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ENTROPY
A GUIDE FOR THE PERPLEXED

Roman Frigg and Charlotte Werndl1

1 Introduction
Entropy is ubiquitous in physics, and it plays important roles in numerous other
disciplines ranging from logic and statistics to biology and economics. However,
a closer look reveals a complicated picture: entropy is defined differently in
different contexts, and even within the same domain different notions of entropy
are at work. Some of these are defined in terms of probabilities, others are
not. The aim of this essay is to arrive at an understanding of some of the
most important notions of entropy and to clarify the relations between them.
In particular, we discuss the question what kind of probabilities are involved
whenever entropy is defined in terms of probabilities: are the probabilities
chances (i.e. physical probabilities) or credences (i.e. degrees of belief)?

After setting the stage by introducing the thermodynamic entropy (Sec. 2),
we discuss notions of entropy in information theory (Sec. 3), statistical mechanics
(Sec. 4), dynamical-systems theory (Sec. 5), and fractal geometry (Sec. 6). Omis-
sions are inevitable; in particular, space constraints prevent us from discussing
entropy in quantum mechanics and cosmology.2

2 Entropy in thermodynamics
Entropy made its first appearance in the middle of the nineteenth century in
the context of thermodynamics (TD). TD describes processes like the exchange
of heat between two bodies or the spreading of gases in terms of macroscopic
variables like temperature, pressure, and volume. The centerpiece of TD is the
Second Law of TD, which, roughly speaking, restricts the class of physically
allowable processes in isolated systems to those that are not entropy-decreasing.
In this section we introduce the TD entropy and the Second Law.3 We keep

1The authors are listed alphabetically; the paper is fully collaborative.
2Hemmo & Shenker 2006 and Sorkin 2005 provide good introductions to the quantum and

cosmological entropies, respectively.
3Our presentation follows Pippard 1966, pp. 19–23, 29–37. There are also many different (and

nonequivalent) formulations of the Second Law (see Uffink 2001).
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this presentation short because the TD entropy is not a probabilistic notion and
therefore falls, strictly speaking, outside the scope of this book.

The thermodynamic state of a system is characterized by the values of its
thermodynamic variables; a state is an equilibrium state if, and only if (iff), all
variables have well-defined and constant values. For instance, the state of a gas
is specified by the values of temperature, pressure, and volume, and the gas is in
equilibrium if these have well-defined values which do not change over time.
Consider two equilibrium states A and B. A process that changes the state of
the system from A to B is quasistatic iff it only passes through equilibrium states
(i.e. if all intermediate states between A and B are also equilibrium states). A
process is reversible iff it can be exactly reversed by an infinitesimal change in
the external conditions. If we consider a cyclical process—a process in which
the beginning and the end state are the same—a reversible process leaves the
system and its surroundings unchanged.

The Second Law (in Kelvin’s formulation) says that it is impossible to devise
an engine which, working in a cycle, produces no effect other than the extraction
of heat from a reservoir and the performance of an equal amount of mechanical
work. It can be shown that this formulation implies that

I dQ
T

 0, (1)

where dQ is the amount of heat put into the system and T is the system’s
temperature. This is known as Clausius’ Inequality.

If the cycle is reversible, then the inequality becomes an equality. Trivially,
this implies that for reversible cycles,

Z B

A

dQ
T

= �
Z A

B

dQ
T

(2)

for any paths from A to B and from B to A, and the value of the integrals only
depends on the beginning and the end point.

We are now in a position to introduce the thermodynamic entropy STD. The
leading idea is that the integral in Eqn (2) gives the entropy difference between
A and B. We can then assign an absolute entropy value to every state of the
system by choosing one particular state A (we can choose any state we please!)
as the reference point, choosing a value for its entropy STD(A), and then defining
the entropy of all other points B by

STD(B) := STD(A) +
Z B

A

dQ
T

, (3)

where the change of state from A to B is reversible.
What follows from these considerations about irreversible changes? Consider

the following scenario: we first change the state of the system from A to B along



Entropy: A Guide for the Perplexed 117

a quasistatic irreversible path, and then go back from B to A along a quasistatic
reversible path. It follows from Eqns (1) and (3) that

STD(B)� STD(A) 
Z B

A

dQ
T

. (4)

If we now restrict attention to adiathermal processes (i.e. ones in which tem-
perature is constant), the integral in Eqn (4) becomes zero and we have

STD(B)  STD(A).

This is often referred to as the Second Law, but it is important to point out that it
is only a special version of it which holds for adiathermal processes.

STD has no intuitive interpretation as a measure of disorder, disorganization,
or randomness (as is often claimed). In fact such considerations have no place
in TD.

We now turn to a discussion of the information-theoretic entropy, which,
unlike the STD, is a probabilistic concept. At first sight the information-theoretic
and the thermodynamic entropy have nothing to do with each other. This
impression will be dissolved in Sec. 4, when a connection is established via the
Gibbs entropy.

3 Information theory
Consider the following situation (Shannon 1949). There is a source producing
messages which are communicated to a receiver. The receiver registers them, for
instance, on a paper tape.4 The messages are discrete and sent by the source one
after the other. Let m = {m1, . . . , mn} be the complete set of messages (in the
sense that the source cannot send messages other than the mi). The production
of one message is referred to as a step.

When receiving a message, we gain information, and depending on the
message, more or less information. According to Shannon’s theory, information
and uncertainty are two sides of the same coin: the more uncertainty there is, the
more information we gain by removing the uncertainty. The literature’s usage
oscillates between ‘information’ and ‘uncertainty,’ and so will we.

Shannon’s basic idea was to characterize the amount of information gained
from the receipt of a message as a function which depends only on how likely
the messages are. Formally, for n 2 N let Vm be the set of all probability
distributions P = (p1, . . . , pn) :=

�
p(m1), . . . , p(mn)

�
on m1, . . . , mn (i.e. pi � 0

and p1 + · · ·+ pn = 1). A reasonable measure of information is a function
SS, d(P) : Vm ! R (where ‘S’ is for ‘Shannon’ and ‘d’ for ‘discrete’) which satisfies
the following axioms (cf. Klir 2006, Sec. 3.2.2):

4We assume that the channel is noiseless and deterministic, meaning that there is a one-to-one
correspondence between the input and the output.
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1. Continuity. SS, d(p1, . . . , pn) is continuous in all its arguments p1, . . . , pn.
2. Additivity. The information gained in two independent communications is

the sum of the information of the communications, i.e. for P = (p1, . . . , pn)
and Q = (q1, . . . , qk), we have: SS, d(p1q1, p1q2, . . . , pnqk) = SS, d(P) +
SS, d(Q).

3. Monotonicity. For uniform distributions the uncertainty increases with n.
That is, for any P = (1/n, . . . , 1/n) and Q = (1/k, . . . , 1/k), for arbitrary
k, n 2 N, we have: if k > n, then SS, d(Q) > SS, d(P).

4. Branching. The information is independent of how the process is divided
into parts. That is, for (p1, . . . , pn) (n� 3), divide m = {m1, . . . , mn} into
two blocks A = (m1, . . . , ms) and B = (ms+1, . . . , mn), and let pA = Âs

i=1 pi
and pB = Ân

i=s+1 pi. Then

SS, d(p1, . . . , pn) =

SS, d(pA, pB) + pA SS, d

⇣
p1
pA

, . . . , ps
pA

⌘
+ pB SS, d

⇣
ps+1
pB

, . . . , pn
pB

⌘
.5

5. Bit normalization. By convention, the average information gained for two
equally likely messages is one bit (‘binary digit’): SS, d(1/2, 1/2) = 1.

There is exactly one function satisfying these axioms, the discrete Shannon en-
tropy:6

SS, d(P) := �
n

Â
i=1

pi log pi,

where ‘log’ stands for the logarithm to the base of two.7 Any change toward
equalization of p1, . . . , pn leads to an increase of the uncertainty SS, d, which
reaches its maximum, log n, for p1 = · · ·= pn = 1/n. Furthermore, SS, d(P) = 0
iff all pi but one equal zero.

What kind of probabilities are invoked in Shannon’s scenario? Approaches to
probability can be divided into two broad groups.8 First, epistemic approaches
take probabilities to be measures of degrees of belief. Those who subscribe to
an objectivist epistemic theory take probabilities to be degrees of rational belief,
whereby ‘rational’ is understood to imply that given the same evidence, all ra-
tional agents have the same degree of belief in any proposition. This is denied by
those who hold a subjective epistemic theory, regarding probabilities as subjec-
tive degrees of belief that can differ between persons even if they are presented
with the same body of evidence. Second, ontic approaches take probabilities

5For instance, for {m1, m2, m3}, P = (1/3, 1/3, 1/3), A = {m1, m2}, and B = {m3}, branching
means that SS, d(1/3, 1/3, 1/3) = SS, d(2/3, 1/3) + 2/3 SS, d(1/2, 1/2) + 1/3 SS, d(1).

