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a b s t r a c t

I give a fairly systematic and thorough presentation of the case for regarding black holes as thermody-
namic systems in the fullest sense, aimed at readers with some familiarity with thermodynamics,
quantum mechanics and general relativity but not presuming advanced knowledge of quantum gravity. I
pay particular attention to (i) the availability in classical black hole thermodynamics of a well-defined
notion of adiabatic intervention; (ii) the power of the membrane paradigm to make black hole ther-
modynamics precise and to extend it to local-equilibrium contexts; (iii) the central role of Hawking
radiation in permitting black holes to be in thermal contact with one another; (iv) the wide range of
routes by which Hawking radiation can be derived and its back-reaction on the black hole calculated; (v)
the interpretation of Hawking radiation close to the black hole as a gravitationally bound thermal at-
mosphere. In an appendix I discuss recent criticisms of black hole thermodynamics by Dougherty and
Callender. This paper confines its attention to the thermodynamics of black holes; a sequel will consider
their statistical mechanics.

© 2018 Published by Elsevier Ltd.
1. Introduction

Black hole thermodynamics (BHT) is perhaps the most striking
and unexpected development in the theoretical physics of the last
forty years. It combines the three main areas of ‘fundamental’
theoretical physics d quantum theory, general relativity, and
thermal physics d and it offers a conceptual testing ground for
quantum gravity that might be the nearest that field has to
experimental evidence. Yet BHT itself relies almost entirely on
theoretical arguments, and its most celebrated result d Hawking's
argument that black holes emit radiationd has no direct empirical
support and little prospect of getting any. So to outsiders d to
physicists in other disciplines, or to philosophers of science d the
community's confidence in BHT can seem surprising, or even sus-
picious. Can we really be so confident of anything without any
grounding in observation?

In this article, and its sequel, I want to lay out as carefully and
thoroughly as I can the theoretical evidence for BHT. It is written
with the zeal of the convert: I began this project sharing at least
some of the outsiders' skepticism, and became persuaded that the
evidence is enormously strong both that black holes are
thermodynamical systems in the fullest sense of the word, and that
their thermodynamic behaviour has a statistical-mechanical un-
derpinning in quantum gravity (and, as a consequence, that black
hole evaporation is a unitary process not different in kind from the
cooling of other hot systems, and that it involves no fundamental
loss of information).

There are of course many reviews of this material. But those I
know either (i) take for granted the main results of BHT, moving
quickly over established material to get students up to speed with
the research frontier; (ii) are explicitly historical, which illuminates
how the community in fact came to accept BHT but can obscure the
logic of whether and why they should have accepted it, or (iii) are
written at a very high level of mathematical rigor, so high that a
large fraction of the literature has to be omitted. I hope this paper
will be complementary to extant material. With few exceptions, I
present and describe results without going into the details of their
derivation, and the student who wishes to properly understand the
topic will need to read this paper in parallel with some of the extant
review literature. My starting points (for this part of the paper)
were Harlow (2016), Jacobson (1996, 2005), Thorne, Price, and
Macdonald (1986), and Wald (1994, 2001).

A note on mathematical rigor: the tendency in foundational
work on this subject (see, e. g., Belot, Earman, and Ruetsche (1999)
and Earman (2011)) has been to work at the level of rigor typical in
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1 Many presentations introduce the notion of “heat” as a primitive, and define
adiabatic processes as those that do not involve heat transfer; I do not do so here
because it is convenient for BHT to treat heat as a derived quantity.
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mathematical physics, where all results are stated exactly and
proved rigorously. This is much higher than the standard in theo-
retical physics more generally; it has the advantage of reliability,
but the disadvantage that a very large fraction of the literature must
be elided d especially in a frontier area like this, where the un-
derlying physical principles are unclear and the mathematical
framework partial and under active development. And the case for
BHT d as will become apparent throughout this paper and, even
more so, its sequel d rests not so much on individual results that
have been establishedwith full precision and rigor, but on themany
independent calculations with different premises and approxima-
tion schemes that all lead to the same result. So this paper is written
at the theoretical-physics level; I hope that readers who prefer their
mathematics more precise will at least get a sense as to why the
community takes BHT so seriously, even if they are not persuaded
themselves.

This is a large topic, too large for any one paper. In this paper I
confine my attention to phenomenological thermodynamics,
setting aside any considerations of statistical-mechanical un-
derpinnings for that thermodynamics. InWallace (2017a) I consider
the progress made in calculating the thermodynamical properties
of black holes via statistical mechanics (in effective-field theory
quantum gravity, in string theory, and via the AdS/CFT correspon-
dence). And in Wallace (2017c) I use these two papers as a starting
point to review and assess the notorious information-loss paradox
which has motivated a large part of the critical attention paid to
BHT.

The structure of the paper is as follows. I begin in section 2 by
briefly reviewing classical thermodynamics, and discussing how it
is modified for self-gravitating systems: to see whether black holes
are thermodynamical, we need to be clear what thermodynamics is
in the first place. In section 3 I consider classical black hole ther-
modynamics, arguing that while black holes offer a strikingly good
realisation of the principles of thermodynamics when regarded as
isolated systems, they completely fail to do so when considered as
components of a larger system. In section 4 I show how including
the implications of quantum field theory, in particular (though not
exclusively) the Hawking effect, entirely remove this limitation; I
also review the strength of the evidence for the Hawking effect
itself, and the related but logically stronger claim that Hawking
radiation leads to black hole evaporation. In an appendix, I address
the arguments of a recent paper by Dougherty and Callender (2016)
which criticises BHT (that paper was one trigger for my writing this
paper, but engaging with its arguments in the main text would
complicate my structure unhelpfully).

Readers familiar with extant debates on black hole thermody-
namics may be surprised that in this paper I make virtually no
mention of Bekenstein's classic argument (Bekenstein, 1973) for
black hole entropy on the grounds of information. Partly this is
because this paper is confined to phenomenological thermody-
namics, and the relation of information to thermodynamics is
normally made at the statistical-mechanical level. But mainly it is
just because the link between information and thermodynamics is
controversial, and so any argument for black hole thermodynamics
from considerations of information is apt to inherit that contro-
versy (recent critical takes on black hole thermodynamics by
Wuthrich (2017) and Dougherty and Callender (ibid) both rely in
one way or another on skepticism about the entropy-information
link). Since (I will argue) we can make a compelling case for BHT
and (in the sequel) black hole statistical mechanics without ever
considering information, it seems simpler to sidestep the contro-
versy. I discuss this in slightly more detail in the appendix.

I assume some familiarity with classical general relativity (in
particular the Schwarzschild solution) and classical thermody-
namics (and I quote standard results from both fields without
explicit references); a little prior exposure to quantum field theory
would also be helpful in section 4. Except where explicitly noted, I
adopt units where G ¼ Z ¼ c ¼ kB ¼ 1.
2. Thermodynamics and statistical mechanics: a brief review

Without any pretension to historical accuracy, complete preci-
sion or logical independence, we can break the salient parts of
equilibrium thermodynamics into three: equilibrium and equili-
bration; the First and Second Laws for individual systems; in-
teractions between multiple systems. (I believe the account I give
basically tracks the consensus in mainstream physics; it broadly
follows Wallace (2014, 2015).) I discuss each in turn; I then briefly
consider the generalisation of equilibrium thermodynamics to local
thermal equilibrium, and the subtleties introduced by gravitation.
For this paper I do not need, and do not discuss, the statistical-
mechanical underpinnings of thermodynamics.
2.1. Equilibrium and equilibration

A thermodynamic system has a family of equilibrium states
parametrised by the energy and by a (usually small) number of
additional conserved quantities and/or external constraints. In the
absence of external interventions, if the system is in the equilib-
rium state corresponding to its constraints and conserved quanti-
ties, it remains in that state; if it is not, it equilibrates, evolving
towards that state and reaching it, to any given degree of accuracy,
after a finite time (Brown and Uffink (2001) refer to this equili-
bration principle as the Minus First Law of Thermodynamics).

For instance, for a box of gas (of some fixed kind of particle) the
external constraint is the volume of the box, and the conserved
quantities are the energy, the number of particles, and in principle
the momentum and angular momentum. In general we assume a
nonrotating box and study it in its rest frame, and/or assume that
the box is somassive not to be affected by particle collisions, so that
momentum and angular momentum may be neglected and ‘en-
ergy’ and ‘internal energy’ can be identified; often we also take the
particle number as fixed and do not include it explicitly as a
variable.
2.2. The First and Second Laws for individual systems

Given an isolated thermodynamic system, an adiabatic trans-
formation of that system is some operation performed on the
system, starting at equilibrium, that transforms its state to another
equilibrium state without coupling it nontrivially to other ther-
modynamic systems.1 Any such transformation can be thought of as
a change to the external constraints and conserved quantities of the
system via some external force; paradigm examples include
expanding or compressing a gas, or putting a non-rotating system
into rotation. The work done by such a process is defined as the
change in the system's energy, and (by conservation of energy) is
then equal to the energy cost to the external agent.

Only some such changes are physically possible by means of
adiabatic transformations. Specifically, if the system's equilibrium
states are parameterised by energy U and conserved quantities/
external constraints Xi, there exists a function SðU;X1;…XNÞ, called
the entropy of the system (and hence defined, as far as thermody-
namics is concerned, only at equilibrium), such that S is non-
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decreasing under any adiabatic transformation. This entropy non-
decrease law is one form of the Second Law of Thermodynamics.

Adiabatic transformations can then be broken into three cate-
gories: reversible transformations, which leave S unchanged; irre-
versible transformations, which increase S, and thermodynamically
forbidden transformations, which decrease S. It is generally the case
that all reversible and irreversible transformations are physically
performable (at least in principle, and perhaps in an idealised
limiting case) so that the Second Law imposes a necessary and
sufficient condition for a transformation to be possible. In partic-
ular, if we make a very small adiabatic change to the Xi and then
wait for the system to re-equilibrate, that change will leave S un-
changed to a very high degree of accuracy. So sufficiently slow
adiabatic changes to the Xi will define processes which are very
close to being reversible, becoming exactly reversible in the
infinite-time limit. It is generally the case that such quasi-static
transformations are always available.

