to be
gonal. Mixtures instead of pure states are also conceivable, as long as they are
int.

s I and VII), von Neumann separately considers the system’s entropy changes for
s II–VII (1996, 200–202) and stages I–II (202–6). The cyclic version was chosen to
nsistent with the presentation of von Neumann’s argument in Shenker (1999), Hen-
n (2003), and Hemmo and Shenker (2006).



Figure 1. Illustration of von Neumann’s argument. (I) Individual two-state quantum
systems are each in state j0 i 5 w1j 1 i1w2j 2 i, indicated by bicolored circles.
For illustrative purposes, we assume w1 5 w2 5 1=

ffiffiffi

2
p

. (II) After the measurement
in the F1i/F2i basis, the system is now described by a statistical mixture of F1i
(white) and F2i systems (black). (III) The F1i and F2i systems are now separated
by using semipermeable membranes to ‘push’ the F2i systems into the right box �K.
(IV) The F1i and F2i systems are now completely separated. (V) The two boxes are
compressed to half of their respective volumes. (VI) The F1i and F2i gases are now
transformed back into their original state of superposition. (VII) The partition is re-

moved. No heat bath is present, but we assume that it exists in the background and
takes up the dissipated entropy at 4 → 5.



VonNeumann now argues as follows: all transitions between stages II and
VII take place in a reversible fashion, which means that the total entropy
change of gas and heat bath between II and VII must be zero. Since a total
amount of DS 5 NkB½w2

1 ln w2
1 1 w2

2 ln w2
2� has been dumped into the heat

bath during the compression stage, and since the (normed) entropy of the fi-
nal F0i gas is zero by definition, the entropy of the gas must have been
S 5 S1 1 S2 5 2NkB½w2

1 lnw2
1 1 w2

2 ln w2
2� before. Later in his book, von

Neumann explains that the measurement process (‘Prozess 1’) is responsible
for the entropy increase between stages I and II (1996, 202–6).

The above considerations are easily generalized tomore dimensions. For a
system described by a density matrix r with eigenvectors Ff1i, ... , Ffni and
eigenvalues w1, ... , wn, the entropy is then given by Sr 5 2Trr lnr 5
2on

i51wi lnwi.

3. Shenker’s Criticism and Henderson’s Reply. I will now briefly con-
sider Shenker’s (1999) first criticism against von Neumann’s argument and
Henderson’s (2003) reply. According to Shenker, two assumptions were
made by von Neumann: (a) the thermodynamic entropy only changes during
the compression, stages IV–V, and (b) the entropies of stages I andVII are the
same. As Shenker presents the argument, von Neumann’s conclusion was
that the entropy must thus have increased during the measurement process
(I–II), to balance out the decrease during the compression (IV–V).

In order to show that von Neumann entropy and “classical entropy” are
distinct, Shenker points out an alleged discrepancy in behavior, which sup-
posedly takes place between stages II and IV.7 Following her argument, let
us first consider the change in von Neumann entropy: at stage II, the system
is in a mixed state and has positive von Neumann entropy. At stage IV, the
system is in a pure state and, so Shenker claims, has zero von Neumann en-
tropy by definition. The von Neumann entropy therefore must have de-
creased between II and IV; that is, it must have decreased during the separa-
tion of the F1i and F2i systems.

“From a thermodynamic point of view” (Shenker 1999, 42), however, the
entropy has not changed between II and IV. This is because “the entropy re-
duction of the separation is exactly compensated by an entropy increase due
to expansion” (45). The thermodynamic entropy instead changes between
during the compression, IV–V. According to Shenker, Thermodynamic en-
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tropy and von Neumann entropy therefore differ in their behavior since the

7. Shenker does not distinguish between classical statistical mechanical entropy and ther-
modynamic entropy at this point: “Classical thermodynamics concludes that the very
separation [of two gases] means a reduction of entropy. This is called entropy of mixing”
(1999, 39). Entropy of mixing, however, has its origin in statistical and not phenomeno-
logical considerations.



reduction in thermodynamic entropy takes place at a later stage (IV–V) than
the reduction of von Neumann entropy (II–IV).