6There are other axioms that uniquely characterize the Shannon entropy (cf. Klir 2006, Sec. 3.2.2).
7We set x log x := 0 for x = 0.
8For a discussion of the different interpretations of probability, see, for instance, Howson 1995,

Gillies 2000, and Mellor 2005.
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to be part of the ‘furniture of the world.’ The two most prominent ontic ap-
proaches are frequentism and the propensity view. On the frequentist approach,
probabilities are long-run frequencies of certain events. On the propensity view,
probabilities are tendencies or dispositions inherent in objects or situations.

The emphasis in information theory is on the receiver’s amount of uncer-
tainty about the next incoming message. This suggests that the p(mi) should be
interpreted as epistemic probabilities (credences). While correct as a first stab, a
more nuanced picture emerges once we ask the question of how the values of
the p(mi) are set. Depending on how we understand the nature of the source,
we obtain two very different answers. If the source itself is not probabilistic,
then the p(mi) express the beliefs—and nothing but the beliefs—of receivers.
For proponents of subjective probabilities these probabilities express the indi-
vidual beliefs of an agent, and beliefs may vary between different receivers. The
Objectivists insist that all rational agents must come to the same value assign-
ment. This can be achieved, for instance, by requiring that SS, d(P) be maximal,
which singles out a unique distribution. This method, now known as Jaynes’
Maximum-Entropy Principle, plays a role in statistical mechanics and will be
discussed later.

Alternatively, the source itself can be probabilistic. The probabilities asso-
ciated with the source have to be ontic probabilities of one kind or another
(frequencies, propensities, etc.). In this case agents are advised to use the Prin-
cipal Principle—roughly, the rule that a rational agent’s credence for a certain
event to occur should be equal to the ontic probability (chance) of that event
to occur.9 In Shannon’s setting this means that the p(mi) have to be equal to
the source’s ontic probability of producing the message mi. If this connection is
established, the information of a channel is a measure of an objective property of
a source.

It is worth emphasizing that SS, d(P) is a technical conception of information,
which should not be taken as an analysis of the various senses of ‘information’
in ordinary discourse. In ordinary discourse, information is often equated with
knowledge, propositional content, or meaning. Hence ‘information’ is a property
of a single message. But information, as understood in information theory, is not
concerned with individual messages and their content; its focus is on all messages
a source could possibly send. What makes a single message informative is
not its meaning but the fact that it has been selected from a set of possible
messages.

Given the probability distributions Pm = (pm1 , . . . , pmn) on {m1, . . . , mn},
Ps = (ps1 , . . . , psl ) on {s1, . . . , sl}, and the joint probability distribution (pm1,s1 ,

9The Principal Principle has been introduced by Lewis (1980); for a recent discussion see Frigg &
Hoefer 2010.
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pm1,s2 , . . . , pmn ,sl )
10 on {m1s1, m1s2, . . . , mnsl}, the conditional Shannon entropy is

defined as
SS, d(Pm | Ps) :=

l

Â
j=1

psj

n

Â
k=1

pmk ,sj

psj

log
pmk ,sj

psj

. (5)

It measures the average information received from a message mk, given that a
message sj has been received before.

The Shannon entropy can be generalized to the continuous case. Let p(x) be a
probability density. The continuous Shannon entropy is (where ‘S’ is for ‘Shannon’
and ‘c’ for ‘continuous’)

SS, c(p) = �
Z

R
p(x) log p(x)dx, (6)

if the integral exists. The generalization of (6) to densities of n variables x1, . . . , xn
is straightforward. If p(x) is positive, except for a set of Lebesgue measure
zero, exactly on the interval [a, b] (a, b 2 R), then SS, c reaches its maximum,
log(b�a), for p(x) = 1/(b�a) in [a, b], and is zero elsewhere. Intuitively, ev-
ery change towards equalization of p(x) leads to an increase in entropy. For
probability densities which are, except for a set of measure zero, positive every-
where on R, the question of the maximum is more involved. If the standard
deviation is held fixed at value s, then SS, c reaches its maximum for a Gauss-
ian p(x) =

�
1
�p

2p s) exp(�x2/2s2), and the maximum value of the entropy is
log
�p

2pe s
�

(Ihara 1993, Sec. 3.1; Shannon &Weaver 1949, pp. 88–9).
There is an important difference between the discrete and the continuous

Shannon entropy. In the discrete case, the value of the Shannon entropy is
uniquely determined by the probability measure over the messages. In the
continuous case the value depends on the coordinates we choose to describe
the messages. Hence the continuous Shannon entropy cannot be regarded as
measuring information, since an information measure should not depend on the
way in which we describe a situation. But usually we are interested in entropy
differences rather than in absolute values, and it turns out that entropy differences
are coordinate-independent and the continuous Shannon entropy can be used to
measure differences in information (Ihara 1993, pp. 18–20; Shannon &Weaver
1949, pp. 90–1).11

We now turn to two other notions of information-theoretic entropy, namely
Hartley’s entropy and Rényi’s entropy. The former preceded Shannon’s entropy;
the latter is a generalization of Shannon’s entropy. One of the first accounts of

10The outcomes mi and sj are not assumed to be independent.
11This coordinate-dependence reflects a deeper problem: the uncertainty reduced by receiving a

message of a continuous distribution is infinite and hence not measured by SS, c. Yet by approximating
a continuous distribution by discrete distributions, one obtains that SS, c measures differences in
information (Ihara 1993, p. 17).
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information was introduced by Hartley (1928). Assume that m := {m1, . . . , mn}
(n2N) represents mutually exclusive possible alternatives and that one of the
alternatives is true, but we do not know which one. How can we measure the
amount of information gained when knowing which of these n alternatives is
true; or, equivalently, how can we measure the uncertainty associated with these
n possibilities? Hartley postulated that any function SH : N ! R+ answering
this question has to satisfy the following axioms:

1. Monotonicity. The uncertainty increases with n, that is, SH(n)  SH(n+1)
for all n 2 N.

2. Branching. The measure of information is independent of how the process
is divided into parts: SH(n.m) = SH(n)+SH(m), where ‘n.m’ means that
there are n times m alternatives.

3. Normalization. By convention, SH(2) = 1.

Again, there is exactly one function satisfying these axioms, namely SH(n) =
log n (Klir 2006, p. 26), which is now referred to as the Hartley entropy.

On the face of it this entropy is based solely on the concept of mutually
exclusive alternatives, and it does not invoke probabilistic assumptions. How-
ever, views diverge on whether this is the full story. Those who deny this
argue that the Hartley entropy implicitly assumes that all alternatives have equal
weight. This amounts to assuming that they have equal probability, and hence
the Hartley entropy is a special case of the Shannon entropy, namely the Shannon
entropy for the uniform distribution. Proponents of the former view argue that
Hartley’s notion of alternatives does not presuppose probabilistic concepts and
is therefore independent of Shannon’s (cf. Klir 2006, pp. 25–30).

The Rényi entropies generalize the Shannon entropy. As with the Shannon en-
tropy, assume a probability distribution P = (p1, . . . , pn) over m = {m1, . . . , mn}.
Require of a measure of information that it satisfies all the axioms of the Shannon
entropy except for branching. Rényi argues that, unlike in the cases of the other
axioms, it is unclear whether a measure of information should satisfy branching
and hence whether branching should be on the list of axioms (Rényi 1961). If
the outcomes of two independent events with respective probabilities p and q
are observed, we want the total received information to be the sum of the two
partial informations. This implies that the amount of information received for
message mi is �log pi (Jizba & Arimitsu 2004). If a weighted arithmetic mean
is taken over the �log pi, we obtain the Shannon entropy. Now, is it possible
to take another mean such that the remaining axioms about information are
satisfied? If so, these quantities are also possible measures of the average infor-
mation received. The general definition of a mean over �log pi weighted by pi
is that it is of the form f�1�Ân

i=1 pi f (�log pi)
�

where f is a continuous, strictly
monotonic, and invertible function. For f (x) = x we obtain the Shannon entropy.
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There is only one alternative mean satisfying the axioms, namely f (x) = 2(1�q)x

(q2 (0, •), q 6= 1). It corresponds to the Rényi entropy of order q:

SR, q(P) :=
1

1�q
log

n

Â
k=1

pq
k.

The limit of the Rényi entropy for q ! 1 gives the Shannon entropy, i.e.
limq!1 SR, q(P) = Ân

k=1 �pk log pk (Jizba & Arimitsu 2004; Rényi 1961), and
for this reason one sets SR, 1(P) := Ân

k=1 �pk log pk.