We can express the entropy in differential form as

dS ¼ b

 
dU þ

X
i

liXi

!
(1)

or, rearranging so that U is a function of S and the Xi,

dU ¼ TdS�
X
i

liXi (2)

where T ¼ 1=b. T is called the thermodynamic temperature and the
li are the thermodynamic variables conjugate to the Xi; they can be
given explicitly by

1
T
¼
�
vS
vU

�
Xi

li ¼ T
�
vS
vXi

�
U;Xj

(3)

or by

T ¼
�
vU
vS

�
Xi

li ¼
�
vU
vXi

�
S;Xj

: (4)

The li usually have a physical meaning: in particular, the variables
conjugate to volume, momentum, angular momentum, particle
number, and charge are, respectively, pressure, centre-of-mass
velocity, angular velocity, chemical potential, and electric potential.

Equation (2) is one form of the First Law of Thermodynamics. It
can be understood entirely statically, as a statement of the relations
between different equilibrium states. But given the existence of
quasi-static processes, we can also interpret it as describing the
actual change in U induced by small adiabatic changes Xi/Xi þ dXi
to the parameters, together with a flow of energy Q ¼ TdS into the
system from some external reservoir. FollowingWald (1994, p.141))
we can call these the equilibrium-state and physical-process in-
terpretations, respectively. Flow of energy of this kind is called heat
flow and makes sense even if the flow is not infinitesimal; conser-
vation of energy entails that the change in a system's energy equals
the heat flow into it plus thework done on it, which is another form
of the First Law.

Finally, note that at this stage of our analysis S (and, hence, T) is
fixed only up to an arbitrary rescaling: we can replace S with f ðSÞ,
for any smoothly increasing function f, and 1=T with f 0ð1=TÞ,
without affecting anything said so far.
2.3. Multiple thermodynamic systems

Much of the content of thermodynamics is only available once
we allow dynamical interactions between multiple systems. The
rules for doing so are:

1. Any two systems may be placed in thermal contact, so that heat
may flow between them while their other conserved quantities
and external parameters remain separately fixed. This can be
generalised to allow for other kinds of contact in which the two
systems can exchange other conserved quantities.

2. Multiple systems in (perhaps-generalised) thermal contact may
be treated as a single system; in particular, any such combined
system will have a unique equilibrium state.

3. The Second Law of Thermodynamics generalises to require that
the total entropy of two systems in (perhaps-generalised)
thermal contact does not decrease when those systems ex-
change energy and other conserved quantities. For this to be
well-defined, the possibility for rescaling of entropy decreases
sharply: in multiple-system contexts, entropy must be taken as
fixed up to a system-independent scale and a system-dependent
additive constant.

From (2) and (3) together, it follows that:

4. If two systems are in thermal contact, and heat dQ flows from
system 1 to system 2, the total change in entropy is
dS ¼ dQð1=T2 � 1=T1Þ. So heat will flow only if T1 > T2, and
indeed, no process can as its sole effect induce heat flow unless
this condition holds (the Clausius statement of the Second Law).
It follows that a necessary and sufficient condition for two
systems in thermal contact to be jointly at equilibrium is that
they are separately at equilibrium with equal temperatures.
(This generalises to other forms of contact.) As a consequence,
the relation ‘at equilibriumwith’ is an equivalence relation: this
is the Zeroth Law of thermodynamics, and in textbook pre-
sentations is often taken as a starting point; in my presentation,
it is a consequence of other assumptions.

5. Given a process involving an infinitesimal heat flow between
two equilibrium systems at thermodynamic temperatures T1, T2
together with work W done on the combined system, and such
that the conserved quantities and external constraints of the
two systems (other than energy) are unchanged at the end of
the process, the First Law entails that

� �

W ¼ T1DS1 þ T2DS2 ¼ T1 DS1 þ

T2
T1

DS2 : (5)

Since the Second Law entails that DS2 � �DS1, we have
W � T1DS1ð1� ðT2=T1ÞÞ: (6)

From this, we can read off that the maximum efficiency of any
cyclical process which generates work from heat flow between
the two systems is ð1� T2=T1Þ and, a fortiori, that no cyclical
process can as its sole effect convert heat flow from an equi-
librium system into work done, which is the Kelvin statement of
the Second Law. (Other processes can do better, but they do not
leave the other conserved quantities and constraints unchanged
and so cannot be performed in a cycle.)
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2.4. Local thermodynamic equilibrium

In an extended body (such as a solid, a fluid, or a field), if the rate
at which a small region of the fluid equilibrates is fast compared to
the rate at which it exchanges energy and other conserved quan-
tities with neighboring regions, the body will approach local ther-
mal equilibrium, at which we may express thermodynamic
quantities like charge, energy, entropy, temperature and pressure
as functions of position in the body. (For instance the sun, while not
at equilibrium, is at local equilibrium, so that we can describe how
temperature, pressure, entropy density and energy density vary
from the core to the atmosphere.) Various phenomenological
equations can be derived or postulated to describe the flow of
thermodynamic quantities through the system. For instance, Ohm's
Law describes how current flow in a conductor is dissipated as heat,
and the Navier-Stokes equations describe the flow of a viscous fluid
and the dissipation of organised energy as heat in that fluid. Various
transport coefficients, like electrical resistivity and viscosity, appear
in those equations, so that they cannot simply be derived from the
equation of state but require additional empirical input.
2.5. Complications of gravity

Insofar as thermodynamics is the study of systems at equilib-
rium, it has fairly few real-world applications (except black holes
themselves) to systems in which gravity is the dominant interac-
tion. Indeed, a well-known result in celestial mechanics (the grav-
othermal catastrophe (Lynden-Bell and Wood (1968); Binney and
Merrifield (1998), pp. 500e5) is a good introduction) demon-
strates that classical Newtonian systems inwhich gravity is the only
relevant form cannot reach stable equilibrium unless confined to a
sufficiently small box. The only gravity-dominated astrophysical
systems at thermal equilibrium (other than black holes them-
selves!) are degenerate-matter objects like white dwarfs and
neutron stars, where quantum effects permit stability. Ordinary
stars, for instance, are not at thermal equilibrium: there is a con-
stant flow of energy from the core to the surface, and from the
surface to interstellar space through emitted radiation; only the
presence of fusion reactions in the core to replenish that lost heat
allows stars to remain stable, until their fusion fuel is exhausted.

Nonetheless, thermodynamics can be coherently formulated for
the artificial, but well-defined, example of (relativistic or Newto-
nian) self-gravitating systems confined to a box, where the exis-
tence of long-range forces in these systems leads to important
subtleties, even before we consider black holes. Rather than discuss
the (somewhat controversial) general structure of these subtleties
(for that discussion, see Wallace (2010), Callender (2011), and ref-
erences therein), I will illustrate themwith a concrete example due
to Sorkin, Wald, and Jiu (1981): a spherical box of radiation at
thermal equilibrium, potentially large enough that self-gravitation
has a discernible effect.

The sphere is assumed to be nonrotating and at rest. Its equation
of state depends on two parameters: its radius R and its massM (for
a relativistic system, and in units where c ¼ 1, its mass and its
energy can be identified). A crucial parameter is the Schwarzschild
radius RSðMÞ ¼ 2GM=R: if R<RSðMÞ then an event horizon forms
around the sphere and it must be treated as a black hole.

As long as R[RSðMÞ, gravitating effects are fairly insignificant
and the sphere may be treated as if it were non-self-gravitating. It
then behaves as a pretty conventional thermodynamic system,
with an extensive equation of state determined by the intensive
formulae
r ¼ bT4; s ¼ 4
3
bT3 (7)

that determine the energy density r and entropy density s as
functions of the temperature. In particular, if we consider a
sequence of successively larger spheres with M=R3 held constant,
the temperature and density of each sphere likewise remain con-
stant. But for denser spheres (the transition occurs roughly around
Rx5RS) gravitational effects become highly important and the
system displays several distinctive features characteristic of
strongly self-gravitating systems (all discussed, or readily derived,
in Sorkin et al.'s paper):

1. Because spacetime is nontrivially curved within the sphere, we
cannot define the mass of the sphere simply as the integral of
the local mass-density: indeed, that integral is not even well-
defined in a coordinate-free way. Instead, the mass can
defined by using Noether's theorem (according to which energy
is the conserved quantity associated with time translation
symmetry), calculated at a distance much larger than the shell
radius at which the spacetime is approximately flat. The precise
version of this concept of mass is called the ADM mass, after
Arnowitt, Deser, andMisner (1962) (a related version, the Bondi-
Sachs mass (Bondi, 1960, Sachs, 1961, 1962), is better suited to
handle situations involving radiation but rests on the same basic
idea). If the sphere had non-trivial spatial momentum and/or
angular momentum, analogous ADM momenta and angular
momenta can also be defined, using the appropriate asymptotic
Noether symmetries.

2. The sphere becomes increasingly non-homogeneous, with the
density being much higher towards the centre of the sphere.
From this and the local equation of state (7), we can deduce that
the locally-measured temperature also increases closer to the
centre. The locally measured temperature tðrÞ at a radius r from
the centre is related to the thermodynamic temperature (given
by 1=T ¼ vS=vU) by

�1
tðrÞ ¼ aðmðrÞ; rÞ T (8)

where mðrÞ is the mass of the sphere internal to r (more
precisely: the ADMmass that the region of the sphere interior to
rwould have if it were confined to that region and the rest of the
sphere removed) and aðm; rÞ ¼ ð1� 2Gm=rÞ1=2 is the gravita-
tional redshift induced by a spherically symmetric mass m.

3. The sphere is no longer extensive in any meaningful sense:
increasing R to KR andM to K3M will not produce a qualitatively
similar sphere. Indeed, if R< � 0:254RS, the sphere becomes
unstable and undergoes gravitational collapse into a black hole.

4. The heat capacity of the sphere (i. e., the rate of change of mass
with temperature at constant radius) decreases to zero and
becomes negative, so that decreasing the energy of the sphere
actually causes it to become hotter.

Though Sorkin et al. do not discuss it, the notion of “thermal
contact” also has to be analysed with some care for these systems.
For a start, we cannot put two such spheres in thermal contact
simply by placing them adjacent to one another: their mutual
gravitation would radically alter each other's states, probably pro-
ducing gravitational collapse unless handled carefully. An inter-
mediate system is required.

