
Statistical Mechanics: A Tale of Two Theories
Roman Frigg and Charlotte Werndl*

A B S T R A C T

There are two theoretical approaches in statistical mechanics, one associated with
Boltzmann and the other with Gibbs. The theoretical apparatus of the two approaches
offer distinct descriptions of the same physical system with no obvious way to translate
the concepts of one formalism into those of the other. This raises the question of the
status of one approach vis-�a-vis the other. We answer this question by arguing that the
Boltzmannian approach is a fundamental theory while Gibbsian statistical mechanics
(GSM) is an effective theory, and we describe circumstances under which Gibbsian
calculations coincide with the Boltzmannian results. We then point out that regarding
GSM as an effective theory has important repercussions for a number of projects, in
particular attempts to turn GSM into a nonequilibrium theory.

1 . I N T R O D U C T I O N
Statistical mechanics (SM) is one of the pillars of modern physics. It predicts equilib-
rium properties of a wide range of materials; it explains phase transitions; and it suc-
cessfully reproduces thermodynamic results. Yet things get involved as soon as we
ask what SM is. The issue is that there are two different theoretical approaches in
SM, one associated with Boltzmann and the other with Gibbs. We refer to them as
Boltzmannian SM (BSM) and Gibbsian SM (GSM), respectively. The copresence of
two different approaches would itself not be a cause for concern if it were the case
that the two formalisms were equivalent, or at least somehow intertranslatable (as
are, for instance, the Schrödinger picture and the Heisenberg picture in quantum me-
chanics). Unfortunately they are not. The theoretical apparatus of the two
approaches are fundamentally different. They offer distinct descriptions of the same
physical system and there is no obvious way to translate the concepts of one formal-
ism into those of the other.

GSM is the workhorse of the practitioner. It provides the tools and methods to
carry out a wide range of equilibrium calculations, which is why physicists often re-
gard it as the formalism of statistical mechanics.1 However, as Lavis (2005, 246)
notes, when confronted with the question of “what is actually going on” in a physical
system, physicists are often quick to desert GSM and offer an account of “why SM
works” in terms of BSM because GSM has number of features that jar with

*London School of Economics

VC The Author(s), 2019. Published by Oxford University Press.
All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

� 424

The Monist, 2019, 102, 424–438
doi: 10.1093/monist/onz018
Article

D
ow

nloaded from
 https://academ

ic.oup.com
/m

onist/article-abstract/102/4/424/5567123 by N
ew

 York U
niversity user on 09 July 2020

https://academic.oup.com/


foundational accounts. And discrepancies are not restricted to foundational issues. In
nonequilibrium situations BSM is usually the theory of choice because, despite many
attempts to extend GSM to nonequilibrium, no workable Gibbsian nonequilibrium
theory has emerged (see Sklar [1993], Uffink [2007] and Frigg [2008] for reviews).
But how can one use one formalism to explain the nonequilibrium behaviour of
physical systems and to give a foundational account of SM, while continuing to use
the other formalism for everyday equilibrium calculations?

There have been attempts to downplay the tension between BSM and GSM by
arguing that the two formalisms end up producing the same predictions, at least as
far as equilibrium calculations are concerned, and that discrepancies concerning
foundational issues are things that we can live with.2 While it is true that
Boltzmannian and Gibbsian calculations agree in many cases, this agreement is not
universal. There are cases in which GSM and BSM either make conflicting predictions
about a system’s equilibrium properties or GSM remains silent (which is the case
depends on how GSM is interpreted, as we will see). Hence, the two formalisms not
only differ in their theoretical characterisation of physical situations; they are also
not empirically equivalent. This forecloses the escape route of noncommittal plural-
ism, and any attempt to understand how SM works has to offer an account of the re-
lation between BSM and GSM.

Somewhat surprisingly, the problem of the status of one theory vis-�a-vis the other
has attracted rather little attention. Where it is discussed, either it is argued that
GSM and BSM have to be reconciled (Lavis 2005) or it is suggested that GSM is the
preferred formulation of SM (Wallace 2015). We are taking a different route and
claim that BSM is a fundamental theory while GSM is an effective theory. This
means that BSM provides a true description of the systems within the scope of SM;
GSM offers an algorithm to calculate values defined by the fundamental theory. The
algorithm is often easier to handle than the fundamental theory and provides results
where the fundamental theory is intractable. As every effective theory, GSM works
only within a certain domain of application. We provide a characterisation of the lim-
its of GSM and show that BSM provides the correct results in cases in which the two
theories disagree. This answers the question of how BSM and GSM relate to one
another.

The paper is structured as follows. In Section 2 we introduce BSM and GSM and
note that they are not empirically equivalent. In Section 3 we draw a contrast be-
tween fundamental and effective theories and argue that GSM is an effective theory
while BSM is a fundamental theory. Effective theories are not universally applicable,
and the most useful effective theories are ones for which we know the domain of ap-
plicability. In Section 4 we offer sufficient conditions for GSM to provide correct
results. In Section 5 we point out that regarding GSM as an effective theory has im-
portant repercussions for a number of projects, in particular attempts to turn GSM
into a nonequilibrium theory. In Section 6 we conclude our discussion.