4 Statistical mechanics
Statistical mechanics (SM) aims to explain the behavior of macroscopic systems
in terms of the dynamical laws governing their microscopic constituents.12 One
of the central concerns of SM is to provide a microdynamical explanation of
the Second Law of TD. The strategy to achieve this goal is to first introduce a
mechanical notion of entropy, then to argue that it is in some sense equivalent
to the TD entropy, and finally to show that it tends to increase if its initial value
is low. There are two nonequivalent frameworks in SM, one associated with
Boltzmann and one with Gibbs. In this section we discuss the various notions of
entropy introduced within these frameworks and briefly indicate how they have
been used to justify the Second Law.

SM deals with systems consisting of a large number of microconstituents. A
typical example of such a system is a gas, which is made up of a large number n of
particles of mass m confined to a vessel of volume V. And in this essay we restrict
attention to gases. Furthermore we assume that the system is isolated from its
environment and hence that its total energy E is conserved. The behavior of
such systems is usually modeled by continuous measure-preserving dynamical
systems. We discuss such systems in detail in the next section; for the time being
it suffices to say that the phase space of the system is 6n-dimensional, having
three position and three momentum coordinates for every particle. This space
is called the system’s g-space Xg. Then xg denotes a vector in Xg, and the xg

are called microstates. The set Xg is the Cartesian product of n copies of the
6-dimensional phase space of one particle, called the particle’s µ-space Xµ.13 In
what follows, xµ = (x, y, z, px, py, pz) denotes a vector in Xµ; moreover, we use
~r = (x, y, z) and ~p = (px, py, pz).14

In a seminal paper published in 1872 Boltzmann set out to show that the
Second Law of TD is a consequence of the collisions between the particles of

12For an extended discussion of SM, see Frigg 2008, Sklar 1993, and Uffink 2007.
13This terminology has been introduced by Ehrenfest & Ehrenfest-Afanassjewa (1911) and has

been used since then. The subscript ‘µ’ here stands for ‘molecule’ and has nothing to do with a
measure.

14We use momentum rather than velocity since this facilitates the discussion of the connection of
Boltzmann entropies with other entropies. One could also use the velocity ~v = ~p/m.
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a gas. The distribution f (xµ, t) specifies the fraction of particles in the gas
whose position and momentum lies in the infinitesimal interval (xµ, xµ+ dxµ) at
time t. In 1860 Maxwell had shown that for a gas of identical and noninteracting
particles in equilibrium the distribution had to be what is now called the Maxwell–
Boltzmann distribution:

f (xµ, t) =
cV(~r) (2pmkT)�3/2

kVk exp
⇣
� ~p 2

2mkT

⌘
,

where~p2 := p2
x + p2

y + p2
z , the factor k is Boltzmann’s constant, T the temperature

of the gas, kVk the volume of the vessel, and cV(~r) the characteristic function of
the set V (it is 1 if~r 2V, and 0 otherwise).

The state of a gas at time t is described by a distribution f (xµ, t), and the
dynamics of the gas can be studied by considering how this distribution evolves
over time. To this end, Boltzmann introduced the quantity

HB( f ) :=
Z

Xµ

f (xµ, t) log f (xµ, t) dxµ

(where ‘B’ is for ‘Boltzmann’), and set out to prove on the basis of mechanical
assumptions about the collisions of gas molecules that HB( f ) must decrease
monotonically over the course of time and that it reaches its minimum at equilib-
rium, where f (xµ, t) becomes the Maxwell–Boltzmann distribution. This result,
which is derived using the Boltzmann Equation, is known as the H-Theorem, and
it is generally regarded as problematic.15

The problems of the H-Theorem are not our concern. What matters is that
the fine-grained Boltzmann entropy SB, f (also continuous Boltzmann entropy) is
proportional to HB( f ):

SB, f( f ) := �knHB( f ). (7)

Therefore, if the H-Theorem were true, it would establish that the Boltzmann
entropy increased monotonically and reached a maximum once the system’s dis-
tribution becomes the Maxwell–Boltzmann distribution. Thus, if we associated
the Boltzmann entropy with the thermodynamic entropy, this would amount to
a justification of the Second Law.

How are we to interpret the distribution f (xµ, t)? As introduced, f (xµ, t) re-
flects the distribution of the particles: it says what fraction of the particles in the
gas are located in a certain region of the phase space. So it can be interpreted
as an (approximate) actual distribution, involving no probabilistic notions. But
f (xµ, t) can also be interpreted probabilistically, as specifying the probability
that a particle drawn at random (with replacement) from the gas is located in a
particular part of the phase space. This probability is most naturally interpreted
in a frequentist way: if we keep drawing molecules at random from the gas, then

15See Emch & Liu 2002, pp. 92–105, and Uffink 2007, pp. 962–74.
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f (xµ, t) gives us the relative frequency of molecules drawn from a certain region
of phase space.

In response to criticism of his 1872 derivation, Boltzmann presented an
altogether different approach to justifying the Second Law in 1877.16 Since
energy is conserved and the system is confined to volume V, each state of a
particle lies within a finite subregion Xµ, a of Xµ, the accessible region of Xµ.
Now we coarse-grain Xµ, a, i.e. we choose a partition w =

�
wi | i = 1, . . . , l

 

of Xµ, a.17 The cells wi are taken to be rectangular with respect to the position
and momentum coordinates and of equal volume dw, i.e. µ(wi) = dw, for all
i = 1, . . . , l, where µ is the Lebesgue measure on the 6-dimensional phase
space of one particle. The coarse-grained microstate, also called arrangement, is a
specification of which particle’s state lies in which cell of w.

The macroscopic properties of a gas (e.g. temperature, pressure) do not
depend on which specific molecule is in which cell of the partition but are
determined solely by the number of particles in each cell. A specification of how
many particles are in each cell is called a distribution D = (n1, . . . , nl), meaning
that n1 particles are in cell w1, etc. Clearly, Âl

j=1 nj = n. We label the different
distributions with a discrete index i and denote the i th distribution by Di. The
ratio Di/n can be interpreted in the same way as f (xµ, t) above.

Several arrangements correspond to the same distribution. More precisely,
elementary combinatorial considerations show that

G(D) :=
n!

n1! · · · nl !
(8)

arrangements are compatible with a given distribution D. The so-called coarse-
grained Boltzmann entropy (also combinatorial entropy) is defined as (where ‘B’ is
for ‘Boltzmann’ and ‘w’ denotes the partition)

SB, w(D) := k log G(D). (9)

Since G(D) is the number of arrangements compatible with a given distribu-
tion and the logarithm is an increasing function, SB, w(D) is a natural measure
for the number of arrangements that are compatible with a given distribution
in the sense that the greater SB, w(D), the more arrangements are compatible
with a given distribution D. Hence SB, w(D) is a measure of how much we can
infer about the arrangement of a system on the basis of its distribution. The
higher SB, w(D), the less information a distribution conveys about the arrange-
ment of the system.

16See Uffink 2007, pp. 974–83, and Frigg 2008, pp. 107–13. Frigg (2009, 2010b) provides a discussion
of Boltzmann’s use of probabilities.

17We give a rigorous definition of a partition in the next section.
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Boltzmann then postulated that the distribution with the highest entropy was
the equilibrium distribution, and that systems had a natural tendency to evolve
from states of low to states of high entropy. However, as later commentators,
most notably Ehrenfest & Ehrenfest-Afanassjewa (1911), pointed out, for the
latter to happen, further dynamical assumptions (e.g. ergodicity) are needed. If
such assumptions are in place, the ni evolve so that SB, w(D) increases and then
stays close to its maximum value most of the time. This has engendered a large
literature, covering many aspects. Two recent reviews are Lavis 2004 and 2008.

There is a third notion of entropy in the Boltzmannian framework, and this
notion is preferred by contemporary Boltzmannians.18 We now consider Xg

rather than Xµ. Since there are constraints on the system, its state will lie within
a finite subregion Xg, a of Xg, the accessible region of Xg.19

If the gas is regarded as a macroscopic object rather than as a collection
of molecules, its state can be characterized by a small number of macroscopic
variables such as temperature, pressure, and density. These values are then
usually coarse-grained so that all values falling into a certain range are regarded
as belonging to the same macrostate. Hence the system can be described as
being in one of a finite number of macrostates Mi (i = 1, . . . , m). The set of
the Mi is complete in that at any given time t the system must be in exactly
one Mi. It is a basic posit of the Boltzmann approach that a system’s macrostate
supervenes on its fine-grained microstate, so that a change in the macrostate
must be accompanied by a change in the fine-grained microstate. Therefore, to
every given microstate xg there corresponds exactly one macrostate M(xg). But
many different microstates can correspond to the same macrostate. We therefore
define

XMi :=
n

xg 2 Xg, a

��� Mi = M(xg)
o

(i = 1, . . . , m),

which is the subset of Xg, a consisting of all microstates that correspond to
macrostate Mi. The XMi are called macroregions. Clearly, they form a partition
of Xg, a.