Henderson (2003) points out some deficiencies in Shenker’s argument that
explain the alleged discrepancy. She shows that the system at stage IV cannot
be considered to be in a pure state, as the gas’s spatial degrees of freedom
ought also be taken into account in addition to its spin degrees of freedom.
The initial state of the system at stage I is then given by j0 i � rb, where
rb is the thermal state of the system in contact with a heat bath at inverse tem-
perature b. The entropy change at stage II is then only due to the entropy
change of the spin degrees of freedom. Furthermore, even if we assume col-
lapse, as Shenker implicitly does, the entropy is still high, since “we lack
knowledge of which pure state the system is in” (Henderson 2003, 294).
The separation step between II and IV then only ‘labels’ the states insofar as
they are associated with a particular spatial area of the box, but this step does
not change the entropy. The change in entropy at the compression stage V is
then due to a change of the entropy of the spatial degrees of freedom.

4. Modern Criticism by Hemmo and Shenker. In a subsequently pub-
lished, revised, and amended version, Hemmo and Shenker (2006) offer an
amended proposal with a similar but slightly weakened claim. They assert
that “von Neumann’s argument does not establish a conceptual link between
2Tr[rlnr] and the thermodynamic quantity 1=T ∫pdV (or dQ=T ) in the single
particle gas” (Hemmo and Shenker 2006, 158, emphasis added). They there-
fore retain their position that the von Neumann entropy cannot be empirically
equivalent to the phenomenological entropy but restrict this inequivalence to
the domain of single or sufficiently few particles. Von Neumann and thermo-
dynamic entropy, they argue, are effectively equivalent only in the thermody-
namic limit.

This section will discuss Shenker’s and Hemmo and Shenker’s efforts to
show dissimilar behavior between the two entropies and reveal that their ar-
gument is problematic to the extent that it allows for a perpetuum mobile of
the second kind. The shortcoming will be identified as the failure to take into
account the entropy contribution of the measurement apparatus. I will make
use of the famous one-particle engine developed by Szilard (1929), in order
to show that measurement based correlations with an external agent cannot
be ignored in the single-particle limit, as they straightforwardly lead to a vi-
olation of the second law. Once the entropy contribution of the measurement
apparatus is taken into account, however, the analogous behavior of thermo-
dynamic entropy and von Neumann entropy for the joint system is restored.

The following argument, including any conceptual ambiguities, has been
taken unamended from Hemmo and Shenker (2006), with the exception that
we represent the position of the particle by the two orthogonal states FLi and
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FRi, where L and R stand for ‘left’ and ‘right’, as opposed to Hemmo and



Shenker’s mixed state r(L) representation. For the remainder of the article, I
furthermore assume, just like Hemmo and Shenker, that it is in fact possible
to treat a single quantum particle as a genuine thermodynamic system. An il-
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lustr
ation of the following steps can be found in figure 2.

Step 1 (Preparation I): A quantum particle P is prepared in a spin-up
eigenstate in the x direction, j1xiP. Its initial location is given by FLip, where
L and R refer to its position in either the left or the right part of the box. The
measuring apparatusM starts out in the state FReadyiM. The initial state of
the particle is then given by the product state:

r(1) 5 1x i1hxjPj jL ih LjP Ready ihReadyjM :j (1)

Step 2 (Preparation II): Ameasurement in the spin z direction is performed,
leading to an entanglement of the measurement apparatus’s pointer states
and the z spin eigenstates. It is important to note that Hemmo and Shenker
do not specify the nature of the measurement at this stage, that is, whether
they are working in a collapse or no-collapse model. The state of the entire
system is given by

r(2) 5
1

2
1z ih1zjPj j 1 ih1jM 1 2z ih2zjPj j 2 ih2jMð ÞjL ih LjP, (2)

while the reduced density matrix of the particle becomes

r(2,red) 5
1

2
1z ih1zjP1j j2z ih2zjPð ÞjL ih LjP, (3)

which, as Hemmo and Shenker state, “in some interpretations may be taken
to describe our ignorance of the z spin of P” (2006, 160).
Whereas the von Neumann entropy of the spin component SvN 5

2Tr½r lnr� was zero before, it now becomes positive. The authors assert,
however, that the thermodynamic entropy remains the same.