As a concrete example, consider the following process for
transferring heat between two spheres with thermodynamic
temperatures T1; T2, masses M1, M2 and surface redshifts a1;a2:
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1. A box is slowly lowered to the surface of Sphere 1 from ‘infinity’
(i. e., from very far above the sphere), allowed to fill with a small
amount of radiation of local massm and temperature T1=a1, and
then slowly lifted back to infinity, requiring (Unruh & Wald,
1982) work

W1 ¼ ð1� a1Þm: (9)
2. The box is adiabatically compressed or expanded (as appro-
priate) to a temperature T2=a2, requiring additional (possibly
negative) work

� �

W2 ¼ ðT2=a2Þ

ðT1=a1Þ
� 1 m (10)

(as can be deduced from the equation of state (7)) and
changing its mass to mðT2=a2ÞðT1=a1Þ.

3. The box is slowly lowered to the surface of Sphere 2, requiring
negative work

W3 ¼ �ð1� a2Þ
ðT2=a2Þ
ðT1=a1Þ

m: (11)
2 Thanks to Erik Curiel for pointing out the short-wavelength photon case.
4. The box is then opened and the radiation released into Sphere 2;
this is adiabatic, since it has the same local temperature as
Sphere 2's surface.

The entire process is adiabatic and has the following energy
implications:

DM1 ¼ �a1m; DM2 ¼ a1mð1þ ðT2=T1ÞÞ; W ¼ W1 þW2 þW3

¼ a1mðT2=T1Þ:
(12)

This has the characteristic form of a Carnot cycle. As a corollary,
if T1 > T2, net work is extracted by the process, and we can replace
(3) by

3’. The box is slowly lowered towards the surface of Sphere 2
until the work extracted by doing so makes the whole pro-
cess work-neutral, and then released to free-fall the rest of
the way.
The new process permits heat transfer, without work

expenditure, from Sphere 1 to Sphere 2 provided T1 > T2, and
so provides a means to put the two spheres in (somewhat
indirect) thermal contact.

In many examples of self-gravitating bodies, there is another
way to put two bodies into thermal contact: seal them both into a
very large box with reflecting walls, andwait. If one or other body is
above absolute zero, it will emit electromagnetic radiation; in due
course, the box will fill with radiation in local thermal equilibrium.
Each body is in thermal contact with the radiation and so, indi-
rectly, with the other body. This is an effectiveway (in principle and
in thought, not in engineering practice!) to, for instance, place two
neutron stars or white dwarfs into thermal contact. It is not really
an option for our radiation spheres, because they are themselves
comprised of thermal radiation so the breakdown into subsystems
would not be well-defined.
3. Classical black hole thermodynamics

We can now consider whether, and to what extent, these ther-
modynamic notions apply to black holes and systems of black holes.
In this section I consider only ‘classical’ black holes, by which I
mean: black holes, if we neglect or imagine away any quantum-
field-theoretic effects: in particular, any matter fields present will
be treated phenomenologically and classically. For clarity, I do not
mean “black holes, under the fiction that the world is exactly
classical”: I'm not sure that is even well-defined (though see Curiel
(2014)) but in any case it presumably would not include thermal
radiation, which can be treated phenomenologically as a classical
fluid but whose derivation via statistical mechanics requires
quantum theory.

3.1. Black holes as objects

The basic idea of BHT is that black holes are thermodynamic
systems, and that a particular subclass of black holes (the stationary
black holes) are the equilibrium states of those systems. But from
the starting point of general relativity, it is hard to see how this is
even coherent: in that context, a “black hole” is identified globally
as a region of spacetime from which null geodesics cannot reach
future infinity (see, e. g., Hawking and Ellis (1973)). A spacetime
region cannot itself change in time, so the notions of ‘equilibrium’

or ‘equilibration’ don't obviously make sense under this definition.
But the relativist's concept of a black hole is not the only one

extant in physics. Astrophysicists have long spoken of black holes as
objects which persist through time and whose properties change in
time: any talk of black holes orbiting one another, or of two black
holesmerging to form a larger hole, or of the velocity of a black hole
relative to another astrophysical object, seems to require a three-
dimensional view of black holes as objects, in tension with the
spacetime-region view natural in theoretical relativity.

The membrane paradigm of Macdonald, Price and Thorne,
developed in detail in the astrophysical context in Thorne et al.
(1986) and adapted for the quantum theory of black holes by
Susskind, Thorlacius, and Uglum (1993), addresses just this prob-
lem. Thorne et al. consider a timelike surfaced the ‘membrane’, or
‘stretched horizon’ d that is placed around the true event horizon,
at a very small proper distance from the true horizon. Thorne et al.
give the stretched horizon an area ð1þ aÞ2 times that of the true
horizon, where a is some positive real number≪1; more useful for
foundational purposes is Susskind et al.'s convention (which I adopt
henceforth), giving the horizon an area one Planck area larger than
that of the true horizon.

The defining property of the event horizon, physically, is that
nothing can emerge from it, and so in particular nothing can enter it
and later return. But (in an admittedly somewhat heuristic sense),
the stretched horizon is so close to the true horizon that virtually
nothing can cross the stretched horizon and return, because doing
so would require extremely high accelerations (for timelike bodies
dropped into the hole) or extremely short wavelengths (for pho-
tons, or extremely relativistic massive particles, on trajectories that
pass between the stretched and true horizon) d indeed, under
Susskind et al.'s convention, it would require accelerations so high,
and/or wavelengths so short, as to require Planck-scale physics to
describe.2 So as long as we are dealing with energy levels well
below the Planck scale, the stretched horizon may be treated as a
one-way barrier just as can the true horizon.

On the other hand, the stretched horizon is an ordinary timelike
surface; it can be treated as a two-dimensional closed surface in
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space that evolves through time, and so can be attributed
potentially-time-dependent physical properties. And with its aid,
we can then restate the goal of black hole thermodynamics as
follows: to investigate the extent towhich the stretched horizons of
black holes can be treated as ordinary physical systems, and
assigned mechanical, electromagnetic, and thermodynamic prop-
erties, from the point of view of any observers who remain outside
the black holed or, to put it in less operational terms, the extent to
which we can give a self-contained account of physics in the region
of spacetime exterior to any black holes in terms of stretched ho-
rizons to which such properties are assigned.
3.2. Equilibrium and equilibration for black holes

Thermodynamics describes equilibrium systems in terms of
their conserved quantities and external constraints. There are no
real external constraints applicable to a black hole, but there are
quantities which we would expect to be conserved: the energy,
momentum and angular momentum of the hole (defined asymp-
totically by the ADMmethod) and its electrical charge. In each case
these quantities are associated to long-range forces (gravity for the
quantities associated to spacetime symmetries; electromagnetism
for charge), as these forces ensure that matter bearing the
conserved quantity will leave an asymptotic trace on the spacetime
even once it crosses the stretched horizon. (Conserved quantities
like baryon number, by contrast, cannot be expected to show up in
the physics of the black hole exterior, since the long-range physics
will be indifferent as to whether a particle that crosses the horizon
is, say, a neutron rather than an anti-neutron.) By working in a
reference frame at which the black hole is at rest and its angular
momentum is aligned along the z axis (again, using the ADM
charges to define this rigorously) we reduce the conserved quan-
tities to three: the black hole's mass M, the magnitude J of its
angular momentum, and its charge Q. So if black holes have equi-
librium states, we would expect the space of such states to be
parametrised by these three quantities.

The definition of an ‘equilibrium’ state is that it is unchanging in
time, and general relativity offers a clear way to represent this: we
look for stationary solutions of the Einstein field equations, that is:
solutions with a timelike Killing vector. Such solutions certainly
exist for general M; J;Q: the Kerr-Newman solutions to the coupled
equations of general relativity and vacuum electromagnetism (aka
Einstein-Maxwell theory) are stationary and parametrised pre-
cisely by mass, angular momentum and charge. When Q ¼ 0, these
solutions reduce to the Kerr solutions of vacuum general relativity;
when J ¼ 0, to the spherically-symmetric Reissner-Nordstrom so-
lutions of the Einstein-Maxwell theory; when both are zero, to the
well-known Schwarzschild solution. The Kerr-Newman solution
only describes a black hole when Q2 þ J2=M2 � M2, with solutions
violating this inequality describing naked singularities; black holes
that saturate the inequality are called extremal, and are a somewhat
puzzling special case (one that has been of considerable importance
in quantum gravity, as I discuss in the sequel to this paper).

The 1970s saw extensive work by Bardeen, Carter, Hawking,
Israel and many others to prove the “No-Hair Conjecture”: that the
Kerr-Newman black holes are the unique stationary solutions to the
Einstein-Maxwell theory, and so provide unique equilibria. To this
day there remain loose ends in the conjecture and in its extension
to more general situations in higher spacetime dimensions and
with other long-range forces present, but in his review article in the
Einstein Centenary Survey Carter (1979) felt able to say that

the no-hair theorems available … are quite sufficient to justify
d with at least the degree of rigour usually considered
acceptable in physics d the assumption by any practically
minded astrophysical theorist that any (external source free)
black hole equilibrium-state solution … belongs to the Kerr or
Kerr-Newman families”.

(See Carter's review article for detailed references and for a sum-
mary of the main results; see also Carter (1997) for some historical
remarks and Chrusciel and Costa (2008) for a fairly up-to-date
survey.)

Of course, thermodynamic equilibrium requires more than mere
stationarity: it requires non-equilibrium systems to converge to
equilibrium, and in particular, perturbations of equilibrium states
to be damped back down to equilibrium. The stability of black
holes, and the convergence to equilibrium of non-stationary black
holes, has been extensively studied both analytically and numeri-
cally. By the mid-1980s (see chapters VI-VII of Thorne et al. (1986),
and references therein) it was established that perturbations of the
stretched horizon by external gravitating bodies are damped away
(for instance, the stretched horizon can oscillate, but these oscil-
lations are damped, dying away back to equilibrium via the emis-
sion of gravity waves). Computer simulations of colliding black
holes, and accretion of matter onto black holes, likewise demon-
strate that the system evolves rapidly to the equilibrium-black-hole
configuration, decaying by the emission of gravity waves (‘ring-
down’). And the historic observation of gravity waves in 2016 by the
LIGO observatory (Abbott and Collaboration) 2016) provided a
remarkably precise fit to the quantitative ringdown predictions,
and so can reasonably be said to provide (ongoing) observational
support for black hole equilibration.