The Boltzmann entropy of a macrostate M is (where ‘B’ is for ‘Boltzmann’
and ‘m’ is for ‘macrostate’)20

SB, m(M) := k log µ(XM). (10)

18See, for instance, Goldstein 2001 and Lebowitz 1999b.
19These constraints include conservation of energy. Therefore, Xg, a is (6n�1)-dimensional. This

causes complications because the measure µ needs to be restricted to the (6n�1)-dimensional energy
hypersurface and the definitions of macroregions become more complicated. In order to keep things
simple, we assume that Xg, a is 6n-dimensional. For the (6n�1)-dimensional case, see Frigg 2008,
pp. 107–14.

20See e.g. Goldstein 2001, p. 43, and Lebowitz 1999b, p. 348.
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Hence SB, m(M) measures the portion of the system’s g-space that is taken up
by microstates that correspond to M. Consequently, SB, m(M) measures how
much we can infer about where in g-space the system’s microstate lies: the
higher SB, m(M), the larger the portion of the g-space in which the system’s
microstate could be.

Given this notion of entropy, the leading idea is to argue that the dynamics
is such that SB, m increases. That is, the evolution of xg 2 Xg, a is such that the
sequence of macrostates M(xg) gives increasing SB, m(Mg).

Most contemporary Boltzmannians aim to achieve this by arguing that
entropy-increasing behavior is typical; see, for instance, Goldstein 2001. These
arguments are the subject of ongoing controversy (see Frigg 2009, 2010b).

We now turn to a discussion of the interrelationships between the various
entropy notions introduced so far. Let us begin with SB, w and SB, m. The former
is a function of a distribution over a partition of Xµ, a, while SB, m takes cells
of a partition of Xg, a as arguments. The crucial point to realize is that each
distribution corresponds to a well-defined region of Xg, a: for the choice of a
partition of Xµ, a induces a partition of Xg, a (because Xg is the Cartesian product
of n copies of Xµ). Hence any Di determines a unique region XDi ✓ Xg, a so that
all states xg 2 XDi have distribution Di:

XDi :=
n

xg 2 Xg

��� D(xg) = Di

o
, (11)

where D(xg) is the distribution determined by the state xg (via the arrange-
ment that xg determines—cf. the discussion of Eqn 8). Because all cells have
measure dw, Eqns (8) and (11) imply:

µ(XDi ) = G(Di) (dw)n. (12)

Given this, the question of the relation between SB, w and SB, m comes down
to the question of how the XDi and the XMi relate. Since there are no canonical
procedures to define what we mean by ‘macrostate,’ and hence to construct
the XMi , one can use the above considerations about how distributions determine
regions to construct the XMi , making XDi = XMi true by definition. So one can
say that, conceptually speaking, SB, w is a special case of SB, m (or that it is a
concrete realization of the more abstract notion of SB, m). If XDi = XMi , Eqns
(10) and (12) imply:

SB, m(Mi) = k log G(Di) + kn log(dw). (13)

Hence SB, m(Mi) equals SB, w up to an additive constant.
How are SB, m and SB, f related? Assume that XDj = XMj , that the system

is large, and that there are many particles in each cell (nj � 1 for all j ),
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which allows us to use Stirling’s Formula: n! ⇡
p

2pn (n/e)n. Plugging Eqn (8)
into Eqn (13) yields (Tolman 1938, Ch. 4):

log µ(XMj) ⇡ n log n �
l

Â
i=1

ni log ni + n log(dw). (14)

Clearly, for the ni used in the definition of SB, w we have

ni ⇡ ñi(t) := n
Z

wi
f (xµ, t) dxµ.

Unlike the ni, the ñi need not be integers. If f (xµ, t) does not vary much in each
cell wi, we find:

l

Â
i=1

ni log ni ⇡ nHB + n log n + n log(dw). (15)

Comparing (14) and (15) yields �nkHB ⇡ k log µ(XMj), i.e. SB, m ⇡ SB, f. Hence,
for large numbers of particles, SB, m and SB, f are approximately equal.

How are SB, m and the Shannon entropy related? According to Eqn (14),

SB, m(Mj) ⇡ �k
l

Â
i=1

ni log ni + C(n, dw),

where C(n, dw) is a constant depending on n and dw. Introducing the quotients
pj := nj/n, we find

SB, m(Mj) ⇡ �nk
l

Â
i=1

pi log pi + C̃(n, dw), (16)

where C̃(n, dw) is a constant depending on n and dw. The quotients pi are finite
relative frequencies for a particle being in wi. The pi can be interpreted as the
probability of finding a randomly chosen particle in cell wi. Then, if we regard
the wi as messages, SB, m(Mi) is equivalent to the Shannon entropy up to the
multiplicative constant nk and the additive constant C̃.

Finally, how does SB, f relate to the TD entropy? The TD entropy of an ideal
gas is given by the Sackur–Tetrode Formula

STD = nk log

 ✓
T
T0

◆3/2 V
V0

!
, (17)

where T0 and V0 are the temperature and the volume of the gas at reference
point E (see Reiss 1965, pp. 89–90). One can show that SB, f for the Maxwell–
Boltzmann distribution is equal to Eqn (17) up to an additive constant (Emch &
Liu 2002, p. 98; Uffink 2007, p. 967). This is an important result. However, it is
an open question whether this equivalence holds for systems with interacting
particles, that is, for systems different from ideal gases.
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We now turn our attention to Gibbsian SM. The object of study in the Gibbs
approach is not an individual system (as in the Boltzmann approach) but an
ensemble—an uncountably infinite collection of independent systems that are
all governed by the same equations, but whose states at a time t differ. The
ensemble is specified by an everywhere positive density function r(xg, t) on
the system’s g-space: r(xg, t) dxg is the infinitesimal fraction of systems in the
ensemble whose state lies in the 6n-dimensional interval (xg, xg+dxg). The
time-evolution of the ensemble is then associated with changes in the density
function in time.

Thus r(xg, t) is a probability density, so that the probability at time t of
finding the state of a system in region R ✓ Xg is

pt(R) =
Z

R
r(xg, t) dxg.

The fine-grained Gibbs entropy (also known as ensemble entropy) is defined as
(where ‘G’ is for ‘Gibbs’ and ‘f’ is for ‘fine-grained’)

SG, f(r) := �k
Z

Xg

r(xg, t) log r(xg, t) dxg.

How to interpret r(xg, t) (and hence pt(R)) is far from clear. Edwin Jaynes
proposed to interpret r(xg, t) epistemically; we turn to his approach to SM below.
There are (at least) two possible ontic interpretations: a frequency interpretation
and a time-average interpretation. On the frequency interpretation one thinks
about an ensemble as analogous to an urn, but rather than containing balls of dif-
ferent colors the ensemble contains systems in different microstates (Gibbs 1981,
p. 163). The density r(xg, t) specifies the frequency with which we draw systems
in a certain microstate. On the time-average interpretation, r(xg, t) encodes the
fraction of time that the system would spend, in the long run, in each of the
various regions of the phase space if it was left to its own. Although plausible at
first blush, both interpretations face serious difficulties, and it is unclear whether
these can be met (see Frigg 2008, pp. 153–5).

If we regard SG, f(r) as equivalent to the TD entropy, then SG, f(r) is expected
to increase over time (during an irreversible adiathermal process) and to assume
a maximum in equilibrium. However, systems in SM are Hamiltonian, and it is
a consequence of an important theorem of Hamiltonian mechanics, Liouville’s
Theorem, that SG, f is a constant of motion: dSG, f

�
dt = 0. So SG, f remains constant,

and hence the approach to equilibrium cannot be described in terms of an
increase in SG, f.

The standard way to solve this problem is to instead consider the coarse-
grained Gibbs entropy. This solution was suggested by Gibbs (1902, Ch. 12)
himself and has since been endorsed by many (e.g. Penrose 1970). Consider a
partition w of Xg where the cells wi are of equal volume dw. The coarse-grained
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density r̄(xg, t) is defined as the density that is uniform within each cell, taking
as its value the average value in this cell:

r̄w(xg, t) :=
1

dw

Z

w(xg)
r(x0g, t) dx0g ,

where w(xg) is the cell in which xg lies. We can now define the coarse-grained
Gibbs entropy (where ‘G’ stands for ‘Gibbs’ and ‘w’ for the partition):

SG, w(r) := SG, f(r̄w) = �k
Z

Xg

r̄w log r̄w dxg.