Step 3 (Separation): Two semipermeable membranes are inserted and
moved through the box in such a way that the particle remains on the left
if it is in state F1zi but is moved to the right if it is in state F2zi. There
is no work cost involved in this process, and neither von Neumann entropy
nor thermodynamic entropy change during this step, during which the spa-
tial degrees of freedom are coupled to the spin degrees of freedom.

Step 4 (Measurement): Aswe are only considering a singlemolecule in this

setup as opposed to von Neumann’s original many-particle gas, the com-
pression stage needs to be preceded by a location measurement in order



Figure 2. Illustration of the Gedankenexperiment following Hemmo and Shenker
(2006). (1) The particle is prepared in a spin x up eigenstate. (2) A spin z measure-
ment is performed on the particle. (3) Depending on the outcome, the particle is
moved to the right side of the box or remains in the left side via semipermeable

membranes. (4) A location measurement is performed. (5) The empty side of the
box is compressed. (6) and (7) The system is brought back to its original state.
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to determinewhich part of the box is empty. Hemmo and Shenker, therefore,
introduce a further measurement before compression (not present in von
Neumann’s original argument), in order to determine in which part of the
box the particle is located.
Hemmo and Shenker add that for the calculation of the von Neumann

entropy, collapse and no-collapse interpretations will now have to use dif-
ferent expressions for the quantum state. In collapse theories, the state as a
result of the location measurement collapses into either

r(4,1) 5 1z ih1zjPj jL ih LjP or r(4,2) 5 2z ih2zjPj jR ih RjP: (4)

For no-collapse interpretations, however, the system’s state is given by the
reduced density matrix:

r(4,red) 5
1

2
j1z ih1zjPjL ih LjP 1 1

2
j2z ih2zjPjR ih RjP: (5)

The thermodynamic entropy, STD, as the authors stress, is not influenced by
the position measurement and does not change during this step, in the
sense—presumably—that no heat flows into, or out of, the system in con-
sequence of this measurement. By contrast they urge, whether the von
Neumann entropy changes depends on whether we consider collapse or
no-collapse interpretations. In the case of collapse interpretations, the
von Neumann entropy of the system allegedly decreases, whereas in the
case of no-collapse interpretations, it remains the same.

Step 5 (Compression): The box is isothermally compressed back to its
original volume V. The change in thermodynamic entropy during this step
is normally given by STD 5 (1=T ) ∫pdV . However, since there is no work
involved in the compression against the vacuum, Hemmo and Shenker ar-
gue, the thermodynamic entropy does not change at step 5. In fact, the
thermodynamic entropy does not change throughout the whole experi-
ment, the authors claim.

Step 6 (Return to Initial State): The system is brought back to its initial
state by unitary transformations with no entropy cost. “The measuring de-
vice need also be returned to its initial ready state. One can do that unitar-
ily” (Hemmo and Shenker 2006, 161). Hemmo and Shenker’s main crit-
icism thereby focuses on the fact that the thermodynamic entropy
remains constant throughout the experiment, whereas the von Neumann
entropy does not: “Therefore, whatever changes occur in Trrlnr during
the experiment, they cannot be taken to compensate for (1=T ) ∫pdV since
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the latter is null throughout the experiment” (162).



5. Discussion of Hemmo and Shenker’s Argument. This section will
discuss the argument presented above and identify two problems. The first
concerns a wrong calculation of the von Neumann entropy during the step 4
location measurement. The second problem regards the suggested unitary
reset of the measurement apparatus.