In summary: we have both a clear understanding of what the
black hole equilibria are, and a pretty good grasp on why they are
indeed equilibria: at the least, I think it would be hard to argue that
we have any better theoretical control of how paradigm ‘normal’
thermodynamical systems, like dilute gases, approach and remain
at equilibrium. So far, black holes fully fit the requirements to count
as thermodynamic systems.
3.3. The laws of black hole thermodynamics

To treat a black hole as a thermodynamic system requires us to
identify external interventions, and to divide them into adiabatic
changes and heat flows. The former is fairly straightforward: to
move a black hole from one equilibrium state to another is going to
require us to change its mass, angular momentum or charge, and
the simplest way to do that is to drop matter into it. The latter is
more delicate, since the division between ‘heat’ and ‘work’ is less
obvious in an alien situation like this than for a box of gas. The
simplest thing to do (in this case as in other less-familiar cases in
‘regular’ thermodynamics) is to identify which transformations are
reversible and which irreversible, and then define the quasi-static
adiabatic processes as the reversible ones.

Christodolou and Ruffini demonstrated (Christodolou and
Ruffini (1971); see Misner, Thorne, and Wheeler (1973, pp.
907e913) for a discussion) that the quantity that plays the role of
entropy for a black hole (at least for infinitesimal changes) is sur-
face area (which, for an equilibrium black hole, is given by a known
function of M, J and Q): any intervention on an equilibrium black
hole must leave the surface area nondecreasing, so that the
reversible processes are those that leave surface area invariant and
the irreversible processes strictly increase area. Reversible trans-
formations of J and Q can be brought about as follows:

� To reversibly change the charge of a charged black hole, lower
some charged matter very slowly on a cord so that it is sus-
pended, stationary, just above the event horizon; then let go.
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� To reversibly increase the angularmomentum of a rotating black
hole, fire some mass at it on a trajectory which just brushes the
event horizon.

� To reversibly decrease the angular momentum of a rotating
black hole, use the Penrose process (Penrose (1969), Penrose and
Floyd (1971); see Carroll (2003, pp. 267e271) for an introduc-
tion): fall freely towards the black hole on a trajectory that
passes just above the event horizon, and at point of closest
approach, eject some mass into the black hole on a trajectory
opposite to the direction of rotation of the hole.

Dropping charge into a black hole from finite height, or injecting
mass on a non-brushing trajectory, or using the Penrose process on
a higher trajectory, will in each case be irreversible, bringing about
an increase in surface area.

Hawking's area theorem (Hawking, 1972) generalises Cristodo-
lou and Ruffini's result beyond infinitesimal changes: Hawking
proved that the area of any black hole is nondecreasing. His deri-
vation presumes

1. that physics in the exterior of the black hole remains predictable
(that is, roughly: assuming that no naked singularities form; see
Wald (1994, pp.138e9) for a more precise discussion);

2. the null energy condition: that the stress-energy tensor T satisfies
Tðv; vÞ � 0 for any null v. This is violated in some exotic
quantum-field-theoretic situations (of which more later) but
seems a safe assumption for bulk matter, such as electromag-
netic radiation and astrophysical fluids.

3. the Einstein field equations, which translate the null energy
condition into a condition on the Einstein tensor. (Once that
translation is made, the area theorem is purely a result in dif-
ferential geometry, with no additional dynamical input.)

Bardeen, Carter, and Hawking (1973) christened the Area The-
orem the “Second Law of black hole thermodynamics”; in fact, it
goes rather beyond the entropy-increase form of the standard
Second Law, since black hole surface area remains well-defined
even when a black hole is far from equilibrium, whereas thermo-
dynamic entropy is defined only at equilibrium.

In the same paper, Bardeen et al. also established the “First Law
of black hole thermodynamics” which states that

dM ¼ 1
8p

kdA� UdJ � FdQ (13)

where k is the surface gravity of the black hole, A its surface area, U
its angular velocity, and F the electric potential on its surface. This
is precisely the form of the standard First Law for a thermodynamic
system where angular momentum and charge are conserved
quantities, including the identification of the conjugates to J and Q
as, respectively, angular velocity and electric potential. It permits us
to identify the thermodynamic temperature of the hole as pro-
portional to the surface gravity d albeit, as long as we are
considering a system in isolation, we have only identified entropy
up to a monotonic function. Furthermore, we can independently
prove the ‘physical-process’ and ‘equilibrium-state’ versions of the
First Law distinguished by Wald (recall the discussion in section
2.2), demonstrating that the overall structure of interventions on
the black hole is self-consistent and fits the model of equilibrium
thermodynamics.
3.4. Beyond Einstein's equation

Bardeen et al.'s derivation of the laws of Black Hole thermody-
namics presupposed the Einstein field equations; however, as Wald
and collaborators have shown (Wald (1993); see Wald (1994,
pp.143e147) for an introduction and further references, and
Jacobson andMohd (2015) for more recent developments), the First
Law (in both physical-process and equilibrium-state form) can be
derived from a general diffeomorphism-invariant Lagrangian the-
ory of gravity by identifying the entropy as (a form of) the Noether
charge associated with the diffeomorphism symmetry, evaluated
with respect to a vector field that coincides on the horizonwith the
horizon Killing vector.

So far as I know there is no fully general non-decrease theorem
for this generalised black hole entropy of the same scope of
Hawking's area theorem, but Jacobson, Kang, and Myers (1995)
have demonstrated that this generalised definition of entropy is
nondecreasing under at least quasi-stationary processes, provided
that the null energy condition is satisfied; they also prove the
analog of Hawking's result for a large class of generalisations of the
Einstein Lagrangian.

The physical reason for caring about this generalisation lies in
the effective-field-theory program in contemporary particle phys-
ics. From that perspective, general relativity is thought of as a non-
renormalisable effective field theory, regularised by a cutoff
imposed by unknown Planck-level physics. In such a theory, all
possible diffeomorphism-covariant action terms should be present;
the Einstein-Hilbert action is just the leading-order term in an
infinite expansion of the Lagrangian in these various terms. So the
fact that black hole thermodynamics extends so naturally beyond
the Einstein-Hilbert case is reassuring for the physical applicability
of the theory.

3.5. Local properties of the stretched horizon

The stretched horizon of a black hole is, it seems, a purely
fictional entity, invisible to anyone falling through it and corre-
sponding to no locally-present distribution of charge or energy. It is
therefore frankly startling that it can be treated not simply as a
formal device to make sense of black hole thermodynamics (as I
used it above) but as an actual extended physical systemwith local
thermodynamic properties.

To expand: as discussed in extenso in Thorne et al. (1986) and
references therein, we can treat the stretched horizon as a two-
dimensional, electrically-conducting, viscous fluid, assigning to
each infinitesimal part of its surface the exact charge, current, and
stress-energy densities required to terminate the electromagnetic
and gravitational field lines on its exterior. This assignment is
arguably fictional since an observer freely falling through the ho-
rizon will not encounter these charges or energies, but from the
point of view of physics outside the stretched horizon they are
entirely real. To give some examples (many more can be found in
Thorne et al.):

1. If a positively charged particle falls towards the North pole of an
uncharged black hole, its field will induce a current flow of
negative charge towards the north pole, which will become
negatively charged; the South pole, opposite the direction of
approach of the falling particle, will become positively charged.
By applying the law of Ohmic dissipation to this current flow
(the black hole's surface resistivity is � 377U) we deduce that
heat will be dissipated in this process so that the black hole area
increases. When the charged particle reaches the surface, cur-
rent will flow back until the charge density on the surface is
constant, dissipatingmore heat. Any region of charge excess will
spread out exponentially so that the time for an initially non-
equilibrium charge distribution to equilibrate is
teq ¼� M logM in Planck units, or in more astrophysically
useful units
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teq � 4:9� 10�6
�

M
M1

�
ðlogðM=M1Þ þ 87:4Þseconds (14)

(M1 ¼ 1:99� 1030kg is the mass of the Sun). Only in the limit
where the charge is lowered infinitely slowly to the surface will the
current flow be so slow, and the readjustment of charge across the
surface so complete, that no heat is dissipated; this is the reversible
process described previously. (Znajek, 1978; Damour, 1978;
Macdonald & Suen, 1985; Thorne, Price, and Macdonald 1986, pp.
35e38,57e64.).

2. If an electrically neutral black hole rotates in an asymptotically
constant magnetic field at right angles to its axis of rotation,
eddy currents will be induced in the horizon. The magnetic field
will exert a torque on the black hole via these currents, which
will slow its rotation while also dissipating heat through elec-
trical resistance. The result is that the rotational energy of the
black hole will be dissipated as heat, slowing the black hole's
rotation and increasing its area; the overall energy of the black
hole remains conserved: that is, no energy is extracted from the
static magnetic field in this process (Thorne&Macdonald, 1982;
Thorne, Price, and Macdonald, 1986, pp. 102e106).

3. If a black hole rotates in the tidal field of a larger gravitating
body, the surface of the hole will be perturbed; this in turn
produces viscous dissipation and corresponding viscous torque
on the black hole in accord with the Navier-Stokes equation,
dissipating heat and slowing the rotation of the hole (Hawking
& Hartle, 1972; Hartle, 1973, 1974; Thorne, Price, and
Macdonald, 1986, pp. 252e255.).
Also part of the local thermodynamics of black holes is the so-

called Zeroth law of black hole thermodynamics (Bardeen et al.,
1973), which states that the temperature of a black hole is
constant everywhere on the horizon. In ordinary thermody-
namics, the analogous result d that for a body at equilibrium,
the local temperature is constantd is more naturally thought of
as a corollary of the Zeroth Law applied to the local-thermal-
equilibrium context.
3.6. No thermal contact for classical black holes

So far as we treat each black hole as an isolated system, the
resemblance to a thermodynamic system seems pretty complete:
black holes have notions of equilibrium and equilibration, revers-
ibility and irreversibility, and local thermodynamic properties. But
the resemblance terminates abruptly d at least as far as classical
black holes are concerned d as soon as we try to consider them as
thermodynamic systems interacting with other black holes, or with
non-black-hole thermodynamic systems.

Specifically: there seems to be no available process that can
reduce the entropy of one black hole and increase that of another
(or of a non-black hole thermodynamic system), even if the total
entropy is increasing. To the contrary, the analysis of reversible and
irreversible processes above applied to each hole separately. Like-
wise, Hawking's area theorem applies separately to each connected
component of a spacetime's event horizon, and so mandates not
just that the total entropy of a system of black holes is nonde-
creasing but that the entropy of each black hole is separately
nondecreasing. As a corollary, there seems no prospect of running a
Carnot cycle between two black holes, and no prospect of allowing
heat to flow from one hole to another. Likewise, there seems noway
to make sense of heat flow from a black hole, to any other ther-
modynamic system. The nearest we can get is to allow two black
holes to ‘interact’ by colliding, in which case the area theorem
guarantees that the new black hole has a larger entropy than its
constituents, but this is a pale shadow of genuine thermal contact.