One can prove that SG, w � SG, f; the equality holds iff the fine-grained dis-
tribution is uniform over the cells of the coarse-graining (see Lavis 2004, p. 229;
Wehrl 1978, p. 672). The coarse-grained density r̄w is not subject to Liouville’s
Theorem and is not a constant of motion. So r̄w could, in principle, increase over
time.21

How do the two Gibbs entropies relate to the other notions of entropy in-
troduced so far? The most straightforward connection is between the Gibbs
entropy and the continuous Shannon entropy, which differ only by the mul-
tiplicative constant k. This realization provides a starting point for Jaynes’s
(1983) information-based interpretation of SM, at the heart of which lies a rad-
ical reconceptualization of SM. On his view, SM is about our knowledge of the
world, not about the world. The probability distribution represents our state
of knowledge about the system and not some matter of fact about the system:
r(xg, t) represents our lack of knowledge about a microstate of a system given
its macrocondition, and entropy is a measure of how much knowledge we lack.

Jaynes then postulated that to make predictions we should always use the
distribution that maximizes uncertainty under the given macroscopic constraints.
This means that we are asked to find the distribution for which the Gibbs entropy
is maximal, and then use this distribution to calculate expectation values of
the variables of interest. This prescription is now known as Jaynes’ Maximum-
Entropy Principle. Jaynes could show that this principle recovers the standard SM

distributions (e.g. the microcanonical distribution for isolated systems).
The idea behind this principle is that we should always choose the distribu-

tion that is maximally noncommittal with respect to the missing information,
because by not doing so we would make assertions for which we have no ev-
idence. Although intuitive at first blush, the Maximum-Entropy Principle is
fraught with controversy (see, for instance, Howson & Urbach 2006, pp. 276–
88).22

21There is a thorny issue under which conditions the coarse-grained entropy actually increases
(see Lavis 2004).

22For a discussion of Jaynes’ take on nonequilibrium SM, see Sklar 1993, pp. 255–7. Furthermore,
Tsallis (1988) proposed a way of deriving the main distributions of SM which is very similar to Jaynes’,
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A relation between SG, f(r) and the TD entropy can be established only case
by case. SG, f(r) coincides with STD in relevant cases arising in practice. For
instance, the calculation of the entropy of an ideal gas from the microcanonical
ensemble yields equation (17)—up to an additive constant (Kittel 1958, p. 39).

Finally, how do the Gibbs and Boltzmann entropies relate? Let us start
with the fine-grained entropies SB, f and SG, f. Assume that the particles are
identical and noninteracting. Then r(xg, t) = ’n

i=1 ri(xµ, t), where ri is the
density pertaining to particle i. Then

SG, f(r) := �kn
Z

Xµ

r1(xµ, t) log r1(xµ, t) dxµ, (18)

which is formally equivalent to SB, f (7). The question is how r1 and f relate, since
they are different distributions. Our f is the distribution of n particles over the
phase space; r1 is a one-particle function. Because the particles are identical and
noninteracting, we can apply the Law of Large Numbers to conclude that it is
very likely that the probability of finding a given particle in a particular region of
phase space is approximately equal to the proportion of particles in that region.
Hence r1 ⇡ f and SG, f ⇡ SB, f.

A similar connection exists between the coarse-grained entropies SG, m and
SB, w. If the particles are identical and noninteracting, one finds

SG, w = �kn
l

Â
i=1

Z

wi

Wi
dw

log
Wi
dw

dxµ = �kn
l

Â
i=1

Wi log Wi + C(n, dw),

where Wi =
R

wi
r1 dxµ. This is formally equivalent to SB, m (16), which in turn is

equivalent (up to an additive constant) to SB, w (9). Again for large n we can
apply the Law of Large Numbers to conclude that it is very likely that Wi ⇡ pi
and SG, m = SB, w.

It is crucial for the connections between the Gibbs and the Boltzmann entropy
that the particles are identical and noninteracting. It is unclear whether the
conclusions hold if these assumptions are relaxed.23

5 Dynamical-systems theory

In this section we focus on the main notions of entropy in dynamical-systems
theory, namely the Kolmogorov–Sinai entropy (KS entropy) and the topological

based on establishing a connection between what is now called the Tsallis entropy and the Rényi
entropy. A similar attempt using only the Rényi entropy has been undertaken by Bashkirov (2006).

23Jaynes (1965) argues that the Boltzmann entropy differs from the Gibbs entropy except for
noninteracting and identical particles. However, he defines the Boltzmann entropy as (18). As argued,
(18) is equivalent to the Boltzmann entropy if the particles are identical and noninteracting, but this
does not appear to be generally the case. So Jaynes’ (1965) result seems useless.
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entropy.24 They occupy center stage in chaos theory—a mathematical theory of
deterministic yet irregular and unpredictable, or even random, behavior.25

We begin by briefly recapitulating the main tenets of dynamical-systems
theory.26 The two main elements of every dynamical system are a set X of all
possible states x, the phase space of the system, and a family of transformations
Tt : X!X mapping the phase space to itself. The parameter t is time, and the
transformations Tt(x) describe the time-evolution of the system’s instantaneous
state x 2 X. For the systems we have discussed in the last section, X consists
of the positions and momenta of all particles in the system and Tt is the time-
evolution of the system under the dynamical laws. If t ranges over the positive
real numbers and zero (i.e. t 2 R+

0 ), the system’s dynamics is continuous. If
t ranges over the natural numbers including zero (i.e. t 2 N0), the dynamics
is discrete.27 The family Tt defining the dynamics must have the structure of a
semigroup where Tt1+t2(x) = Tt2

�
Tt1(x)

�
for all t1, t2 either in R+

0 (continuous
time) or in N0 (discrete time).28 The continuous trajectory through x is the set�

Tt(x)
�� t2R+

0
 

; the discrete trajectory through x is the set
�

Tt(x)
�� t2N0

 
.

Continuous time-evolutions often arise as solutions to differential equations
of motion (such as Newton’s or Hamilton’s). In dynamical-systems theory the
class of allowable equations of motion is usually restricted to ones for which
solutions exist and are unique for all times t 2 R. Then { Tt | t2R } is a group,
where Tt1+t2(x) = Tt2

�
Tt1(x)

�
for all t1, t2 2 R, and is often called a flow. In what

follows we only consider continuous systems that are flows.
For discrete systems the maps defining the time-evolution neither have to

be injective nor surjective, and so { Tt | t2N0 } is only a semigroup. All Tt are
generated as iterative applications of the single map T1 := T : X ! X because
Tt := Tt, and we refer to the Tt(x) as iterates of x. Iff T is invertible, Tt is defined
both for positive and negative times and { Tt | t2Z } is a group.

It follows that all dynamical systems are forward-deterministic: any two trajec-
tories that agree at one instant of time agree at all future times. If the dynamics of
the system is invertible, the system is deterministic tout court: any two trajectories
that agree at one instant of time agree at all times (Earman 1971).

24There are also a few other, less important entropies in dynamical-systems theory, e.g. the Brin–
Katok local entropy (see Mañé 1987).

25For a discussion of the kinds of randomness in chaotic systems, see Berkovitz, Frigg & Kronz
2006 and Werndl 2009a, 2009b, 2009d.

26For more details, see Cornfeld, Fomin & Sinai 1982 and Petersen 1983.
27The reason not to choose t 2 Z is that some maps, e.g. the logistic map, are not invertible.
28S = {a, b, c, . . .} is a semigroup iff there is a multiplication operation ‘·’ on S so that (i) a·b 2 S for

all a, b 2 S; (ii) a ·(b·c) = (a·b) ·c for all a, b, c 2 S; (iii) there is an e 2 S such that e·a = a·e = a for
all a 2 S. A semigroup as defined here is also called a monoid. If for every a 2 S there is an a�1 2 S
so that a�1 · a = a · a�1 = e, then S is a group.
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Two kinds of dynamical systems are relevant for our discussion: measure-
theoretical and topological dynamical ones. A topological dynamical system has a
metric defined on X.29 More specifically, a discrete topological dynamical system is a
triple (X, d, T) where d is a metric on X and T : X!X is a mapping. Continuous
topological dynamical systems (X, d, Tt) (t 2 R) are defined accordingly, where Tt is
the above semigroup. Topological systems allow for a wide class of dynamical
laws since the Tt do not have to be either injective or surjective.