5.1. Redundancy of the Step 4 Location Measurement. I begin the dis-
cussion with some general observations, in order to provide more clarity. For
this, we recall that according to Hemmo and Shenker, the only difference be-
tween their and von Neumann’s original thought experiment is that a further
measurement, a location measurement (step 4), is needed to determine the
molecule’s location before the compression stage. For gases at the thermody-
namic limit, this measurement becomes redundant, since the amount of mol-
ecules on each side of the box becomes proportional to their respective occu-
pying volume. Not so for single molecules, for which, before the empty side
of the box can be compressed (with probability 1), a location measurement is
required in order to determine which side the particle is on.

Contrary to Hemmo and Shenker’s assertions, however, the location mea-
surement during step 4 is not needed. A spin z measurement already took
place at step 2, and the outcome of this measurement will be fully correlated
with the position of the particle after the separation in step 3. And so instead
of introducing yet another auxiliary system that performs a locationmeasure-
ment on the particle, it would have been sufficient to read out the measure-
ment result of the spin z measurement.

In the case of collapse, for example, the particle will have already col-
lapsed into a spin eigenstate during the step 2 measurement. The correlations
established during the location measurement will thereby all be classical, and
reading out the spin measurement result is sufficient to predict the particle’s
location after the separation. In the case of no-collapse interpretations, the
system and (spin) measurement apparatus become entangled during step 2:

jWi(2) 5 1
ffiffiffi

2
p 1ziPj j 1 iM 1 2ziPj j2Mð Þ LiP:j (6)

During the separation in step 3, the particle’s spatial degree of freedom be-
comes entangled with its spin degree of freedom. This means that the state
of the overall system is

jWi(3) 5 1
ffiffiffi

2
p 1ziPj j 1 iM LiP1j j2ziP 2iMj jRiPð Þ: (7)

Therefore, for both collapse and no-collapse cases, it is in fact sufficient to

VON NEUMANN AND THERMODYNAMIC ENTROPY 271
read out the measurement result of the step 2 spin measurement in order to
determine the location of the particle after the separation process.



Having two instead of one measurement would not be much of a problem,
if it were not the case that inHemmo and Shenker the twomeasurements have
different consequences for the von Neumann entropy. This is the first incon-
sistency in their argument: whereas Hemmo and Shenker agree that after the
spin zmeasurement at step 2 the postspin measurement density matrix of the
particle is given by

r(2,red) 5
1

2
1z ih1zjP1j j2z ih2zjPð ÞjL ih LjP, (8)

they do not apply the same reasoning to the postlocation measurement state
of the system at step 4. Instead, they use a ‘collapsed’ density matrix to cal-
culate the von Neumann entropy:

r(4,1) 5 1z ih1zjPj jL ih LjP or r(4,2) 5 2z ih2zjPj jR ih RjP: (9)

In the first case, the (spin) measurement has therefore increased the entropy,
whereas in the second case the (location) measurement has effectively re-
duced it. What is going on?

Let me first try to assemble what the authors themselves could have had in
mind. In von Neumann’s original argument, the step 2 spin measurement is
nonselective,8 whichmeans that even if the system has de facto collapsed into
one of its eigenstates, an external agent would not be able to determine into
which state the system has collapsed andwould therefore describe the system
by a density matrix r(2,red).9 The system would be in a so-called proper mix-
ture, meaning that it is possible to understand r as representing a probability
distribution over pure states.10 The von Neumann entropy of the system at
step 2 has thereby increased compared to its previous state, in agreement with
what von Neumann considers as being the irreversibility of a ‘Prozess 1’.

The step 4 location measurement, however, is selective—it establishes
correlations between the agent who performs the measurement and the sys-
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tem.11 These correlations then allow the agent to perform further operations

8. Or rather should have been, given that von Neumann himself begins his argument
with a spin mixture. This, however, does not matter for conceptual purposes.

9. Some words of clarification regarding my use of the term ‘agent’: an agent does not
need to be a human being of course but can be anything that is able to measure and react
to the measurement outcome accordingly. For this reason I use the term ‘agent’ inter-
changeably with the term ‘measurement apparatus’ or even ‘memory cell’, implying that
even a simple binary system can serve as an ‘agent’. Using the term ‘agent’ in this way
therefore does not imply subjectivity of any kind.