We discuss SM in the setting of classical mechanics. We assume that the world is
governed by Newton’s equation of motion and that force functions are such that the
equation has unique solutions, which ensures that the resulting dynamics is deter-
ministic. This is a choice of convenience that we make to keep the technical aspect
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of the paper manageable. All definitions and results that we appeal to in what follows
generalise to stochastic classical systems, and so the conclusions we reach carry over
to such systems mutatis mutandis.3 We believe that our conclusions will eventually
also bear out in the quantum context, although we note that given the current state
of play in quantum SM this claim is largely speculative because no generally accepted
quantum formulation of BSM is available.4

2 . T W O T H E O R I E S
SM describes physical systems like a gas in a container, a magnet on a laboratory ta-
ble, and a liquid in a jar. From a mathematical point of view these system have the
structure of a measure-preserving dynamical system, i.e., a quadruple ðX;RX ;/t; lÞ.5 X
is the system’s state space, which contains all states that the system’s microconstituents
could in principle assume. For this reason the states in X are referred to as micro-
states. In the case of a gas with n molecules, X has 6n dimensions: three dimensions
for the position of each particle and three dimensions for the corresponding mo-
menta. RX is a r-algebra of subsets of X, and l is a measure on RX. The evolution
function /t determines how the system’s microstate changes over time. If at a certain
time t0 the system is in microstate x0, then it will be in state /tðx0Þ at a later time t.
If the system is such that the movement of its constituents is governed by an equa-
tion of motion such as Newton’s equation, then /t is the solution of this equation.
The path that /tðx0Þ traces through X as time evolves is the trajectory through x0,
and x0 is the initial condition. The system is measure-preserving because it is assumed
that /t and l are such that the measures of a subsets of X remain invariant under /t .

At the macrolevel the system is characterised by a set of macrovariables. Volume,
internal energy, and magnetisation are examples of macrovariables. From a mathe-
matical point of view macrovariables are functions that associate a real number with
each point in X; i.e., f : X ! R. If, for instance, f is the magnetisation of the system
and the system is in microstate x, then f(x) is the magnetisation of the system when
it is in microstate x.

BSM and GSM share this characterisation of a system; they disagree on how sta-
tistical assumptions are introduced into SM and on what the observables of the the-
ory are. We now introduce each theory and make explicit where and how they differ.

In BSM a system is in a particular macrostate at any given time. The macrostate is
given by values of the relevant macrovariables. If, for instance, a system is character-
ised by three macrovariables f1, f2, and f3, then the system’s macrostate is defined by
a particular set of values for these variables.6 Macrostates thus defined supervene on
microstates, meaning that one cannot change the system’s macrostate without also
changing its microstate. This determination relation is usually many-to-one, meaning
that many different microstates are realisers of the same macrostate. For this reason
every macrostate M is associated with a macroregion XM consisting of all microstates
for which the system is in M. For a complete set of macrostates the corresponding
macroregions form a partition of X (meaning that the different XM do not overlap
and jointly cover X).

One of these macrostates is the system’s equilibrium macrostate. Intuitively a sys-
tem is in equilibrium when its properties do not change. As an example take a gas in a
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container that is equipped with measurement devices that record its pressure, volume,
and temperature. We say that the gas has reached equilibrium if the values of these
macrovariables do not change. This intuition is enshrined in thermodynamics, where a
system is said to be in equilibrium when all change has come to a halt and the system’s
thermodynamic properties remain constant over time (Fermi 2000, 4). This definition
of equilibrium cannot be implemented unmitigated in SM. The reason is that
measure-preserving dynamical systems exhibit Poincar�e recurrence and time reversal
invariance. This has the consequence that a system, when its time evolution unfolds
without any outside influence, will eventually return arbitrarily close to the microstate
where it started. This means that a system that started out of equilibrium (for instance,
when the gas was confined to one half of the container) will eventually return to that
state. This may take a very long time, but it is a given that it will happen eventually. So
in the context of SM no system will remain in any state ad infinitum.

This precludes a definition of equilibrium as the state which the system never
leaves once it has reached it. Different formulations of BSM offer different prescrip-
tions of how an equilibrium state is singled out. We adopt the long-run residence time
definition of equilibrium which aims to come as close to the thermodynamic definition
of equilibrium as the mathematical constraints imposed by measure-preserving dy-
namical systems permit (Werndl and Frigg 2015).7 The intuitive idea underlying this
approach is to define the equilibrium macrostate of a system as the macrostate in
which the system spends most of the time for most of the initial conditions. One
way to make this intuition precise is to say that an equilibrium state is such that the
system spends more than half of its time in it. If mathematics was kind on us this
would be the case for all initial conditions. However, it is well known that in general
there will be initial conditions that fall out of line. So the best one can achieve is to
require that most initial conditions lie on trajectories that spend more than half of
the time in the relevant macrostate. Formalising this idea yields the following defini-
tion of equilibrium. Let a be a real number in the interval 1