A measure-theoretical dynamical system is one whose phase space is endowed
with a measure.30 More specifically, a discrete measure-theoretical dynamical sys-
tem (X, S, µ, T) consists of a phase space X, a s-algebra S on X, a measure µ,
and a measurable transformation T : X ! X. If T is measure-preserving, i.e.
µ
�
T�1(A)

�
= µ(A) for all A 2 S, where T�1(A) :=

�
x 2 X | T(x) 2 A

 
, we

have a discrete measure-preserving dynamical system. It only makes sense to speak
of measure-preservation if T is surjective. Therefore, we suppose that the T in
measure-preserving systems is surjective. However, we do not presuppose that
it is injective, because some important maps are not injective, e.g. the logistic
map.

A continuous measure-theoretical dynamical system is a quadruple (X, S, µ, Tt),
where { Tt | t 2 R+

0 } is the above semigroup of transformations which are
measurable on X⇥R+

0 , and the other elements are as above. Such a system is
a continuous measure-preserving dynamical system if Tt is measure-preserving for
all t (again, we presuppose that all Tt are surjective).

We make the (common) assumption that the measure of measure-preserving
systems is normalized: µ(X) = 1. The motivation for this is that normalized
measures are probability measures, making it possible to use probability calculus.
This raises the question of how to interpret these probabilities. This issue is par-
ticularly thorny because it is widely held that there cannot be ontic probabilities
in deterministic systems: either the dynamics of a system is deterministic or
chancy, but not both. This dilemma can be avoided if one interprets probabilities
epistemically, i.e. as reflecting lack of knowledge. As we saw in the previous
section, this is what Jaynes did in SM. Although sensible in some situations, this
interpretation is clearly unsatisfactory in others. Roulette wheels and dice are
paradigmatic examples of chance setups, and it is widely held that there are ontic
chances for certain events to occur: the chance of getting a ‘3’ when throwing a
die is 1/6, and this is so because of how the world is and it has nothing to do with
what we happen to know about it. Yet, from a mechanical point of view, these
are deterministic systems. Consequently, there must be ontic interpretations of
probabilities in deterministic systems. There are at least three options available.

29For an introduction to metric spaces, see Sutherland 2002.
30See Halmos 1950 for an introduction to measures.
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The first is the time-average interpretation already mentioned above: the proba-
bility of an event E is the fraction of time that the system spends (in the long run)
in the region of X associated with E (Falconer 1990, p. 254; Werndl 2009d). The
ensemble interpretation defines the measure of a set A at time t as the fraction of
solutions starting from some set of initial conditions that are in A at t. A third
option is the so-called Humean Best-System Analysis originally proposed by
Lewis (1980). Roughly speaking, this interpretation is an elaboration of (finite)
frequentism. Lewis’ own assertions notwithstanding, this interpretation works
in the context of deterministic systems (Frigg & Hoefer 2010).

Let us now discuss the notions of volume-preservation and measure-preser-
vation. If the preserved measure is the Lebesgue measure, the system is volume-
preserving. If the system fails to be volume-preserving, then it is dissipative.
Being dissipative is not the failure of measure-preservation with respect to any
measure (as a common misconception has it); it is nonpreservation of the Lebesgue
measure. In fact many dissipative systems preserve measures. More precisely,
if (X, S, l, T) (or (X, S, l, Tt)) is dissipative (l is the Lebesgue measure), often,
although not always, there exists a measure µ 6= l such that (X, S, µ, T) (resp.
(X, S, µ, Tt)) is measure-preserving. The Lorenz system and the logistic maps
are cases in point.

A partition a = { ai | i = 1, . . . , n } of (X, S, µ) is a collection of nonempty,
nonintersecting measurable sets that cover X, that is: ai 6= ∆ for all i 2 {1, . . . , n},
ai \ aj = ∆ for all i 6= j, and X =

Sn
i=1 ai. The ai are called atoms. If a is a

partition, T�1
t a := { T�1

t ai | i = 1, . . . , n } is a partition too. The set Tt a :=
{ Tt ai | i = 1, . . . , n } is a partition iff Tt is invertible. Given two partitions
a = { ai | i = 1, . . . , n } and b = { b j | j = 1, . . . , m }, the join a_b is defined as�

ai\b j | i = 1, . . . , n; j= 1, . . . , m
 

.
This concludes our brief recapitulation of dynamical-systems theory. The

rest of this section concentrates on measure-preserving systems. This is not
very restrictive because many systems, including all deterministic Newtonian
systems, many dissipative systems, and all chaotic systems (Werndl 2009d), fall
into this class.

Let us first discuss the KS entropy. Given a partition a = {a1, . . . , ak}, let
H(a) := �Âk

i=1 µ(ai) log µ(ai). For a discrete system (X, S, µ, T) consider

Hn(a, T) := 1/n H
�
a _ T�1a _ · · · _ T�n+1a

�
.

The limit H(a, T) := limn!• Hn(a, T) exists, and the KS entropy is defined as
the supremum over all partitions a (Petersen 1983, p. 240):

SKS(X, S, µ, T) := sup
a

H(a, T). (19)

For a continuous system (X, S, µ, Tt) it can be shown that for any t0 6= 0 with
�• < t0 < •,
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SKS(X, S, µ, Tt0) = |t0| SKS(X, S, µ, T1),

where SKS(X, S, µ, Tt0) is the KS entropy of the discrete system (X, S, µ, Tt0) and
SKS(X, S, µ, T1) is the KS entropy of the discrete system (X, S, µ, T1) (Cornfeld,
Fomin & Sinai 1982). Consequently, the KS entropy of a continuous system
(X, S, µ, Tt) is defined as SKS(X, S, µ, T1), and when discussing the meaning of
the KS entropy it suffices to focus on (19).31

How can the KS entropy be interpreted? There is a fundamental connection
between dynamical-systems theory and information theory, as follows. For a
dynamical system (X, S, µ, T) each x 2 X produces, relative to a partition a, an
infinite string of messages m0m1m2 . . . in an alphabet of k letters via the coding
mj = ai iff Tj(x) 2 ai ( j � 0). Assume that (X, S, µ, T) is interpreted as the
source. Then the output of the source are the strings m0m1m2 . . . If the measure
is interpreted as a probability density, we have a probability distribution over
these strings. Hence the whole apparatus of information theory can be applied
to these strings.32 In particular, notice that H(a) is the Shannon entropy of P =�
µ(a1), . . . , µ(ak)

�
and so measures the average information of the message ai.

In order to motivate the KS entropy, consider for a := {a1, . . . , ak} and
b := {b1, . . . , bl}:

H(a | b) :=
l

Â
j=1

µ(b j)
k

Â
i=1

µ(ai\b j)

µ(b j)
log

µ(ai\b j)

µ(b j)
.

Recalling the definition of the conditional Shannon entropy (5), we see that
H
�
a | Wn

k=1 T�ka
�

measures the average information received about the present
state of the system whatever n past states have already been recorded. It is
proven (Petersen 1983, pp. 241–2) that

SKS(X, S, µ, T) = sup
a

lim
n!•

H
�
a |Wn

k=1 T�ka
�
. (20)

Hence the KS entropy is linked to the Shannon entropy; namely it measures
the highest average information received about the present state of the system
relative to a coding a given the past states that have been received.

Clearly, Eqn (20) implies that

SKS(X, S, µ, T) = sup
a

lim
n!•

1/n
n

Â
k=1

H
�
a |Wk

i=1 T�ia
�
.

31For experimental data the KS entropy, and also the topological entropy (discussed later), is rather
hard to determine. For details, see Eckmann & Ruelle 1985 and Ott 2002; see also Shaw 1985, where
the question is discussed how to define a quantity similar to the KS entropy for dynamical systems
with added noise.

32For details, see Frigg 2004 and Petersen 1983, pp. 227–34.
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Hence the KS entropy can be also interpreted as the highest average of the
average information gained about the present state of the system relative to a
coding a whatever past states have been received (Frigg 2004; 2006a).

This is not the only connection to the Shannon entropy: Let us regard strings
of length n (n2N) produced by the dynamical system relative to a coding a as
messages. The set of all possible n-strings relative to a is b = {b1, . . . , bh} :=
a _ T�1a _ · · · _ T�n+1a (where h2N), and the probability distribution of these
possible strings of length n is µ(bi) (1  i  h). Hence Hn(a, T) measures the
average amount of information which the system produces per step over the
first n steps relative to the coding a, and limn!• Hn(a, T) measures the average
amount of information that the system can produce per step relative to a coding
(cf. Petersen 1983, pp. 227–34).

A positive KS entropy is often linked to chaos. The interpretations just
discussed provide a rationale for this: The Shannon information measures un-
certainty, and this uncertainty is a form of unpredictability (Frigg 2004). Hence
a positive KS entropy means that relative to some codings the behavior of the
system is unpredictable.