10. In the case of no-collapse interpretations and ignoring decoherence, the agent is not
yet entangled with the system. She only becomes entangled once she performs the step 4
location measurement.

11. The measurement is more precisely the location measurement apparatus, but I will
take those two to be synonymous for the time being.



on the system, such as the step 5 compression of the box. For Hemmo and
Shenker, the von Neumann entropy of the system at step 4 has therefore de-
creased from step 3.

SinceHemmo and Shenkerwant to include the nonselective spinmeasure-
ment at step 2, the step 4 locationmeasurement is indeed a necessary require-
ment for the single-particle case, given that the compression is not being al-
lowed to be conditional on the outcome of the step 2 measurement. Without
the selective measurement, the work-free compression against vacuum could
not take place. The limiting case of infinite particles (and in fact von Neu-
mann’s original account) does not require this selective measurement since
the amount of particles within each chamber of the box becomes equal.

The problem with including a second measurement on the system is that
this second measurement also introduces a second measurement apparatus.
It will be shown shortly that Hemmo and Shenker’s conclusion is based on
an erroneous calculation of the von Neumann entropywhen the system is cor-
related to this second measurement apparatus. Before elaborating on this
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point, however, I would like to discuss another shortcoming of their argument.
5.2. Violation of the Second Law. Hemmo and Shenker notably claim
that the thermodynamic entropy change is zero throughout the whole cycle
and, in particular, that at the end of the cycle “the measuring device [can
be returned to its initial ready state] unitarily” (2006, 161) and, hence, without
any heat cost. To appreciate the consequences of this claim, let us assume that
it is indeed possible to unitarily bring the measurement apparatus back to its
original position without a compensating heat transfer into the environment,
as Hemmo and Shenker claim. We may then construct a slightly amended
version of their proposed cycle. For this amended version, the only thing
we change is step 5, which instead of being a compression we turn into an
isothermal expansion. This means that instead of compressing the empty side
against the vacuum, we let the particle push against the partition in a quasi-
static, isothermal fashion. Given that the position of the particle is ‘known’ as
a result of the location measurement, it is possible to attach a weight to the
partition, thereby extracting kT ln2 units of work from the system during
the expansion, while the according amount of heat is delivered from the heat
reservoir. After the work extraction, the measurement apparatus is brought
back to its initial state (which according to Hemmo and Shenker can be done
for free). The partition is then reinserted into the original system (for free), the
position of the particle is measured again (for free), and the above process is
repeated, thereby extracting arbitrarily large amounts of work from this one-
particle engine with the sole effect being that heat is extracted from a single
reservoir. This constitutes a direct violation of the Kelvin-Planck statement

of the second law (Planck 1991).



Von Neumann himself, as the authors acknowledge, states that “in the
sense of phenomenological thermodynamics, each conceivable process con-
stitutes valid evidence, provided that it does not conflict with the two funda-
mental laws of thermodynamics” (1996, 192; trans. 1955, 359).12 And so at
this point, one might already conclude that Hemmo and Shenker’s argument
fails, as their suggested unitary reset does conflict with one of the fundamen-
tal laws of thermodynamics.

It should be noted, however, that there exists some controversy in the lit-
erature about whether we ought to expect the second law to hold in the single-
particle case and whether thermodynamic considerations in these cases are
indeed acceptable (Maxwell 1878; Earman and Norton 1999; Hemmo and
Shenker 2012; Norton 2013).13 In fact Hemmo and Shenker elsewhere have
expressed skepticism onwhether the second law holds in such cases (Hemmo
and Shenker 2012). While it seems reasonable to assume that in the article
under consideration the second law is required to hold (after all, the article
is about comparing the thermodynamic entropy with the von Neumann en-
tropy, and the authors explicitly state that they “do not address this issue”
of skepticism here; Hemmo and Shenker 2006, 158), it is worth emphasizing
that the above violation is a reliable violation of the second law. This means
that even if one is willing to sacrifice the strict second law that states that en-
tropy should never decrease, and instead adapts either a statistical or a prob-
abilistic version of the second law,14 the problem with the above case is that
we are confrontedwith a violation that allows us to extract work from the heat
reservoir 100% of the time. It allows us to extract work reliably and contin-
uously and, so, is a particularly serious version of a Maxwell’s demon.