2 ; 1�
�

, and let LFMðxÞ be
the long-run fraction of time that a system that starts in initial condition x spends in
XM. Then consider the following condition: for a given macrostate M there exists a
subset Y of X so that lðYÞ � 1� e for a very small positive real number e and so
that LFMðxÞ � a for all initial states x in Y. If there exists a macrostate that satisfies
this condition, then it is the system’s equilibrium macrostate. The corresponding
macroregion XM is its equilibrium macroregion. The Boltzmannian equilibrium value F
of the macrovariable f is the value that f assumes in the equilibrium macrostate:
F ¼ f ðxÞ, where x lies in the system’s equilibrium macro region XM. If such an equi-
librium exists, then one can prove that lðXMÞ � að1� eÞ, which means that the
equilibrium macroregion is the largest macroregion.8

It is a consequence of this definition of equilibrium that a system is not always in
equilibrium and that it can—and in fact does—fluctuate away from equilibrium.
This marks a radical departure from thermodynamics, and so it is worth pointing out
that this is not merely a concession to the demands of measure-preserving dynamical
systems. Having no fluctuations at all is not only mathematically unattainable; it is
also physically undesirable. Experimental results show that equilibrium is not the im-
mutable state that classical TD presents us with because systems exhibit fluctuations
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away from equilibrium (MacDonald 1962; Wang et al. 2002). Thus strict equilibrium
is actually unphysical and adopting a notion of equilibrium that allows for fluctuations
increases the empirical adequacy of the theory.

One may wonder what is ‘statistical’ about BSM. It turns out the probabilities can
be introduced in different ways into BSM. Boltzmann’s (1877) original idea was to at-
tach probabilities to macrostates themselves and postulate that the probability of find-
ing a system in macrostate M at time t is proportional to the measure of the
macroregion of that state: ptðMÞ ¼ clðXMÞ, where c is a constant. Contemporary
authors, most notably Albert (2000), attach probabilities to microstates within a mac-
roregion and then use these to calculate transition probabilities from one macrostate
to another. Either of these positions has its pros and its cons (see Frigg [2010] for a
discussion). In what follows it does not matter which of these approaches is adopted.

The core object of study in GSM is a probability density (or distribution) qðx; tÞ
over X.9 The density qðx; tÞ reflects the probability of finding the state of a system in
a region R � X at time t:

ptðRÞ ¼
ð

R
qðx; tÞdx: (1)

On physical grounds the probability density must be conserved, meaning that for every
region R(t) of X that is moving forward under the time evolution /t the probability
must be constant. If the time evolution is generated by Hamiltonian equations of mo-
tion this is the case if, and only if, the Liouville’s equation holds (Tolman 1938).

Gibbs introduces what he calls the condition of statistical equilibrium (1902, 8). A
probability density is in statistical equilibrium if and only if it is stationary, meaning
that it does not change under the dynamics of the system: qðx; tÞ ¼ qðxÞ for all t.
Usually there are a large number of stationary density functions for a given /t and so
the question arises which of these should be chosen to characterise a given physical
situation. Gibbs showed that the so-called microcanonical distribution describes a
physical system in equilibrium when the system is completely isolated from its envi-
ronment and that the so-called canonical distribution should be used when the system
is in contact with a heat bath.10

At this point the question arises how Gibbsian ensembles connect to observations
on a physical system. According to GSM, what does an experimentalist observe
when measuring, say, the magnetisation of a sample of iron? To answer this question
we first introduce the phase average hf i of a macrovariable f:

hf i ¼
ð

X
f ðxÞqðx; tÞdx: (2)

If the system is in statistical equilibrium, then hf i is time-independent. The standard
way to establish a connection between Gibbsian ensembles and observable results is
to appeal to the averaging principle (AP). This principle posits that when observing
the physical quantity associated with f on a system in equilibrium, then the observed
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equilibrium value of f is the phase average hf i. A recent review of textbooks of statis-
tical mechanics showed that many textbooks on GSM explicitly state and endorse
this principle.11 Examples are Chandler, who calls AP “[t]he primary assumption of
statistical mechanics” (1987, 58), and Pathria and Beale, who regard AP as the “the
most important result” in SM (2011, 31). For this reason we base our discussion in
Sections 3 and 4 on a version of GSM that incorporates AP. There is, however, an al-
ternative interpretation of GSM that does not accept AP. We comment on how this
alternative version of GSM fits into our tale at the end of Section 3, where we also
point out that our main conclusions equally hold in this interpretation.

These brief accounts of BSM and GSM make it clear how different the two theo-
ries are. Chief among the differences is their conceptualisation of equilibrium. BSM
introduces macrostates and defines the equilibrium macrostate as the macrostate in
which the system spends most of its time. It thereby explicitly allows for systems to
fluctuate away from the equilibrium state every now and then. GSM does not recog-
nise macrostates and instead introduces a probability density over the system’s state
space. Equilibrium is a property that pertains to the probability distribution, and is
defined as the distribution being stationary. Observable equilibrium properties are
equated with the phase averages of macrovariables, which are constant over time if
the distribution is in equilibrium.