Kolmogorov (1958) was the first to connect dynamical-systems theory with
information theory. Based on Kolmogorov’s work, Sinai (1959) introduced
the KS entropy. One of Kolmogorov’s main motivations was the following.33

Kolmogorov conjectured that while the deterministic systems used in science
produce no information, the stochastic processes used in science do produce
information, and the KS entropy was introduced to capture the property of
producing positive information. It was a big surprise when it was found that
also several deterministic systems used in science, e.g. some Newtonian systems
etc., have positive KS entropy. Hence this attempt of separating deterministic
systems from stochastic processes failed (Werndl 2009a).

Due to lack of space we cannot discuss another, quite different, interpretation
of the Kolmogorov–Sinai entropy, where supa H(a, T) is a measure of the highest
average rate of exponential divergence of solutions relative to a partition as time
goes to infinity (Berger 2001, pp. 117–18). This implies that if SKS(X, S, µ, T) > 0,
there is exponential divergence and thus unstable behavior on some regions of
phase space, explaining the link to chaos. This interpretation does not require
that the measure is interpreted as probability.

There is also another connection of the KS entropy to exponential diver-
gence of solutions. The Lyapunov exponents of x measure the mean exponen-
tial divergence of solutions originating near x, where the existence of positive
Lyapunov exponents indicates that, in some directions, solutions diverge ex-
ponentially on average. Pesin’s Theorem states that under certain assumptions

33Another main motivation was to make progress on the problem of which systems are probabilis-
tically equivalent (Werndl 2009c).
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SKS(X, S, µ, T) =
R

X S(x) dµ, where S(x) is the sum of the positive Lyapunov
exponents of x. Another important theorem which should be mentioned is
Brudno’s Theorem, which states that if the system is ergodic and certain other
conditions hold, SKS(X, S, µ, T) equals the algorithmic complexity (a measure of
randomness) of almost all solutions (Batterman &White 1996).

To sum up, the interpretations of the KS entropy as measuring exponential
divergence are not connected to any other notion of entropy or to what these
notions are often believed to capture, such as information (Grad 1961, pp. 323–34;
Wehrl 1978, pp. 221–4). To conclude, the only link of the KS entropy to entropy
notions is with the Shannon entropy.

Let us now discuss the topological entropy, which is always defined only for
discrete systems. It was first introduced by Adler, Konheim & McAndrew (1965);
later Bowen (1971) introduced two other, equivalent definitions.

We first turn to Adler, Konheim & McAndrew’s definition. Let (X, d, T)
be a topological dynamical system where X is compact and T : X ! X is a
continuous function which is surjective.34 Let U be an open cover of X, i.e. a set
U := {U1, . . . , Uk} (k 2 N) of open sets such that

Sk
i=1Ui ◆ X.35 An open cover

V = {V1, . . . , Vl} is said to be an open subcover of an open cover U iff Vj 2U for
all j (1  j  l). For open covers U = {U1, . . . , Uk} and V = {V1, . . . , Vl} let
U _V be the open cover

�
Ui \Vj | 1 i  k; 1 j l

 
. Now for an open cover

U let N(U) be the minimum of the cardinality of an open subcover of U and let
h(U) := log N(U). The following limit exists (Petersen 1983, pp. 264–5):

h(U, T) := lim
n!•

h
�
U _ T�1(U) _ · · · _ T�n+1(U)

�

n
,

and the topological entropy is

Stop, A(X, d, T) := sup
U

h(U, T). (21)

h(U, T) measures how the open cover U spreads out under the dynamics of
the system. Hence Stop, A(X, d, T) is a measure for the highest possible spreading
of an open cover under the dynamics of the system. In other words, the topolog-
ical entropy measures how the map T scatters states in phase space (Petersen
1983, p. 266). Note that this interpretation does not involve any probabilistic
notions.

Having positive topological entropy is often linked to chaotic behavior. For
a compact phase space a positive topological entropy indicates that relative

34T is required to be surjective because only then it holds that for any open cover U also T�t(U)
(t 2 N) is an open cover.

35Every open cover of a compact set has a finite subcover; hence we can assume that U is finite.
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to some open covers the system scatters states in phase space. If scattering is
regarded as indicating chaos, a positive entropy indicates that there is chaotic
motion on some regions of the phase space. But there are many dynamical
systems whose phase space is not compact; then Stop, A(X, d, T) cannot be applied
to distinguish chaotic from nonchaotic behavior.

How does the topological entropy relate to the Kolmogorov–Sinai entropy?
Let (X, d, T) be a topological dynamical system where X is compact and T is
continuous, and denote by M(X,d) the set of all measure-preserving dynamical
systems (X, S, µ, T) where S is the Borel s-algebra of (X, d).36 Then (Goodwyn
1972)

Stop, A(X, d, T) = sup
(X,S,µ,T)2M(X,d)

SKS(X, S, µ, T).

Furthermore, it is often said that the topological entropy is an analogue of the
KS entropy (e.g. Bowen 1970, p. 23; Petersen 1983, p. 264), but without providing
an elaboration of the notion of analogy at work. An analogy is more than a
similarity. Hesse (1963) distinguishes two kinds of analogy, material and formal.
Two objects stand in material analogy if they share certain intrinsic properties;
they stand in formal analogy if they are described by the same mathematical
expressions but do not share any other intrinsic properties (see also Polyá 1954).
This leaves the question of what it means for definitions to be analogous. We
say that definitions are materially/formally analogous iff there is a material/formal
analogy between the objects appealed to in the definition.

The question then is whether Stop, A(X, d, T) is analogous to the KS entropy.
Clearly, they are formally analogous: Relate open covers U to partitions a,
U_V to a_b, and h(U) to H(a). Then, h(U, T) = limn!•

�
U _ T�1(U) _

· · · _ T�n+1(U)
��

n corresponds to H(a, T) = limn!• H
�
a _ T�1(a) _ · · · _

T�n+1(a)
��

n, and Stop, A(X, d, T) = supU h(U, T) corresponds to SKS(X, S, µ, T)
= supa h(a, T). However, these definitions are not materially analogous. First,
H(a) can be interpreted as corresponding to the Shannon entropy, but h(U) can-
not because of the absence of probabilistic notions in its definition. This seems
to link it more to the Hartley entropy, which also does not explicitly appeal to
probabilities: we could regard h(U) as the Hartley entropy of a subcover V
of U with the least elements (cf. Sec. 3). However, this does not work be-
cause, except for the trivial open cover X, no open cover represents a set of
mutually exclusive possibilities. Second, h(U) measures the logarithm of the
minimum number of elements of U needed to cover X, but H(a) has no sim-
ilar interpretation, e.g. it is not the logarithm of the number of elements of
the partition a. Thus Stop, A(X, d, T) and the KS entropy are not materially
analogous.

36The Borel s-algebra of a metric space (X, d) is the s-algebra generated by all open sets of (X, d).
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Bowen (1971) introduced two definitions which are equivalent to Adler, Konheim
& McAndrew’s definition. Because of lack of space, we cannot discuss them
here (see Petersen 1983, pp. 264–7). What matters is that there is neither a
formal nor a material analogy between the Bowen entropies and the KS entropy.
Consequently, all we have is a formal analogy between the KS entropy and the
topological entropy (21), and the claims in the literature that the KS entropy and
the topological entropy are analogous are to some extent misleading. Moreover,
we conclude that the topological entropy does not capture what notions of
entropy are often believed to capture, such as information, and that none of the
interpretations of the topological entropy is similar in interpretation to another
notion of entropy.

6 Fractal geometry
It was not until the late 1960s that mathematicians and physicists started to
systematically investigate irregular sets—sets that were traditionally considered
as pathological. Mandelbrot coined the term fractal to denote these irregular sets.
Fractals have been praised for providing a better representation of many natural
phenomena than figures of classical geometry, but whether this is true remains
controversial (cf. Falconer 1990, p. xiii; Mandelbrot 1983; Shenker 1994).

Fractal dimensions measure the irregularity of a set. We will discuss those
fractal dimensions which are called entropy dimensions. The basic idea underlying
fractal dimensions is that a set is a fractal if its fractal dimension is greater than
its usual topological dimension (which is an integer). Yet the converse is not true:
there are fractals where the relevant fractal dimensions do equal the topological
dimension (Falconer 1990, pp. xx–xxi and Ch. 3; Mandelbrot 1983, Sec. 39).

Fractals arise in many different contexts. In particular, in dynamical-systems
theory, scientists frequently focus on invariant sets, i.e. sets A for which Tt(A) =
A for all t, where Tt is the time-evolution. And invariant sets are often fractals.
For instance, many dynamical systems have attractors, i.e. invariant sets which
are asymptotically approached by neighboring states in the course of dynamic
evolution. Attractors are sometimes fractals, e.g. the Lorenz and the Hénon
attractor.