A common strategy to recover the second law from situations like the one
presented above is to invoke Landauer’s principle (Landauer 1961; Bennett
1973). It states that there is a heat cost involved with the resetting of the mea-
surement apparatus to its initial state, and it is widely accepted in the physics
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community.15 For the case presented above, the resetting of the memory cell

12. “Im Sinne der phänomenologischen Thermodynamik ist jeder denkbare Prozess
beweiskräftig, wenn er die beiden Hauptsätze nicht verletzt.”

13. I am grateful to two anonymous referees for prompting me to elaborate on this point.

14. The statistical version, which Maxwell adapted, takes the second law to be a statis-
tical, as opposed to mathematical, truth that holds for macroscopic systems where fluc-
tuations are rare. Naturally, the statistical second law does not hold anymore for micro-
scopic systems where fluctuations become relevant. The alternative is a probabilistic
version, which rules out the reliable extraction of work from a single heat reservoir.
For this probabilistic law, system size seems less of an issue. See also Maroney (2009b)
or Myrvold (2011) for a distinction between these different versions.

15. Notably, some philosophers have challenged its validity (Earman and Norton 1999;
Norton 2011), while others have made arguments in its favor (Ladyman et al. 2007;
Maroney 2009a; Ladyman and Robertson 2013; Wallace 2014).



would then lead to an increase of heat in the environment, thereby offsetting
the previous entropy decrease.16

And indeed, this is what is required in the current case, for contrary to
Hemmo and Shenker’s assertion, a unitary reset of the measurement device
is not possible. To see this, we consider the end of the cycle. The measure-
ment device then is in one of the two mutually exclusive states F2iM or
F1iM. As can be easily seen, there then exists no unitary operator that reliably
maps the memory cell back to its initial, ready state fj 2 iM , j 1 iMg↦
jreadyiM . The only way to reset the measurement device unitarily is if one
recorded beforehand which one of the two mutually exclusive states the de-
vice is in. To do so, however, one requires a measurement on the measure-
ment device itself, performed by a second measurement device. But then
one would want to reset this second measurement device unitarily, too, for
which a third device would be needed, and so on. Eventually, one would run
out of resources, and a Landauer type reset, at a cost, becomes unavoidable.

Which Entropy?—Notwithstanding the above criticism, Hemmo and
Shenker’s main point is that the von Neumann entropy (as opposed to the
thermodynamic entropy) during the step 4 location measurement decreases
and that this gives us reason to reject that their conceptual equivalence still
stands, or seems to. “As a result of the location measurement, the von Neu-
mann entropy decreases back to its original value” (Hemmo and Shenker
2006, 163).

In this section I discuss this claim, and in particular I show that

i) The physically relevant entity is the joint entropy of system and mea-
surement apparatus. It remains the same.

ii) It is the system’s so-called conditional entropy that decreases during
the measurement, not the system’s marginal von Neumann entropy.

I begin with a justification of the two claims. In phenomenological thermody-
namics, the joint entropy of two systems is always the sum of their respective
entropies. The von Neumann (in the classical case, the Gibbs) entropy, how-
ever, is generally subadditive and additive only in the absence of correlations
between two systems:

H S,Mð Þ ≤ H Sð Þ 1 H Mð Þ, (10)

where S standsfor‘system’andMstandsfor‘measurementapparatus’or‘mem-
ory cell’. In the concrete case of the step 4 location measurement, we can
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model the measurement apparatus M as a box containing a single molecule

16. Note that once we take into account this heat cost, Hemmo and Shenker’s original
one-particle cycle ceases to be entropy neutral, as the resetting step will lead to an en-
tropy increase in the environment.



divided by a partition. It can then be in one of two mutually exclusive states,
corresponding to the position of the molecule, left (l ) or right (r). We assume
it needs to be in a ‘ready’ state before themeasurement, which we chose to be
l. The entropy is zero, in this case. If we consider the case of collapse, then at
the time of the measurement the system will have already collapsed into a
spin eigenstate. The correlations between the location of the system and
themeasurement apparatus are then all essentially classical, and the vonNeu-
mann entropy before the measurement can be rewritten as

H (S) 5 2kBo
s5l,r

p(s) log p(s), (11)

where p(s) is the probability of the system being in the left or right chamber of
the box.