So we seem to be in a somewhat schizophrenic situation. When we talk about ‘sta-
tistical mechanics’ it is unclear whether we mean BSM or GSM or both, and the two
are clearly not just notational variants of the same physical principles. This is discon-
certing. A first reaction might be to try to mitigate the severity of the problem by ar-
guing that despite their theoretical differences, the formalisms are empirically
equivalent, at least as far as equilibrium properties are concerned.

This raises the question of what it would mean for the two theories to be empiri-
cally equivalent. The Boltzmannian notion of equilibrium is designed to mirror the
thermodynamic notion of equilibrium, and the Gibbsian notion of statistical equilib-
rium is connected to thermodynamic equilibrium through the averaging principle.
This suggests that Gibbsian phase averages, Bolzmannian equilibrium values, and
thermodynamic equilibrium should all coincide. This provides a necessary condition
for the empirical equivalence of BSM and GSM. Consider a macrovariable f and let F
be the Botzmannian equilibrium value of the macrovariable f. It is then necessary for
BSM and GSM to be empirically equivalent that

F � hf i (3)

holds for all macrovariables f in all systems that fall within the scope of both theories
(where � means that the two values are approximately equal). We call this the me-
chanical averaging principle and we refer to Equation 3 as the mechanical averaging
equation.12

Unfortunately it turns out that BSM and GSM are not empirically equivalent be-
cause F and hf i are not always equal, not even approximately. This means that the
mechanical averaging equation is not true in general and hence the mechanical aver-
aging principle fails. Boltzmannian equilibrium values and Gibbsian phase averages
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agree for paradigmatic examples such as the dilute gas with macrovariables that as-
sign the same value to all states that are in the Maxwell-Boltzmann distribution (or
in a distribution that is very close to the Maxwell-Boltzmann distribution), but
Gibbsian and Boltzmannian calculations come apart in the six-vertex model and the
Ising model where Gibbsian phase averages fail to agree with Boltzmannian equilib-
rium values for important macrovariables such as internal energy, polarisation, and
magnetisation (Werndl and Frigg 2019a). These are core examples of SM systems
and hence discrepancies between Boltzmannian and Gibbsian predictions cannot be
dismissed as formal contrivances at the fringes of the practice of the discipline.

3 . A T A L E
The failure of empirical equivalence brings to a head the problem of the status of
BSM and GSM vis-�a-vis each other. It also raises the question of which prediction is
correct if they disagree. The solution to this conundrum, we suggest, lies in the reali-
sation that BSM and GSM are not alternative theories that are on par with each
other: BSM is a fundamental theory while GSM is an effective theory, and in situations
where Boltzmannian equilibrium values and Gibbsian phase averages come apart, the
Boltzmannian values are the correct values.

What is an effective theory? Physicist James Wells offers the following charac-
terisation:

“Effective Theories” are theories because they are able to organise phenomena
under an efficient set of principles, and they are effective because it is not im-
possibly complex to compute outcomes. The only way a theory can be effec-
tive is if it is manifestly incomplete. [. . .] Any good Effective Theory systemat-
ises what is irrelevant for the purposes at hand. In short, an Effective Theory
enables a useful prediction with a finite number of input parameters. (2012, 1)

As examples of effective theories Wells discusses Galileo’s law of falling bodies, the
harmonic oscillator, classical gravity, and effective theories of particle masses.
Hartmann (2001) discusses low-energy approximations to quantum chromodynam-
ics in nuclear physics and the BCS theory of superconductivity as effective theories.

We suggest adding GSM to this list because GSM meets Wells’s criteria. First, by
characterising equilibrium in a wide array of different materials and across different
phases as an ensemble with a stationary distribution, it offers an organisation of phe-
nomena under the umbrella of a small set of principles. Second, the principles of
GSM are an efficient tool for the computation of equilibrium values. In fact, as noted
earlier, in many applications it is GSM that delivers the results because it offers ac-
tionable principles and tractable methods to calculate equilibrium values of a large ar-
ray of materials. Third, GSM is incomplete in a number of ways. As we have seen in
Section 1, GSM is unconcerned with the dynamics of the model. The role of the sys-
tem’s dynamics in GSM is limited to ensuring that a stationary distribution emerges
from the dynamics, but no other features of the dynamics are taken into account.
GSM considers neither equations of motion nor dynamical laws; it completely disre-
gards trajectories; no time averages along trajectories are studied; and the initial
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conditions are left unspecified.13 In fact the Gibbs formalism does not even distin-
guish between models with a deterministic and a stochastic time evolution! The
Gibbsian phase averages are the same for all time evolutions that are such that q is
invariant over time, no matter how different they may otherwise be. The system’s dy-
namics is considered immaterial to understanding equilibrium as long as it—some-
how—produces the stationary distribution that enters into the calculations.14 Finally,
GSM is explicit about what it regards as immaterial and about what it omits. In this
sense GSM systematises what it regards as irrelevant.