In particular, classical black holes are completely black in the
sense that they omit no thermal radiation. This means that a black
hole placed in thermal contact with another body by the method of
putting both in a box and letting it fill with radiationwill simply eat
all the radiation, however low its temperature. The only tempera-
ture that we seem consistently able to attribute to a classical black
hole is then absolute zero.

These limitations are aggravated by Bekenstein's (1973) obser-
vation that identifying black hole area with entropy also provides
opportunities to violate the Second Law of thermodynamics unless
we place some constraints on the form of the energy-entropy
relation for ordinary matter d constraints that do not seem well
motivated within classical physics. Specifically:

� If some body of small mass m and entropy s is slowly lowered
right to the event horizon and then released (the so-called
‘Geroch process’, proposed by Robert Geroch during a 1970
Princeton colloquium), it will do work on the mechanism that
lowers it. Qualitatively this is no different from theway inwhich
a weight slowly lowered from a pulley can do work at the top of
the pulley, but the quantitative scale is much larger: if a point-
like body of massm is slowly lowered to a point above the event
horizon with redshift a, then the work extracted is
W ¼ mð1� aÞ and so (by conservation of ADM mass) the mass
increase of the black hole is ma (Unruh & Wald, 1982). As the
mass is lowered arbitrarily close to the horizon, a/0, and so the
black hole's mass after the process is carried out, and hence its
surface area, will be unchangedd but the entropy of the outside
world will decrease by s. (This process can even be used to turn
heat into work with perfect efficiency, thus violating at least the
operational content of the Kelvin statement of the Second Law.)

� If some large body with mass M and entropy S undergoes
gravitational collapse, it will form a black hole with area pro-
portional to M2, and decrease the entropy of the external world
by S. If black hole area is identified with entropy (up to some
scale factor K) then the total entropy change is 16pKM2 � S,
which for appropriate choices of M and S could easily be nega-
tive (Susskind, 1995).

As Bekenstein pointed out, both of these arguments would fail if
there is some fundamental bound on the minimum size of a body
with given entropy and mass. To expand: for simplicity let us
specialise to a Schwarzschild (i. e., nonrotating, uncharged) black
hole, where the metric is

ds2 ¼ �aðrÞ2dt2 þ aðrÞ�2dr2 þ r2
�
dq2 þ sin2ðqÞdf2

�
(15)

with ar ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2GM=r

p
. aðrÞ can be interpreted as the ‘redshift’ at

radial coordinate r, i. e. the time dilation, relative to clocks at in-
finity, measured by an observer hovering above the black hole at
constant radial coordinate r. The proper distance from the event
horizon of an object at coordinate r is

d ¼
Zr
2M

dr
aðrÞ (16)

Very close to the black hole (ðr � 2MÞ=2M≪1), we can approxi-
mately take
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aðrÞx
�
r � 2M
2M

�1=2

; (17)

evaluate d, and solve to get

aðdÞ ¼ d=M: (18)

So a spherical body of radius d, entropy s, and mass m, lowered
slowly into the black hole, will increase the mass of the black hole
by dM ¼ md=M, and so the black hole entropy by
dSh ¼ 8pMdM ¼ 8pmd. The total increase in (black hole entropy
plus outside-matter entropy) is then

DS ¼ dSh � s ¼ 8pmd� s: (19)

If some new principle of nature means that any such body must
satisfy s=m � 8pd, that would suffice to ensure DS � 0 (changing
the geometry of the body changes the numerical coefficients but
not the overall argument). A qualitatively similar constraint,
s=m � 2pd, also blocks Susskind's argument from gravitational
collapse: the body, on forming a black hole, will have entropy
Sh ¼ 4pm2, so the net increase in entropy is

DS ¼ 4pm2 � s ¼ 2pmð2m� s=2pmÞ � 2pmð2m� dÞ: (20)

But the bodymust initially lie outside its own Schwarzschild radius,
d>2m, to have avoided collapse already, so this must be positive.

However suggestive this Bekenstein bound might be, however,
there is at least within classical physics no obvious reason why it
must hold. And so to sum up: although classical black holes have
some highly thermodynamic-like properties, core aspects of ther-
modynamics depend on interactions between thermodynamic
systems; these interactions do not seem to function correctly for
classical black holes, rendering the analogy with thermodynamics
purely formal.3

4. Quantum field theory

Quantum mechanics d specifically, quantum field theory,
formulated on a classical but curved spacetime d removes the
blemishes in BHT and transforms it from a suggestive analogy to a
full equivalence. The central result here is the Hawking effect: the
discovery that black holes emit thermal radiation, at exactly the
temperature that BHT would predict.

4.1. Hawking radiation

In this section l want to simply state what Hawking radiation is,
and give some insight into its properties, leaving the question of
whether we should believe it exists to the next section. As a starting
point to understand Hawking radiation, let's consider for simplicity
a free, massless, scalar quantum field theory defined on
Schwarzschild spacetime, with metric (15). (Throughout this sec-
tion, I assume a ’large’ black hole, where curvatures outside the
black hole are small compared to the Planck scale and hence
quantum-gravitational effects can be neglected; the description of
black hole radiation from Planck-scale black holes lies beyond
currently-understood physics.) The ‘external’ region of that space-
timed the region outside the event horizon, defined by r>2GM d

is a globally hyperbolic spacetime suitable for describing the
3 Curiel (2014) challenges this result and argues for a fully thermodynamic un-
derstanding of black holes even in the classical case; engagement with these ar-
guments lies beyond the scope of this paper.
exterior of an uncharged non-rotating black hole. Since it has a
timelike Killing vector d corresponding to translation in the t co-
ordinate d we can coherently analyse the eigenstates of energy of
the theory, and since the field is free, those eigenstates can be
defined by the occupation number of the various independent
modes of the field, which are the definite-frequency solutions of
the Klein-Gordon equation on the Schwarzschild background.

Given the linearity of the Klein-Gordon equation, and given the
time-translation and rotational symmetries of Schwarzschild
spacetime, any solution of the Klein-Gordon equation can be
written (here I follow Harlow (2016, pp.27e29)) in the form

Jðt; r; q;fÞ ¼
Z

du
X
l;m

al;mðuÞfulmðt; r; q;fÞ (21)

where

fulmðt; r; q;fÞ ¼
1
r
Ylmðq;fÞe�iutjulðrÞ (22)

and Ylm is a spherical harmonic.4 All of the detailed physics of the
wave equation is contained in the functions julðrÞ, with the rest
following purely from the symmetry structure of the theory (recall
that solutions to the Schr€odinger equation for a Coulomb potential,
for instance, have the same form). So to understand the solutions,
we need to understand the features of these functions.

To describe them further, it is helpful to introduce the tortoise
coordinate r�, defined by

r� ¼ r þ lnjr=2GM � 1j; (23)

which approximates r for r[2GM but stretches the distance to the
event horizon to cover the whole negative-x axis; it also simplifies
matters to adopt, temporarily, units in which 2GM ¼ 1, i. e. to use
the Schwarzschild radius as our unit of distance. The radial function
jul then satisfies

�
� d2

dr2�
þ VðrÞ

�
jul ¼ u2jul (24)

where

VðrÞ ¼ r � 1
r3

�
lðlþ 1Þ þ 1

r

�
(25)

and where r is given implicitly in terms of r� by (23).
Formally (24) is just the nonrelativistic Schr€odinger equation in

one dimension, so that the problem of solving the Klein-Gordon
equation has been reduced to a scattering problem in one dimen-
sion. Modes can be thought of as incoming either from infinity or
from the event horizon, and they will scatter off, or tunnel through,
a potential barrier whose form depends on the angular momentum
l. For l[1 the barrier has height � l2 and is located at r ¼ 3=2.

We can now distinguish (following (Thorne et al., 1986, ch.
VIII)):

� INmodes, which come in from infinity and largely scatter off the
angular-momentum barrier (for l[1) with some small ampli-
tude to penetrate the barrier and fall onto the event horizon;

� UPmodes, which come up from the vicinity of the event horizon
and are largely trapped close to the horizon by the angular-
4 For a reminder of the properties of spherical harmonics, see, e. g., Jackson
(1999).



5 See Weinberg (1989), Peebles and Ratra (2003), and references therein; thanks
to Erik Curiel for pointing out its significance here.

6 Thanks to an anonymous referee for pressing the question of what grounds we
have to accept curved-spacetime QFT.
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momentum barrier (for l[1) with some small amplitude to
escape to infinity.

Hawking's result is then the following: for a black hole formed
by gravitational collapse, and with surface gravity k, the quantum
state of the exterior is a thermal state with respect to the UPmodes,
at a temperature k=2p. (With respect to the IN modes, the quantum
state is determined by boundary conditions; for an astrophysical
black hole in the current epoch, for instance, we might take the IN
modes to be in a thermal state at the temperature of the microwave
background radiation.)

To understand this summary, it is helpful to describe the radi-
ation as seen by a fictional observer hovering at a fixed distance
above the black hole. Such observers move along a trajectory of
constant r; q;f, and are often called fiducial observers, or FIDOs. A
fiducial observer at a redshift of a follows an accelerated worldline
with locally-measured acceleration a�1da=dr; we can imagine the
observer being held in place by a rope supported at infinity. Fiducial
observers observe very different effects depending on how close
they are to the event horizon:

� A fiducial observer close to the event horizon (i. e., whose dis-
tance to the event horizon is small compared to the Schwarzs-
child radius, and in particular who is between the potential
barrier described by equation (25) and the event horizon) ob-
serves a thermal bath of black-body radiation which might be
thought of as the black hole's “atmosphere”: this radiation re-
mains largely trapped by the potential barrier and mostly falls
back into the black hole rather than escaping to infinity. The
apparent temperature of the radiation, as measured by the
fiducial observer, will be T=a ¼ k=2pa, because that observer's
clocks are redshifted by a factor a compared to coordinate time;
we have already seen that this shifting of the temperature is a
general feature of self-gravitating thermal systems.