Before the step 4 location measurement, system and measurement appa-
ratus are not correlated, and their joint entropy is given by H3(S,M ) 5
H3(S) 1 H3(M ), where 3 is taken to denote ‘stage 3’, or, in other words, ‘be-
fore the step 4 measurement’. During the measurement, the memory cell will
align itself with the position of the particle, and the two systems become cor-
related. The joint entropy now cannot be expressed anymore as the sumof the
individual entropies and instead becomes

H4(S,M ) 5 H4(SjM ) 1 H4(M ) ≤ H4(S) 1 H4(M ), (12)

with H(SFM) being the so-called conditional entropy, which quantifies how
much S is correlated with M and which is given by

H(SjM ) 5 2kBo
s,m

p(s,m) ln p(sjm) (13)

5 2kBo
m

p(m)o
s

p(s m) ln p(sj jm) (14)

5 kBo
m

p(m)H(s): (15)

Here p(s) and p(m) are the probabilities that system and memory cell are
found in macrostate s 5 ls, rs or m 5 lm, rm respectively, p(m, s) is their
joint probability, and p(sFm) the conditional probability, with H(s) 5
2kBosp(sjm) ln p(sjm). The conditional entropy is nonnegative and is max-
imal when the system and measurement apparatus are uncorrelated, 0 ≤
H (SjM ) ≤ H (S), in which case equation (12) reduces to equation (10). It
is often considered to be the entropy relative to an agent (in this case themea-
surement apparatus).
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Let us now go back to Hemmo and Shenker’s claim that the von Neu-
mann entropy of the system decreases during the location measurement.



Does it? The answer is no. What decreases, however, is the conditional
entropy relative to the measurement apparatus:

H3(S M ) ≥ H4(Sj jM ): (16)

It reduces to zero because system and measurement apparatus become
perfectly correlated during the measurement. And so when Hemmo and
Shenker claim that the system’s entropy has decreased, what they mean is
that the system’s conditional entropy has decreased. But the conditional en-
tropy is distinct from the marginal entropy. Rewriting the joint entropy of
system and measurement apparatus demonstrates this:

H4(S,M ) 5 H4(S M ) 1 H4(M ) 5 H4(Mj jS) 1 H4(S): (17)

As opposed to phenomenological thermodynamics, which treats systems
as black boxes, (classical and quantum) statistical mechanics is able to detect
correlations between subsystems, allowing us to mathematically handle the
concept of ‘measurement’ in the first place. If we associate entropy with the
potential to (reliably) extract work from a system, then the conditional entropy
quantifies this ability to a certain extent: a memory cell endowed with an au-
tomaton would now be able to (reliably) extract work from the system by al-
lowing it to isothermally expand into the other half of the box, thereby raising
a weight, contrary to an external agent who is not correlated to the particle
location. But this is just the ordinary Maxwell’s demon scenario applied to
a one-particle setting.17

What becomes important for thermodynamic treatments in such a setting
is the joint entropy of system andmeasurement apparatus, as the joint system
(ideally) has no correlations with the outside and can thus be treated as a
thermodynamic black box. And it turns out that the behavior of the thermo-
dynamic entropy of the joint system is exactly mirrored by the behavior of
the von Neumann entropy. The joint entropy of system andmeasurement ap-
paratus does not change during the location measurement but remains the
same:
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H3(S,M ) 5 H4(S,M ): (18)

17. As mentioned before, in 1867 Maxwell introduced the idea of a “very observant and
neat-fingered being” (as cited in Maxwell 1995), which was intended to demonstrate that
the orthodox second law of thermodynamics could be broken in principle by exploiting
fluctuations. In the thought experiment, a box filled with monatomic gas is divided into
two parts by a partition into which a small door is built-in. The “being,” later called
Maxwell’s demon, controls every atom that approaches the door and either lets the atom
pass or not. Since the gas molecules are subject to a velocity distribution, he can decide
to only let the fast molecules pass into the one direction and to only let slow molecules
pass into the other direction. By doing so the demon creates a temperature gradient, al-
lowing him to violate the second law.