BSM is quite unlike GSM in these respects. Dynamical considerations occupy
centre stage in BSM. It introduces macrostates with corresponding macroregions,
and then defines equilibrium in explicitly dynamical terms (namely as the macrostate
whose macroregion is such that, in the long run, the system’s state spends most of its
time in that macroregion). As noted in the introduction, we work under the assump-
tion that the world is governed by Newton’s equation of motion. In such a world the
dynamics considered in BSM is the true dynamics at the fundamental level: the un-
abridged and unidealised dynamics with all interactions between all microconstitu-
ents of the system. Equilibrium results from macrostates that are defined in terms of
macrovariables that supervene on the true microdynamics of the system, and where a
system fluctuates away from equilibrium it does so as a result of the true underlying
dynamics. In a classical world the theory gives a full account of all this—nothing is
left out and nothing is averaged over. BSM provides the complete fundamental the-
ory of SM systems.

True complete fundamental theories cannot be wrong, which implies that the
BSM results are the correct ones when BSM and GSM disagree. Experimental results
confirm this. Consider the example of a magnet with the macrovariable of total mag-
netisation m. Such a system can be represented by the Ising model. Calculations
in BSM show that below the critical temperature the Ising model has two
Boltzmannian equilibrium values m ¼ M and m ¼ �M, corresponding to the maxi-
mum magnetisation pointing upward and downward (Baxter 1982). The system flips
back and forth between these states spending an equal amount of time in each state,
and the frequency of the flips gets lower as the size of the system increases. GSM by
contrast yields a phase average of hmi ¼ 0. Experimental results show that magnets
indeed flip back and forth between m ¼ M and m ¼ �M and the magnetisation is
hardly ever zero.

There is often a tradeoff between fundamentality and practicality, and our case is
no exception. Not only does BSM not offer an effective algorithm of computation; it
is often intractable. If one wants to find out whether a Boltzmannian equilibrium
exists, and if so, determine the equilibrium state, then one has to explicitly specify
the macrostate structure of the model and determine the macrostates’ macroregions;
one has to know enough about the underlying dynamics to be able to calculate the
long-run fractions of time that a model spends in each macroregion; and one has to
be able to estimate the measure of the set of initial conditions that lie on trajectories
that do not have well-behaved long-run fractions of time. In many cases this is asking
for too much because it requires more information than we have.15
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Against this background we come to see GSM’s omissions as an advantage rather
than as a weakness—they are precisely what makes GSM effective! But relegating a
host of things to the realm of irrelevance comes at a cost. Wells points out that when-
ever we recognise a theory as an effective theory we have to

confront a theory’s flaws, its incompletenesses, and its domain of applicability
as an integral part of the theory enterprise. The most useful Effective Theories
are ones where we know well their domains of applicability, and can parametri-
cally assess the uncertainties induced by ignoring the “irrelevant.” (2012, 1)

So the flipside of recognising a theory as an effective theory is that we should be able
to delimit its range of application: we have to be able to say when a theory yields
trustworthy results and when its procedures fail to deliver. In concrete terms, we are
now faced with the question: under what conditions does GSM yield correct results,
i.e. results that coincide with BSM?

4 . D O M A I N S O F E F F E C T I V E N E S S
As noted in Section 2, for BSM and GSM to agree on a system’s equilibrium proper-
ties it must be the case that F � hf i, where F is the Boltzmannian equilibrium value.
This can be the case under different conditions. In this section we discuss two condi-
tions that are individually sufficient for this result to hold: the Khinchin condition
and the requirement that fluctuations be small. These conditions are, however, not
necessary and there will be other conditions, such as the so-called average equiva-
lence theorem and the cancelling out theorem (Werndl and Frigg 2019a). In fact,
currently there is no complete list of conditions under which F � hf i, and we have
doubts that there will ever be such a list.

Phase averages and Boltzmannian equilibrium values are trivially identical if the
macrovariables under considerations take the same value everywhere: f(x) ¼ c for all
x in X and a constant c. In this case we have F ¼ hf i ¼ c. Such macrovariables are
uninteresting, but the they raise a useful question: how far does one have to move
away from the case f(x) ¼ c to obtain an interesting condition while still retaining
the basic idea? An answer to this question is provided by what is now known as the
Khinchin condition.16 To formulate the condition we introduce the notion of a fluc-
tuation. Take a microstate x and consider the difference between the value f(x) (the
true value if the model is in state x) and the phase average:

Df ðxÞ ¼ f ðxÞ � hf i: (4)

Df ðxÞ is the fluctuation when the system is in microstate x, and jDf ðxÞj the magni-
tude of the fluctuation. The Khinchin condition then states that there is a subset �X of
X with lð�XÞ ¼ 1� d for a very small d � 0 such that jDf ðxÞj ¼ 0 for all x in �X .