� When the observer's redshift is large enough that the locally
measured temperature approaches the Planck temperature, the
field-theory model we have used becomes unreliable: put
another way, at this redshift the locally-measuredwavelength of
the radiation approaches the Planck length and we expect
quantum-gravitational effects to cut off the QFT description.
This occurs (not by coincidence) when the fiducial observer has
reached the stretched horizon, using Susskind et al.'s convention
for its location.

� Conversely, an observer far from the event horizon sees a stream
of outwardly flowing radiation appearing to emerge from the
black hole. This radiation is not black-body radiation, because
modes of different angular momentum escape the black hole
atmosphere to differing degrees. The grey-body factors of a black
hole describe how the black hole's emission spectrum, as a
function of angular momentum and frequency, deviates from a
perfect black body.

There is also a divergence between the observations of fiducial
observers, and those of inertial observers falling into the black hole
from far away, a divergence which increases as the event horizon is
approached. In the outer (radiation) region of the spacetime, both
groups of observers have similar experiences: they see an outward-
going stream of radiation (although the increasing velocity of the
infalling observer, and increasing acceleration of the fiducial
observer, cause these experiences to diverge increasingly as they
approach the black hole). Within the black hole atmosphere, and
particularly as the observers approach the stretched horizon, the
experiences become sharply different: while the fiducial observers
experience ever-hotter thermal radiation, the infalling observer
sees only slight deviations from empty spacetime.
4.2. Evidence for the Hawking effect

Before considering the thermodynamics of black holes in the
light of Hawking radiation, we should pause briefly to ask how
confident we should be in its existence. After all, while the classical
theory of black holes lies within the range of astrophysical obser-
vation and so is supported by quite a lot of direct evidence, there is
no realistic prospect of observing Hawking radiation from astro-
physical black holes, and so far no proposal for observing it in non-
astrophysical contexts (e. g. at the LHC, or through the decay of
primordial black holes) has borne fruit. So the case is entirely
theoretical; it is, nonetheless, very powerful.

To my knowledge there are at least five independent, concep-
tually distinct routes by which the Hawking effect can be derived:

1. Hawking's original method of matching outgoing modes with
exterior modes via the technique of Bogoliubov transformations
(Hawking (1975); see Wald (1994, ch.7) for a review);

2. Making precise the heuristic understanding of black hole
evaporation by particles tunneling across the event horizon
(Parikh & Wilczek, 2000);

3. Requiring the quantum state of the black hole exterior to solve
or nearly solve the semiclassical Einstein field equations, which
is possible only if the outgoing modes are in a thermal state at
the correct temperature (Candelas (1980), Sciama, Candelas, and
Deutsch (1981); see also section 4.3);

4. Path-integral methods on the analytic continuation of the black
hole exterior spacetime, which demonstrate that the radiation-
free vacuum d and, more generally, any thermal state at the
wrong temperature d leads to singularities at the horizon
(Hartle & Hawking, 1976; Israel, 1976);

5. Observing that radiation flow across the event horizon is
necessary to prevent anomalous breaking of the diffeo-
morphism symmetry (Robinson & Wilczek, 2005).

Each has its strengths, weaknesses, and distinctive features.
Hawking's original approach (1) is perhaps most directly tied to the
physics of actual collapse-formed black holes, but is confined to free
fields. At the other extreme, (4) is completely general but only
applies to a black hole at thermal equilibrium with an external
radiation bath, requiring additional physical justifications to be
applied to collapse-formed black holes. (1) and (2) give concrete
mechanisms for Hawking radiation, whereas (3)e(5) derive
contradiction or unphysical paradox from its absence. But collec-
tively, they strongly suggest that Hawking radiation really is a
consequence of quantum field theory on curved spacetime, and not
simply an artefact of a particular method of mathematical analysis.
In turn, quantum field theory on curved spacetime is just an
application of the general machinery of modern quantum field
theory (in particular, the use of field theory to describe quantum
fluctuations against a fixed classical background) and d while it is
fair to note that it has not passed the sort of precision tests which
underpin support for, say, flat-space quantum electrodynamics, and
that the notorious cosmological-constant problem5 gives some
grounds for concern about its overall coherence d it is the theo-
retical underpinning for experimentally-tested results in astro-
physics and cosmology, notably interferometry experiments
involving photons that have passed through regions of curved
spacetime.6
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It is also possible to give a fairly direct physical argument for
Hawking radiation. Consider a fiducial observer, very close to the
event horizon (at some redshift a≪1, say). The radius of curvature
of the spacetime is much larger than the distance to the horizon, so
locally it will appear to the observer as if they are accelerating in flat
space at a constant locally-measured acceleration a�1da=dr. Suffi-
ciently close to the event horizon, this tends to k=a, where k is the
surface gravity. The Unruh effect (Unruh (1976); see Harlow (2016,
pp.15e24) for a helpful discussion, and Crispino, Higuchi, and
Matsas (2008) for an exhaustive review) tells us that an observer
in flat spacetime with uniform acceleration a experiences a bath of
black-body thermal radiation at a temperature of a=2p (and the
Unruh effect itself can also be derived in multiple ways: from
Bogoliubov methods, via path integrals, and as a rigorous result in
algebraic quantum field theory, to name three). So by the equiva-
lence principle, we would expect our fiducial observer to see
something very close to thermal radiation at this temperature: that
is, at locally measured temperature k=2pa.

Now, very close to the black hole the event horizon fills almost
the whole sky, so we would expect most of the radiation observed
by the fiducial observer to fall back into the black hole. But it
doesn't quite fill the whole sky, so any given radiation mode will
have some amplitude to escape to infinity (with lower-angular-
momentum modes having the highest amplitude). That radiation
will be redshifted by a factor a and sowill be seen at infinity to have
a temperature k=2p, in accordance with Hawking's prediction (and
to be radially streaming from the black hole).

I pause to consider and rebut a well-known potential objection
to the existence of Hawking radiation: the so-called trans-Planckian
problem. In a nutshell, the problem is that radiation observed from a
black hole sufficiently long after it forms is apparently redshifted
down from radiation at a locally-measured wavelength shorter
than the Planck length, i. e. awavelength at whichwe should regard
quantum field theory as unreliable in any case. (And “sufficiently
long” is not at all long, in astrophysical terms: the timescale is
� M log M in Planck units, or (from equation (14)) � 10�3 seconds
for solar-mass black holes.) At times much later than this, the
original energy of the detected radiation gets bigger than Planckian,
indeed ridiculously big.

If this argument were correct, it would demonstrate not simply
that Hawking radiation is absent, but that there is some inherent
inconsistency in defining quantum field theory on a curved back-
ground: as noted above, the absence of Hawking radiation also leads
to unphysical phenomena. But there are good reasons to doubt that
it is correct. In particular (following Polchinski (1995)):

1. It is possible to foliate the spacetime of a collapse-formed black
hole so that curvature and energy densities on each slice remain
well-behaved and far from the Planck scale (at least for black
holes that are themselves large compared to the Planck mass,
and up to late stages in its evaporation, of which more later).

2. The Hawking effect (if it exists) is low-energy physics, entirely
describable in terms of the physics on each individual slice.

3. So the form of the cutoff imposed on our quantum-field to
regularise it at short wavelengths has no effect on the low-level
physics, beyond the usual effect of rescaling the parameters of
the field theory (which can be absorbed by renormalisation of
those parameters).

4. So it's harmless to use any cutoff we like, even the unphysical
cutoff where we actually allow free-field theory to stay defined
on arbitrarily short wavelengths.

In a certain sense there is even empirical evidence that the trans-
Planckian problem is innocuous, and more generally that the ar-
guments used to derive Hawking radiation are valid. Very close
analogues of the Hawking effect occur in certain condensed-matter
systems (as originally proposed by Unruh (1981)) and have recently
been empirically confirmed, even though in these theories it is
unambiguous that the degrees of freedom are cut off at the atomic
scale and that (the analogues of) trans-Planckian modes do not
exist. (See Unruh (2014) and Dardashti, Thebault, and Winsberg
(2017), and references therein, for more on these analogues and
their conceptual significance.)

For more on the trans-Planckian problem (and some residual
worries) see Jacobson (2005, pp.46e54), Harlow (2016, pp.37e39),
and references therein; however, for the moment I think we are
justified in setting it aside and regarding Hawking radiation as a
nigh-unavoidable consequence of any attempt to do quantum field
theory in the vicinity of a black hole event horizon. Physicists tend
to regard the case for Hawking radiation as further bolstered by the
unity it provides to black hole thermodynamics but even without
that bolstering, the case is very strongd though, of course, as good
scientists we should remind ourselves that it remains purely
theoretical, and that tests of quantum field theory itself in the
curved-spacetime regime to date have been much less precise and
numerous than in the flat-spacetime regime.
4.3. Back-reaction and evaporation

Hawking's original calculation d and all the other calculations
referenced above d use quantum field theory on a fixed, non-
dynamical background metric. As such, these derivations in of
themselves do not suffice to establish that Hawking radiation is fully
analogous to ordinary thermal radiation, because they imply
nothing about whether a radiating black hole ultimately decreases
in mass and, thus, surface area. To establish this, we need to
consider the back-reaction of the radiation on the metric field, and
doing so in a fully satisfactory way requires a quantum theory of
gravity, which of coursewe lack. Furthermore, given that there is no
robust local definition of gravitational energy d and, relatedly, no
robust way to understand total energy as a sum of local energiesd
we cannot simply appeal to a local conservation law to conclude
that radiating black holes evaporate.

Nonetheless we can give powerful arguments for that conclu-
sion. The most direct is via appeal to Noether's theorem, applied on
a sphere surrounding, and far from, the black hole: in that regime,
we expect to be able to treat the hole as an approximately-isolated
system in a larger region of Minkowski spacetime (see Wallace
(2017b) for more on this). So the symmetries of Minkowski
spacetime allow us to write a global conservation law and to argue
that the sum of the ADM mass-energy of the black hole plus the
total energy of the radiation outside the sphere d which is well
defined, since that region is very nearly flatd should be conserved,
and hence that the energy flux through the sphere ought to equal
the rate of decrease of the black hole mass.