The following idea underlies the various definitions of a dimension of a set F.
For each # > 0 we take some sort of measurement of the set F at the level of
resolution #, yielding a real number M#(F), and then we ask how M#(F) behaves
as # goes to zero. If M#(F) obeys the power law

M#(F) ⇡ c#�s, (22)

for some constants c and s as # goes to zero, then s is called the dimension of F.
From (22) it follows that as # goes to zero,

log M#(F) ⇡ log c� s log #.
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Consequently,

s = lim
#!0

log M#(F)
�log #

. (23)

If M#(F) does not obey a power law (22), one can consider instead of the limit
in (23) the limit superior and the limit inferior (cf. Falconer 1990, p. 36).

Some fractal dimensions are called entropy dimensions, namely the box-counting
dimension and the Rényi entropy dimensions. Let us start with the former. As-
sume that Rn is endowed with the usual Euclidean metric d. Given a nonempty
and bounded subset F ✓ Rn, let B#(F) be the smallest number of balls of di-
ameter # that cover F. The following limit, if it exists, is called the box-counting
dimension but is also referred to as the entropy dimension (Edgar 2008, p. 112;
Falconer 1990, p. 38; Hawkes 1974, p. 704; Mandelbrot 1983, p. 359):

DimB(F) := lim
#!0

log B#(F)
�log #

. (24)

There are several equivalent formulations of the box-counting dimension.
For instance, for Rn consider the boxes defined by the #-coordinate mesh with
elements: ⇥

m1#, (m1+1)#
�
⇥ · · ·⇥

⇥
mn#, (mn+1)#

�
, (25)

where m1, . . . , mn 2 Z. Then if we define B#(F) as the number of boxes in the
#-coordinate mesh that intersect F and again take the limit as # ! 0, then the
dimension obtained is equal to that in (24) (Falconer 1990, pp. 38–9). As we
would expect, typically, for sets of classical geometry the box-counting dimension
is integer-valued and for fractals it is non-integer-valued.37

For instance, how many squares of side-length # = 1/2n are needed to cover
the unit square U = [0, 1]⇥[0, 1]? The answer is B1/2n(U) = 22n. Hence the box-
counting dimension is limn!•

�
log 22n�� log 1/2n

�
= 2. As another example we

consider the Cantor dust, a well-known fractal. Starting with the unit interval
C0 = [0, 1], the set C1 is obtained by removing the middle third from [0, 1], then
C2 is obtained by removing from C1 the middle third of each of the intervals
of C1, and so on (see Fig. 1). The Cantor dust C is defined as

T•
k=0 Ck. By setting

# = 1/3n and by considering the #-coordinate mesh, we see that B1/3n(C) = 2n.
Hence

DimB(C) := lim
n!•

log 2n

�log 1/3n
=

log 2
log 3

⇡ 0.6309.

The box-counting dimension can readily be interpreted as the value of the
coefficient s such that B#(F) obeys the power law B#(F) ⇡ c#�s as # goes to

37The box-counting dimension has the shortcoming that even compact countable sets can have
positive dimension. Therefore, the definition is often modified, but we will not go into details
(cf. Edgar 2008, p. 213; Falconer 1990, pp. 37 and 44–6).
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C0
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C6...
FIG. 1. The Cantor Dust.

zero. That is, it measures how ‘spread out’ the set is when examined at an
infinitesimally small scale. However, this interpretation does not link to any
entropy notions. So is there such a link?

Indeed there is (surprisingly, we have been unable to identify this argument
in print).38 Consider the box-counting dimension, where B#(F) is the number
of boxes in the #-coordinate mesh that intersect F. Assume that each of these
boxes represents a possible outcome and that we want to know what the actual
outcome is. This assumption is sometimes natural. For instance, when we are
interested in the dynamics on an invariant set F of a dynamical system we might
ask: in which of the boxes of the #-coordinate mesh that intersect F is the state of
the system? Then the information gained when we learn which box the system
occupies is quantified by the Hartley entropy log B#(F), as discussed in Sec. 3.
Hence the box-counting dimension measures how the Hartley information grows
as # goes to zero. Thus there is a link between the box-counting dimension and
the Hartley entropy.

Let us now turn to the Rényi entropy dimensions. Assume that Rn (n � 1) is
endowed with the usual Euclidean metric. Let (Rn, S, µ) be a measure space
where S contains all open sets of Rn and where µ(Rn) = 1. First, we need to
introduce the notion of the support of the measure µ, which is the set on which
the measure is concentrated. Formally, the support of µ is the smallest closed
set X such that µ(Rn\X) = 0. For instance, when measuring the dimension of a
set F, the support of the measure is typically F. We assume that the support of µ
is contained in a bounded region of Rn.

Consider the #-coordinate mesh of Rn (25). Let Bi
# (1  i  m, m 2 N) be

the boxes that intersect the support of µ, and let Zq,# := Âm
i=1 µ(Bi

#)
q. The Rényi

38Moreover, Hawkes (1974, p. 703) refers to log B#(F) as ‘#-entropy.’ This is backed up by Kol-
mogorov & Tihomirov 1961; Kolmogorov & Tihomirov justify calling log B#(F) ‘entropy’ by an appeal
to Shannon’s Source-Coding Theorem. However, as they themselves observe, this justification relies
on assumptions that have no relevance for scientific problems.
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entropy dimension of order q (�•<q<•, q 6=1) is defined to be

Dimq := lim
#!0

✓
1

q�1
log Zq,#

log #

◆
,

and the Rényi entropy dimension of order 1 is

Dim1 := lim
#!0

lim
q!1

✓
1

q�1
log Zq,#

log #

◆
,

if the limit exists.
It is not hard to see that if q < q0, then Dimq0  Dimq (cf. Beck & Schlögl

1995, p. 117). The cases q = 0 and q = 1 are of particular interest. Because
Dim0 = DimB(support µ), the Rényi entropy dimensions are a generalization of
the box-counting dimension. And for q= 1 it can be shown (Rényi 1961) that

Dim1 = lim
#!0

Âm
i=1 �µ(Bi

#) log µ(Bi
#)

�log #
.

Since Âm
i=1 �µ(Bi

#) log µ(Bi
#) is the Shannon entropy (cf. Sec. 3), Dim1 is called the

information dimension (Falconer 1990, p. 260; Ott 2002, p. 81).
The Rényi entropy dimensions are often referred to as ‘entropy dimensions’

simpliciter (e.g. Beck & Schlögl 1995, pp. 115–16). Before turning to a rationale
for this name, let us state the motivation of the Rényi entropy dimensions that is
usually given. The number q determines how much weight we assign to µ: the
higher q, the greater the influence of boxes with larger measure. So the Rényi
entropy dimensions measure the coefficient s such that Zq,# obeys the power law
Zq,# ⇡ c#�(1�q)s as # goes to zero. That is, Dimq measures how ‘spread out’ the
support of µ is when it is examined at an infinitesimally small scale and when
the weight of the measure is q (Beck & Schlögl 1995, p. 116; Ott 2002, pp. 80–5).
Consequently, when the Rényi entropy dimensions differ for different q, this is a
sign of a multifractal, i.e. a set with different scaling behavior for different q (see
Falconer 1990, pp. 254–64). This motivation does not refer to entropy notions.

Yet there is an obvious connection of the Rényi entropy dimensions for q > 0
to the Rényi entropies (cf. Sec. 3).39 We proceed analogously to the case of
the box-counting dimension. Namely, assume that each of the boxes of the
#-coordinate mesh which intersect the support of µ represent a possible outcome.
Further, assume that the probability that the outcome is in the box Bi is µ(Bi).
Then the information gained when we learn which box the system occupies
can be quantified by the Rényi entropies Hq. Consequently, each Rényi entropy
dimension for q 2 (0, •) measures how the information grows as # goes to zero.
For q=1 we get a measure of how the Shannon information grows as # goes to
zero.

39Surprisingly, we have not found this motivation in print.
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7 Conclusion

This essay has been concerned with some of the most important notions of
entropy. The interpretations of these entropies have been discussed and their
connections have been clarified. Two points deserve attention. First, all notions
of entropy discussed in this essay, except the thermodynamic and the topological
entropy, can be understood as variants of some information-theoretic notion of
entropy. However, this should not distract us from the fact that different notions
of entropy have different meanings and play different roles. Second, there is no
preferred interpretation of the probabilities that figure in the different notions
of entropy. The probabilities occurring in information-theoretic entropies are
naturally interpreted as epistemic probabilities, but ontic probabilities are not
ruled out. The probabilities in other entropies, for instance the different Boltz-
mann entropies, are most naturally understood ontically. So when considering
the relation between entropy and probability there are no simple and general
answers, and a careful case-by-case analysis is the only way forward.
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