If the condition is satisfied, then F ¼ hf i. Assume that a Boltzmannian equilibrium
exists and let F be the Boltzmannian equilibrium value of f. The Khinchin condition
then guarantees that there are only a few states (of at most measure d) whose macro-
values differ from hf i. These ‘exceptional’ states cannot form the Boltzmannian
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equilibrium macrostate because, as we have seen in Section 2, the macroregion corre-
sponding to the Boltzmannian macrostate is large. For this reason the set of micro-
states for which f(x) ¼ F must be the macroregion of the Boltzmannian macrostate,
and for the states in that region we have F ¼ hf i. Hence, if the Khinchin condition is
satisfied, then BSM and GSM equilibrium macrovalues agree. The paradigmatic exam-
ple of such a system is the dilute gas with macrovariables that assign the same value to
all states that are in the Maxwell-Boltzmann distribution, or in a distribution that
is very close to the Maxwell-Boltzmann distribution (Ehrenfest and Ehrenrest-
Afanassjewa 1959).

An alternative approach focusses on the statistics of fluctuations and shows that
GSM reproduces, under certain circumstances, the fluctuation pattern of BSM. To
see how this happens, let us first look at fluctuations in GSM. The core idea of the
fluctuation approach in GSM is to use the probabilities given in Equation 1 to calcu-
late the probability that a fluctuation of a certain magnitude occurs. Consider an in-
terval d :¼ ½d1; d2�, where d1 and d2 are real numbers such that 0 � d1 � d2.
Equation (1) can then be used to calculate the probability for a fluctuation of a mag-
nitude between d1 and d2 to occur:

pðdÞ ¼
ð

D
qðxÞdx; (5)

where D ¼ fx 2 X : d1 � jDðtÞj � d2g.
It is important to be clear about the scope of this equation. The probabilities in

Equation 1 are sometimes interpreted as being universal in the sense that q is seen
as providing the correct probabilities for a system’s state to be in region R at time t
and for all R in X and for any time t. Under this assumption the fluctuation probabili-
ties in Equation 5 are then seen as being universal in the sense that for any magni-
tude and for any time t, pðdÞ would be the correct probability for a fluctuation of a
certain magnitude to occur at t. Unfortunately universality of this kind fails. A careful
look at GSM reveals that at least one of two conditions have to be met for this to be
the case (Frigg and Werndl 2019). The masking condition requires either that the sys-
tem can access all parts of the phase space, or, if that is not the case, that f must be
such that the proportion of states for which f assumes a particular value is the same
in each invariant subset of X. The condition of f-independence (roughly) states that
the system’s dynamics must be such that the probability of finding a specific value of
f in two consecutive yet sufficiently temporally distant measurements must be inde-
pendent of one another. The Gibbsian q can be used to calculate correct fluctuation
probabilities only if /t and the macrovariable f work in tandem to guarantee that at
least one of these conditions is satisfied. These conditions limit the scope of GSM in
determining fluctuations because both conditions are strong and their satisfaction
cannot be taken for granted.

Let us now look at BSM and first focus on the masking condition to explain, from
the perspective of BSM, why the fluctuation probabilities of equation 5 turn out to
be right. The starting point here is to consider the fluctuations that arise in the same
system when we observe its behaviour over time. This amounts to tracking a system
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over an infinite period of time when the system starts in a particular initial condition
and its state evolves under the dynamics of the system. If the masking condition
holds, either the system can access all parts of X or the proportion of states for which
f assumes a particular value is the same in each invariant subset of X. This immedi-
ately implies from a Boltzmannian perspective that the fluctuations that arise in the
same system over an infinite period of time are equal to the probabilities assigned to
the fluctuations by the measure q, i.e., equation 5 holds. In particular, assume that a
system spends, say, b of its time in a certain macrostate for which the function f
assumes the value F0. For this macrostate the magnitude of the fluctuation away
from the phase average is jF0 � hf ij. Assume d0 is the interval that consists only of
jF0 � hf ij. The probability pðd0Þ must then be b.

Let us now focus on the second case of f-independence and explain from the per-
spective of BSM why the fluctuation probabilities of equation 5 turn out to be right.
Consider again a system and an observable f with a finite number of macrostates.
Then suppose that the dynamics of the system is such that for two points of time t1

and t2 that are sufficiently far apart f-independence is satisfied, i.e. the probability of
finding a specific value of f in the two measurements are approximately independent
of each other. Then it immediately follows from the Boltzmannian perspective that,
given a specific macrovalue at t1, the probability of finding the system in a macro-
value at t2 is given by the probability measure q, i.e., equation 5 holds. In particular,
assume that the measure assigns b to a certain macrostate for which the function f
assumes the value F0. For this macrostate the magnitude of the fluctuations away
from the phase average is jF0 � hf ij. Assume d0 is the interval that consists only of
jF0 � hf ij. Then, given that the system was in a certain macrostate at t1 the probabil-
ity of obtaining the fluctuation d0 at t2 is given by the probability pðd0Þ and is b.

In sum, we have seen that GSM can be used as an effective theory if the macro-
variable satisfies the Khinchin condition, or if the system satisfies either the masking
condition and the f-independence condition. As noted previously, these are sufficient
but not necessary, and so there can be other conditions under which GSM can be
used as an effective theory.