We can make this more quantitative by considering the physics
on the boundary of this large sphere (here, and for the rest of this
section, for simplicity I confine my attention to uncharged, non-
rotating black holes). In this regime, Hawking radiation just looks
like a classical outflow of radiation, with stress-energy tensor

Tmn ¼ nmnn
�
A
.
r2
�

(26)

where r is the Schwarzschild radial coordinate, nm is an outward-
pointing null vector, and A depends on the black hole mass (and
lacks a simple analytic form, due to grey-body factors). The
Schwarzschild metric does not solve the Einstein field equations
with this stress-energy tensor, so the assumption that the black
hole does not evaporate is inconsistent with classical general



D. Wallace / Studies in History and Philosophy of Modern Physics 64 (2018) 52e67 63
relativity in a regimewherewe expect the latter to hold. The unique
spherically-symmetric solution to the field equations for this
stress-energy tensor is the Vaidya metric (see, e. g., Joshi, 1994),
which is basically the Schwarzschild metric with a time-dependent
mass term MðtÞ (‘basically’ because we need to express the metric
in retarded coordinates, due to the finite speed of propagation of
the radiation). And the time-dependence is given by

dM
dt

¼ �4pA; (27)

exactly as would be predicted from a naive treatment of radiation as
carrying away local mass-energy density.

To understand evaporation closer to the black hole, we need to
go beyond the fully classical Einstein equation, as quantum-
mechanical effects become relevant. The normal tool to investi-
gate this is semiclassical gravity, in which the classical metric is
coupled by the Einstein field equations to the renormalised value of
the quantum expectation value of the stress-energy tensor
(possibly including first-order gravitational perturbations as an
additional graviton field). That is, a solution of semiclassical gravity
requires both a metric g and a (Heisenberg) quantum state jj〉 such
that

G½g	 ¼ 8pG〈j
��T�bf	��j〉ren (28)

where bf schematically denotes the various quantum fields, G is the
Einstein tensor associated with g, and the ‘ren’ subscript indicates
that we need to renormalise the stress-energy tensor.

This theory can either be posited directly, on the plausible if
heuristic grounds that quantum gravity ‘ought’ to look like this
when metric fluctuations are small, or derived as the leading non-
classical term in certain expansion schemes for the effective
quantum field theory of gravity coupled to matter (Hartle &
Horowitz, 1981; Tomboulis, 1977); either way, it is the standard
tool used for exploring back-reaction (see Wald (1994, ch.5) and
references therein for detailed discussion). It is difficult to calculate
with; nonetheless, it has provided very strong evidence that radi-
ating black holes do indeed radiate, and at exactly the rate pre-
dicted by the naive treatment. In particular (and without
pretending to be exhaustive):

1. Candelas, Deutsch and Sciama (Candelas, 1980; Sciama et al.,
1981) have calculated the stress-energy tensor for a scalar
field on a Schwarzschild background near to the black hole
event horizon. They find that the vacuum state of that field is
strongly polarised, so as to have a very large negative stress-
energy density, which diverges to negative infinity on the
event horizon; this negative energy density is exactly cancelled
out by the positive stress-energy density of the quanta in a
thermal state at the Hawking temperature. It follows from their
results that
(a) the Hartle-Hawking state, inwhich both UP and INmodes of

the field are in that thermal state, has zero net stress-energy
density close to the black hole, and so solves the semi-
classical equations;

(b) any state which has any non-thermal UP mode (or any
thermal UP mode at the wrong temperature) has divergent
stress-energy density on the future horizon, and so fails to
solve the semiclassical equations even approximately;

(c) the Unruh state, in which the UP modes are thermally
excited at the Hawking temperature but the IN modes are
unexcited, has singular stress-energy density on the past
horizon (which, for a collapse-formed black hole, is in any
case unphysical) but only mildly nonzero stress-energy
density on the future horizon, so that we would expect a
self-consistent solution that is only a small perturbation of
the Unruh state and the Schwarzschild solution;

(d) In that small perturbation, the change in the area of the
horizon can be calculated via the Newman-Penrose equa-
tion; the result is exactly in accord with the naive prediction
from radiation flow. (This also gives insight into how the
black hole's area can decrease in violation of the area the-
orem: the strongly polarised spacetime region close to the
horizon allows a slight violation of the null energy
condition.)

Frolov and Thorne (1989) generalised these findings to rotating
black holes.

2. Price, Thorne and Zurek (Zurek & Thorne, 1985; Thorne, Price,
and Macdonald, 1986, ch. VIII) translated this analysis into the
membrane paradigm. In that framework, the positive stress-
energy associated with the atmosphere of a black hole in the
Hartle-Hawking state (i. e. with both UP and IN modes thermal
at the Hawking temperature) exactly cancels the negative
stress-energy due to vacuum polarisation. If the IN states are
unexcited, this results in a very slight depletion of the energy of
the atmosphere and so a very slight negative energy flow across
the stretched horizon. A precise set of conservation equations
can be written at the stretched horizon that relate changes in its
area to the flow of stress-energy across it; again, these repro-
duce exactly the naive prediction.

3. Abdolrahimi, Page, and Tzounis (2016) use numerical methods
to find the metric of a radiating black hole as a perturbation of
the Schwarzschild metric; they obtain a metric which far from
the event horizon becomes asymptotically close to the Vaidya
metric, again with the expected rate of mass decrease.

In conclusion: there are excellent reasons to think that the
‘naive’ treatment of radiation gets the facts exactly right: black hole
radiation carries away energy and decreases the mass and surface
area of the radiating black hole.

4.4. Hawking radiation and black hole thermodynamics

Hawking radiation slightly complicates the definition of ‘equi-
librium’ for black holes, but no more so than for any other radiating
thermodynamic system. Any electromagnetically-interacting body
above absolute zero will radiate, so if such a system is placed alone
in the vacuum, it will eventually cool to absolute zero. We can
handle this in three ways:

1. Place the system in a box (of arbitrary size) filled with thermal
radiation at the same temperature as the system. The radiation
and the systemwill be in thermal equilibriumwith one another
and the system will itself remain at equilibrium.

2. Place the system in an empty box that is not too large. It will fill
up with thermal radiation at the same temperature as the sys-
tem; if it is sufficiently small, this will happen without the
system's temperature changing too much.

3. Finesse the issue by ignoring radiation, on the assumption that
the timescale on which it cools the object is long compared to
other timescales of interest.

All these are available for black holes; the only subtlety is that
the black hole's negative heat capacity means that it will be in
unstable equilibrium with a sufficiently large thermal bath. In
normal circumstances, if a small fluctuation causes the radiating
system to absorb a bit of heat, its temperature rises above that of
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the radiation bath, so it emits the heat back again; for a black hole,
that fluctuation decreases the temperature, so positive feedback
will occur. However, if the box is sufficiently small, the decrease in
temperature of the radiation bath exceeds that of the black hole and
the system remains stable. Elementary calculations (Hawking,
1976) demonstrate that the total mass-energy of radiation in the
box must be less than 1=4 of the black hole mass; for a solar-mass
black hole, the boxmust be nomore than� 1012 parsecs across, not
an especially demanding constraint.

More importantly, Hawking radiation allows black holes to be in
thermal contact with one another (and with other thermodynamic
systems), in just the same ways as for other self-gravitating sys-
tems. The simplest way to do this is just to put the two systems (one
or both of which is a black hole) in a large box, far enough from one
another that their mutual gravitational interaction can be neglec-
ted.7 The box will fill up with radiation at a temperature interme-
diate between the two, and so heat will flow from the hotter body
into the radiation and thence into the colder body. In particular, if
the two bodies are at the same temperature, no energy will flow
from one to the other: the Zeroth Law holds fully for black holes.

Alternately (and following Unruh and Wald (1982, 1983)), we
can achieve thermal contact via “black hole mining”: slowly
lowering a box on a rope into a black hole's atmosphere, letting it
fill with thermal radiation, and slowly pulling it out again. The net
energy extracted from the black hole in this process is easily
calculated to be

Q ¼ aðP þ rÞV (29)

where V is the box's volume and a; r and P are respectively the
redshift and the locally-measured radiation density and radiation
pressure at the point where the box is removed. From the First Law
of black hole thermodynamics, the change in the black hole's en-
tropy is Q=TH (where TH is the hole's temperature); meanwhile, the
box contains radiation at a temperature of TH=a. Thermal radiation
has an entropy density s ¼ ðP þ rÞ=T, so the entropy increase at
infinity is also Q=TH; in other words, this process is reversible, and
indeed can be reversed just by slowly lowering a box of radiation
into a black hole's atmosphere until its local temperature matches
that of the atmosphere, opening it, and then slowly pulling out the
empty box.

If instead we try to lower the box into another black hole's at-
mosphere until we have extracted the same work as was required
to lift the box in the first place, wewill find that this is possible only
if the second black hole is at a lower temperature than the first; if
not, radiation pressure will support the box before we have
extracted enough work. So d just as with the radiation spheres d
this may be seen as a means of enabling heat flow from one black
hole to another.

Finally, if we lower the box into the second black hole until it is
exactly supported by radiation pressure d which is to say, until its
7 This situation is a good illustration of my comment in the Introduction about
mathematical rigor. In classical general relativity it is known (Manko & Ruiz, 2001)
that there is no exactly-stationary vacuum solution describing two Kerr black holes
(thanks to Erik Curiel for the reference). The general approach in (most of) the
black-hole-thermodynamics literature is to dismiss this sort of concern on the
grounds that (a) what is needed is not exact stationarity, but approximate statio-
narity, i. e. negligible change of black hole orbit on the timescales relevant to the
problem at hand; (b) looking for exact solutions is in any case premature given that
we do not have an exact theory of black holes which incorporates radiation and
back-reaction. Since the decay timescale for binary black holes scales with the fifth
power of their separation, but the time taken for a radiating black hole to equili-
brate with its box scales with the cube of the box size, there does not seem to be
any problem of principle in constructing a setup in which the binary system can
indeed be treated as approximately stationary other than thermodynamic effects.
temperature matches the local temperature of the atmosphere d

we will find that the net work done is

W ¼ ða1 � a2ÞðP þ rÞV (30)

where a1 and a2 are the redshifts at which the box is respectively
filled and emptied. If the two black holes have temperature T1, T2,
then we must have T1=a1 ¼ T2=a2, so that the heat Q1 extracted
from the first black hole, the heat transferred to the second black
hole, and the work extracted satisfy

Q2 ¼ ðT1=T2ÞQ1; W ¼ ð1� T1=T2ÞQ1: (31)

So this process is a Carnot process between the two black holes.
4.5. The generalised second law and the Casini-Bekenstein bound

At this point, we have established that stationary black holes
behave almost exactly like thermodynamic systems. But there is a
loose end left over from section 3.6: we have not yet established
that the Second Law applies in full generality, nor seen how to block
Geroch's and Susskind's thought-experiments which apparently
allow violations of the Second Law.What would be needed to tie up
this loose end would be a proof, in semiclassical gravity, of the
“generalised second law”: that the entropy of the black hole exte-
rior plus the Bekenstein-Hawking entropy is non-decreasing. (As
Harlow (2016, p.34) notes, “generalised second law” is a bit
misleading if black hole area really is entropy, in which case this
would just be the ordinary second law. On the other hand, in
semiclassical gravity it is the sum of a statistical-mechanical en-
tropy with a purely phenomenological entropy, so it does have a
hybrid nature.)