And so, to summarize the above: all that changes during the location mea-
surement is the conditional entropy, not the joint entropy of the system or
the marginal entropy H(S). Furthermore, the joint entropy, just like the ther-
modynamic entropy of the joint system, remains the same during the loca-
tion measurement.

5.3. No-Collapse Scenarios. Let us now consider the case of no-
collapse scenarios. In no-collapse scenarios, following the measurement in
step 4, the measurement apparatus and the location degree of freedom be-
come entangled. The reduced density matrix after tracing out the decohering
environment therefore is given by an improper mixture due to the neglect of
the correlations with the environment. After the step 4 measurement, the den-
sity matrix of the combined system and measurement apparatus is given by

r(4,P1M ) 5
1

2
  1z ih1zjPj jL ih LjP L ih LjM1j j2z ih2zjP R ih RjPj jR ih RjMð Þ, (19)

where now FLiM and FRiM represent the states of the measurement apparatus.
The correlations between the measurement apparatus and the system are of a
classical nature, and so also in the absence of collapse, the von Neumann en-
tropy of system and apparatus has not changed during the step 4measurement.

6. Conclusion. This article considers von Neumann’s introduction of
2Trrlnr as the quantum mechanical generalization of thermodynamic en-
tropy. In particular, it shows that an argument raised by Shenker (1999)
and Hemmo and Shenker (2006) against the equivalence of von Neumann
and thermodynamic entropy is problematic because (a) their reasoning al-
lows for a violation of the second law of thermodynamics and (b) the alleged
disparate behavior in von Neumann and thermodynamic entropy during the
step 4 location measurement is due to a wrong calculation of the von Neu-
mann entropy. It is in fact the system’s conditional entropy that decreases dur-
ing the step, leading to the seemingly disparate behavior of the two entropies.
Finally, the article shows that the relevant quantum entropy, the joint entropy
of system and measurement apparatus, remains unchanged during the loca-

278 CARINA E. A. PRUNKL
tion measurement and thus exactly mirrors the thermodynamic entropy.
Appendix

Von Neumann, Entropy, and Single Particles

In his original setup, von Neumann introduced a ‘gas’ consisting of individ-

ual quantum systems, locked up in boxes and placed in a further, giant box.18

18. Such a setup was first proposed by Einstein (1914).



The ‘gas’ represents a imaginary statistical but finite ensemble. The density
operator, which he calls the ‘statistical operator’, can only relate to such a
Gesamtheit. This means that even in the case of an individual quantum sys-
tem, von Neumann’s argument would remain unchanged: the density oper-
ator of this individual quantum system would still relate to an ensemble of
systems, and a system containing a single particle would therefore still be
modeled as an N-particle ensemble. The statistical representations of (a) a
system containing a single particle and (b) a system containing many parti-
cles are therefore identical. This, however, does not imply that von Neumann
denies the meaningful application of thermodynamics to individual particles.
Quite the contrary: vonNeumann explicitly considers the case of a single par-
ticle in a box (1996, 212). He uses the example to demonstrate that the capac-
ity of an agent to extract work from such a single-particle thermodynamic
system depends on the agent’s state of knowledge about the position of the
particle and therefore adopts what one might call an epistemic interpretation
of entropy: “The time variations of the entropy are then based on the fact that
the observer does not know everything, that he cannot find out (measure)
everythingwhich is measurable in principle” (213; trans. 1955, 401).19While
one may raise several severe objections to this reading of entropy and the
density operator, the above nevertheless shows that von Neumann’s argu-
ment in its original intention applies not only to large (macroscopic) systems
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but also small (microscopic) systems.
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