As noted in Section 2, there is an alternative interpretation of GSM that does
not include AP. On such an interpretation the theoretical core of GSM contains
only q, while Equation 3, the mechanical averaging equation, has the status of a
pragmatic rule that is adopted only when it provides correct results. When this equa-
tion fails, GSM is simply silent about the correct equilibrium values. This move
immunises GSM against arriving at calculations that disagree with the calcula-
tions of BSM, but it does so at the cost of further restricting the scope of GSM.
This is not per se objectionable, but it changes nothing fundamentally in our argu-
ment. On this alternative interpretation GSM is an still an effective theory with a
limited range of applicability (and the limits are identical to the limits of the stan-
dard interpretation). The only difference is that in cases where GSM would dis-
agree with BSM, it is now seen not as giving wrong results but as it providing no
results at all.17
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5 . R E V E R B E R A T I O N S
Classifying GSM as an effective theory is not merely physical botany for the consola-
tion of those interested in labels. It has far-reaching consequences for foundational
debates. If we understand GSM as an effective theory, this implies that GSM does
not address foundational questions and that such questions should not be discussed
in that theory. The relevant question to ask about GSM is: under what conditions
does it provide accurate results? Asking whether GSM provides a correct fundamen-
tal description of the world, or, if the answer to this question is negative, trying to re-
vise GSM so that it does provide such a description, is a mistaken endeavour.
Effective theories do not offer fundamental descriptions; they are calculatory devices
of instrumental value; no more and no less.

This has profound implications for nonequilibrium SM. Consider the approach to
equilibrium. It is a well-known problem that the Gibbs entropy is a constant of mo-
tion, which undercuts attempts to describe the approach to equilibrium as a process
of increasing entropy.18 This sparked an entire research programme aiming to revise
GSM in such a way that the Gibbs entropy increases over time. Coarse-graining com-
bined with a mixing dynamics, interventionism, and attempts to redefine Gibbsian
equilibrium in a way that avoids reference to stationary distributions are but the
most prominent proposals in that programme.19 For those who regard GSM as an ef-
fective theory such attempts get started on the wrong foot. If the Gibbs entropy does
not change over time, we should conclude that GSM does not offer an effective de-
scription of nonequilibrium processes and limit its range of applicability to equilib-
rium situations rather than trying to turn GSM into a correct description of
nonequilibrium processes. Such a programme would be justified only if it turned
GSM into an effective theory of nonequilibrium processes. But at least so far this has
not happened. Nonequilibrium versions of GSM are not effective nonequilibrium
theories. Not only do they not offer manageable algorithms to compute outcomes
(thereby violating Wells’s first criterion); they often also are not empirically adequate
(spin echo experiments are a case in point). Unless there is a clear instrumental up-
shot, the effort to turn the Gibbs entropy into a nonconserved quantity is an ill-
motivated project.

Foundational questions concerning GSM remain valid when they concern the em-
pirical adequacy of the theory or its connection to the fundamental theory, BSM. An
example of such a question is the one we addressed in the previous section, namely
under what circumstances Gibbsian phase averages and Boltzmannian equilibrium val-
ues coincide. Another is the problem of the justification of maximum-entropy meth-
ods. In many applications one does not first write down the fundamental dynamics
and then derive the invariant outcome measure from that dynamics. What happens is
rather the opposite: one first postulates the outcome measure and then narrows down
the class of dynamical laws to the ones that are such that the postulated measure turns
out to be invariant (for instance, to ergodic motions in the deterministic case or irre-
ducible Markov chains in the stochastic case). The choice of the outcome distribution
is often guided by maximum entropy considerations, and there is a legitimate question
why these considerations work. For want of space we cannot pursue this question
here and refer the reader to Uffink (1995, 1996) for a discussion.
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6 . C O N C L U S I O N
We argued that the schism between the Boltzmannian and the Gibbsian approaches
in SM is resolved by recognising that they are not theories on equal footing. While
BSM is a fundamental theory, GSM is an effective theory. We presented an account
of effective theories and showed that GSM matches the relevant criteria. Effective
theories have a limited range of application, which raises the question under what
condition GSM yields correct results. We point out that this can happen under dif-
ferent conditions and discuss two of them explicitly, namely the Khinchin condition
and the fluctuations account together with the condition that fluctuations satisfy cer-
tain additional requirements. These conditions are individually sufficient but not nec-
essary, and other sufficient conditions exist. There currently is no complete list of
such conditions and so there are open questions, first, about what other conditions
there are to ensure the correctness of Gibbsian results and, second, whether there is
complete list of such conditions. Finally, we argued that recognising GSM as an ef-
fective theory has clear implications for foundational debates. For instance, if GSM is
recognised as an effective theory, programmes that aim to extend GSM to cover non-
equilibrium cases seem unmotivated.20

N O T E S
1. Two examples illustrate this attitude. Isihara (1971) introduces the Gibbs formalism in a chapter called

“principles of statistical mechanics” and the first chapter of Landau and Lifshitz’s (1980) canonical intro-
duction, entitled “the fundamental principles of statistical physics,” is dedicated entirely to a discussion of
the Gibbs formalism.