The three decades following Bekenstein's original conjecture
saw a substantial if rather disunified literature on various thought
experiments intended to support the generalised second law. For
instance, Unruh and Wald (1982) argued that the Geroch process is
prevented by Hawking radiation: the global entropy maximum of a
(small) box of a given energy is achieved when the box is full of
thermal radiation at that energy, and that box will float, supported
by the radiation pressure of the black hole atmosphere, when it is
deep enough into the atmosphere that its temperature matches the
local atmosphere temperature. It can readily be shown that if the
box is then opened so that its contents fall into the black hole, the
entropy increase of the hole equals the entropy in the box. But this
argument is controversial (see, e. g., Bekenstein, 1999; Marolf &
Sorkin, 2002) and in any case does not seem to address the case
where a black hole is formed by mass with a high entropy/energy
ratio. Other authors offered various more-or-less rigorous argu-
ments for the Bekenstein bound from quantum field theory, though
for a long while Bekenstein's conjecture proved difficult to make
precise, and at one point was thought to rely on some ceiling on the
number of distinct fundamental particles (intuitively, the more
particles there are, the more states there are at a given energy). See
Wall (2009) and references therein for a review of various attempts
to prove the generalised second law over this period.

The last decade, however, has seen major progress in this area,
largely due to increased insight into the way quantum entangle-
ment changeswith time in the black hole exterior. Building onwork
of Marolf, Minic, and Ross (2004), Casini (2008) was able to give a
clear statement of the Bekenstein bound and then prove it fairly
rigorously within quantum field theory. Similar ideas have been
used by Wall (2012) to give a clear statement and fairly general
proof of the generalised second law.

While no doubt there is more to learn here, and plenty of
interesting foundational work to do in understanding the recent
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results and their link to Bekenstein's work, there now seems to be
pretty strong evidence that the generalised second law holds in
semiclassical gravity in full generality, completing the case for a
thermodynamic description of black holes.

5. Conclusion

Black hole thermodynamics is often described as a striking
analog of ordinary thermodynamics. But if what it is to be a ther-
modynamic system is to obey the various laws of thermodynamics,
and to interact with other thermodynamic systems in such a way
that the combined system obeys those laws too, then stationary
black holes are not analogous to thermodynamic systems: they are
thermodynamic systems, in the fullest sense. More precisely, ac-
cording to the best physics we currently have, a black hole at (or
weakly perturbed from) equilibrium behaves exactly like a con-
ducting, viscous fluid at (or weakly perturbed from) equilibrium,
arranged in a thin shell just outside the event horizon.

An obvious question follows. In all other cases we know, there is
a statistical-mechanical underpinning both to the general laws of
thermodynamics, and to the specific form of the equation of state
and transport coefficients of each thermodynamic system. Can we
likewise construct a black hole statistical mechanics to underpin
black hole thermodynamics d or are black holes fundamentally
different from other thermodynamic systems at the microphysical
level despite their common phenomenology? I address this topic in
Part II.
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Appendix A. Dougherty and Callender on black hole
thermodynamics

In a thoughtful and provocative recent paper, Dougherty and
Callender (2016; henceforth DC) reach the opposite conclusion to
mine: that “the analogy [between black hole thermodynamics and
the ordinary kind] is not nearly as good as is commonly supposed.”
They advance three arguments: that BHT “is often based on a kind
of caricature of thermodynamics”; that it is ambiguous to what
systems BHT is supposed to apply; that BHT is motivated by a
controversial epistemic conception of entropy. Here I want to reply
to these arguments.

A.1 A pale shadow of thermodynamics?

DC point out many apparent weaknesses in the details of the
analogy between black hole and ordinary thermodynamics, and it
is simplest to respond to them in objection-reply form.

DC: What is called the “Zeroth law” of BHT is analogous to a
mere consequence of the real Zeroth Law.
Response: Fair enough (cf section 3.5). But the true Zeroth Law
holds for black holes as much as for other thermodynamic
systems, once Hawking radiation is allowed for (section 4.4).
DC: In ordinary thermodynamics, equilibrium systemsminimise
their internal energy; it's not clear whether that's even mean-
ingful for black holes.
Response: Consider a black hole away from equilibrium.
Assuming it eventually settles down to stationarity (for which,
we have seen, there is strong evidence) then at late times the
system will consist of outgoing gravitational radiation far from
the black hole, plus a stationary black hole. To an arbitrarily good
approximation we can then assign mass separately to the black
hole and the radiation via Noether's theorem; gravitational ra-
diation has positive energy, so the stationary black hole must
have lower mass than its progenitor. This heuristic argument
can be made precise via the Bondi mass (section 2.5): the Bondi
mass loss formula demonstrates that a system that emits gravi-
tational waves has decreasing mass. See, e. g., Madler and
Winicour (2016) and references therein for a review of the
techniques involved.
DC: There is no ‘in equilibrium with’ relation for black holes.
Response: Hawking radiation lets us define such a relation in
prettymuch the sameway it is defined for other gravitating and/
or radiating bodies (section 4.4).
DC: In ordinary thermodynamics, internal energy is distinct
from total energy; in BHT, it is identified with total energy.
Response: That's an artefact of working in the black hole rest
frame, which is done purely for convenience (section 3.2).
DC: If two black holes coalesce into one, the total entropy in-
creases, even if the two black holes started off at the same
temperature, ‘contrary to thermodynamics’.
Response: It's not contrary to thermodynamics. It's contrary to
the thermodynamics of extensive systems, but black holes d

like self-gravitating systems in general d aren't extensive
(section 2.5).
DC: Substituting black hole entropy for area in thermodynamic
lawsmakes amess of thermodynamic relations where volume is
a variable.
Response: Black hole entropy doesn't actually have the di-
mensions of area, unless we work in Planck units, in which case
everything is dimensionless. But in any case, just because two
quantities have the same units doesn't mean they can be
substituted for one another in equations. (I confess I don't
entirely understand DC's point here.)
DC: BHT is very non-extensive.
Response: Indeed it is, but (a) nothing in thermodynamics re-
quires extensivity, and (b) extensivity fails in strongly self-
gravitating systems for clear physical reasons (section 2.5),
even before we consider black holes. (DC recognise this last
point in a footnote, but claim that the subtleties of scaling in
self-gravitating systems are ‘not analogous’ to those of black
holes. They don't say why; examples like the radiation sphere
certainly look closely analogous.)

Beyond these specific points, if DC find that BHT is a caricature of
ordinary thermodynamics, it is in part because the version of BHT
they are discussing is itself a caricature, pretty much restricted to
the laws of BHT stated in Bardeen et al. (1973). They don't consider
Christodolou and Ruffini's discussion of reversible and irreversible
processes, or any of the results of the membrane paradigm, or the
various results on equilibration, and more importantly, while they
note the existence of Hawking radiation they don't consider its role
in thermal contact, or in permitting reversible heat flow to and
from black holes via Unruh-Wald mining of the thermal
atmosphere.

A.2 Entropy of what?

DC point out that the event horizon is a globally defined
concept, that a concept like that is not a suitable basis for BHT, and
that there is no generally-agreed-upon or unproblematic alterna-
tive. They are surely right to identify this as a profoundly important
question with ramifications for our understanding of Hawking
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radiation, and perhaps for quantum theory more generally. But it
doesn't seem that relevant to black hole thermodynamics. After all,
thermodynamics is concerned with systems at equilibrium, and is
essentially silent about non-equilibrium systems except to require
that they go to equilibrium. So all BHT needs is a clear under-
standing of the horizon for stationary black holes (and, perhaps, for
holes that are mildly perturbed away from equilibrium). But pretty
much all candidate definitions for the horizon agree on stationary
black holes.

A.3 Entropy and empiricism

Bekenstein's original conjectures about black hole entropymade
heavy use of the relation between information theory and entropy,
and that link is frequently used as motivation in textbook discus-
sions to this day. DC are critical both of information-theoretic ap-
proaches to entropy in general (they prefer a Boltzmannian
conception of thermodynamics in which the information-entropy
link is broken) and about its application to black holes in partic-
ular (they regard the idea of information being lost behind the
event horizon as a particularly pernicious form of operationalism,
given that we could just jump into the black hole ourselves at the
same time that the ”lost” information falls in).

I think DC are being a little unfair here, both to Bekenstein
himself (whose conjecture about black hole entropy was a consil-
ience argument based on Christodolou, Ruffini and Hawking's re-
sults, and on various concrete thought-experiments, as much as on
the general entropy-information link) and to operationalism (as
shown by Hayden and Preskill (2007), in the absence of Planck-
scale effects, matter thrown into a black hole will be unobserv-
able even by an observer who jumps in after it after only time
� M log M (� 10�3 second for astrophysical-scale black holes,
recall); suggestively, this is the time it takes for the stretched ho-
rizon to equilibrate in the membrane paradigm, so information
thrown into a black hole is lost in principle after the black hole has
equilibrated).

But let's stipulate that they are entirely correct. That might be a
reason not to have awarded a grant to Bekenstein (or Hawking)
back in the 1970s. It doesn't seem a good argument against black
hole thermodynamics now, after the discovery of the Hawking ef-
fect, the membrane paradigm and the Casini-Bekenstein bound.
The case for black hole thermodynamics can now rest entirely on
the concrete results that have been inspired by Bekenstein's
conjecture, and does not need Bekenstein's original motivation. The
history of science is full of ideas whose original motivation was
shaky but which nonetheless worked out, and which now stand on
their own without need for that original motivation.

To be fair to DC here, in their dialectic they take themselves
already to have shown that the formal analogy between black hole
thermodynamics and ordinary thermodynamics is weak, so that
substantial additional motivation is needed to identify entropy
with black hole area. So my criticisms of this section are not really
independent of my earlier points.
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