2. See, for instance, Davey (2009, 566–67) and Wallace (2015, 289). Arguments for special cases are given
in Lavis (2005).

3. Statements of these relevant definitions and results can be found in Werndl and Frigg (2017).
4. See Dizadji-Bahmani (2011) for a discussion.
5. Throughout this introduction we aim to keep the technical apparatus to a necessary minimum. Rigorous

statements of the relevant definitions and results, as well as further references, can be found in Werndl
and Frigg (2015; 2019b).

6. Defining macrostates through exact values is an idealisation and in reality macrostates will be defined
through certain ranges of values. Nothing in what follows depends on this.

7. For a discussion of alternative definitions see Werndl and Frigg (2015). Those who are familiar with a
definition of equilibrium in terms of Boltzmann’s combinatorial argument—as introduced, for instance,
in Albert (2000)—can rest assured that the two definitions single out the same equilibrium state in cases
where combinatorial considerations apply.

8. An alternative reading takes ‘most of the time’ to refer to the fact that the model spends more time in
the equilibrium state than in any other state, which leads to a different definition of equilibrium.
Boltzmannian equilibrium macrostates need not be unique in that a system can have two (or even more)
equilibrium macrostates if it spends equal amounts of time in each of them and if these residence times
are longer than the residence time for all other macrostates. For details see Werndl and Frigg (2015)

9. In Gibbs’s (1902) original presentation qðxÞ is glossed as representing an ensemble, an infinite collection
of independent systems that are all governed by the same laws of motion but are in different states.
Alternative presentations endeavour to avoid reference to ensembles and regard GSM simply as probabil-
istic algorithm. What follows does not depend on how interpretational issues are settled and so we set
this question aside. Different interpretations of GSM are discussed in Frigg and Werndl (2019).

10. The microcanonical distribution is a constant distribution on the system’s energy hypersurface H(x) ¼
E, and the canonical distribution is given by e�HðxÞ=kT=fT , where H is the system’s Hamiltonian, T is the
temperature, k is the Boltzmann constant, and fT is the so-called partition function. For a review of differ-
ent strategies of justifying the choice of these distributions see Myrvold (2016).

11. For an extensive discussion of this principle see Werndl and Frigg (2019a) and references therein.
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12. The qualification ‘mechanical’ indicates that the principle connects two mechanical quantities, namely
equilibrium values in BSM and GSM.

13. Notions of this kind are sometimes considered in attempts to justify the Gibbsian formalism, but they
are not part of the formalism itself. For a discussion of justificatory endeavours see, for instance, Sklar
(1993).

14. The system’s Hamiltonian is used in formulating the most common Gibbsian distributions. But a
Hamiltonian by itself does not pin down the system’s dynamics; it specifies a system’s time evolution
only when combined with an equation of motion. The same Hamiltonian can give rise to a deterministic
time evolution when plugged into Hamilton’s equations of motion, or to a stochastic time evolution
when used in the formulation of a stochastic process. If we allow for the substitution of classical variables
by self-adjoint operators, we can also plug the same Hamiltonian into the Schrödinger equation and
thereby generate a quantum time evolution. The differences between these different time evolutions is
not reflected in the Gibbs formalism.

15. If /t is ergodic, then BSM readily yields results. But ergodic systems are few and far between, and it is of-
ten difficult to determine whether or not a given dynamical law is ergodic.

16. The name of the condition is owed to the fact that Khinchin (1949) instigated a systematic study of func-
tions that satisfy strong symmetry requirements and therefore have small fluctuations for systems with a
large number of constituents. The condition comes in two version. Here we discuss only the first version,
which is appealed to in Wallace (2015, 289), Lavis (2005, 267–68), Malament and Zabell (1980, 344–
45), and Vranas (1998, 693). The second version originates in Ehrenfest and Ehrenfest-Afanassjewa
(1959, 46–52); for a discussion see Werndl and Frigg (2019c).

17. Furthermore, as argued in Frigg and Werndl (2019), there is no single reasonable interpretation of
Gibbs that can make sense of all the successful applications of Gibbs. Reasonable interpretations of
Gibbs such as the fluctuation account can always only explain some of the applications of GSM. That
there is no single reasonable interpretation of Gibbs that can account for all successful applications of
GSM further strenghtens the view that GSM is an effective theory.

18. The Gibbs entropy is defined as
Ð

Xq lnðqÞdx.
19. For a review and discussion of these proposals see Frigg (2008), Sklar (1993), and Uffink (2007).
20. We would like to thank Gordon Belot for inviting us to participate in this project and for his helpful feed-

back on an earlier version of the paper. In the process of researching this paper we benefited from discus-
sions with Jeremy Butterfield, David Lavis, Stephan Hartmann, Wayne Myrvold, Patricia Palacios, Jos
Uffink, and Giovanni Valente, and we would like to thank them for sharing their insights with us.
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