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1.	Introduction	
Quantum	entanglement	is	characterized	by	a	non-classical	correlation	between	subsystems	
of	a	larger	composite	system.	More	precisely,	when	a	composite	system	is	in	a	quantum	
entangled	state,	there	are	properties	that	its	subsystems	possess	that	are	correlated	with	
each	other	in	a	non-classical	way.	To	understand	this,	we	first	need	to	understand	how	
quantum	mechanics	represents	states	and	properties.	A	state	of	a	physical	system	is	a	
description	of	the	system	in	terms	of	its	properties	at	an	instant	in	time.	There	are	two	
ways	to	represent	states	in	quantum	mechanics--using	vectors	and	using	density	
operators--and	each	comes	with	a	distinct	definition	of	a	quantum	entangled	state.	
	
	
2.	States	as	Vectors	
In	quantum	mechanics,	one	way	to	represent	a	state	with	respect	to	a	property	that	has	𝑛	
possible	values	is	by	an	𝑛-dimensional	unit	vector	|𝜓⟩,	which	is	a	vector	with	unit	length	
that	is	an	element	of	an	𝑛-dim	vector	space	ℋ;	i.e.,	a	vector	space	that	is	spanned	by	𝑛	
linearly	independent	basis	vectors	{|𝑣1⟩,	...,	|𝑣𝑛⟩}.1	This	means	|𝜓⟩	can	be	expanded	as	a	sum	
of	basis	vectors	
	

	 |𝜓⟩	=	∑𝑛
𝑖=1 𝑐𝑖|𝑣𝑖⟩	=	𝑐1|𝑣1⟩	+	⋯+	𝑐𝑛|𝑣𝑛⟩	 (1)	

	
where	the	coefficients	𝑐𝑖	are	complex	numbers.	This	sum	is	called	a	"superposition".	In	
Dirac's	notation,	|𝜓⟩	is	called	a	"ket"	vector.	It's	dual	is	the	"bra"	vector	⟨𝜓|	=∑𝑖 𝑐*𝑖 ⟨𝑣𝑖|.	
	
A	vector	space	ℋ	comes	with	an	inner-product	on	vectors:	For	|𝜓⟩,	|𝜙⟩	∈	ℋ,	the	inner-
product	⟨𝜓|𝜙⟩	is	a	number.	The	length	of	|𝜓⟩	is	defined	by	3⟨𝜓|𝜓⟩.	Two	vectors	are	

	
1	The	vector	spaces	used	in	quantum	mechanics	are	"Hilbert	spaces".	A	Hilbert	space	is	a	vector	space	ℋ	that	
has	the	property	that	every	Cauchy	sequence	of	vectors	in	ℋ	converges	to	a	vector	in	ℋ.	Ultimately,	this	
allows	you	to	take	limits	and	perform	differentiation	and	integration	on	vectors	in	ℋ.	
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orthogonal	if	and	only	if	their	inner-product	vanishes.	Basis	vectors	are	required	to	be	
orthonormal,	which	means	they	have	unit	length,	3⟨𝑣!|𝑣!⟩	=	1,	for	all	𝑖,	and	are	mutually	
orthogonal,	⟨𝑣𝑗|𝑣𝑖⟩	=	0,	for	𝑖	≠	𝑗.	
	
Note:	A	necessary	and	sufficient	condition	for	(1)	to	be	a	unit	vector	is	|𝑐1|2+⋯+|𝑐𝑛|2=1.	
Ex.	1.	A	"qubit"	is	a	state	of	a	2-state	quantum	system.	A	2-state	quantum	system	is	a	
system	with	states	that	can	be	represented	by	2-dim	unit	vectors.	The	corresponding	
vector	space	has	two	basis	vectors	typically	called	|0⟩	and	|1⟩.	Thus	an	arbitrary	qubit	|𝑄⟩	
can	be	expressed	as	|𝑄⟩	=	𝛼|0⟩	+	𝛽|1⟩,	where	𝛼	and	𝛽	are	complex	numbers	that	satisfy	
|𝛼|2	+	|𝛽|2	=	1.	

	
A	property	(or	"observable")	of	a	physical	system	is	a	quantifiable	feature	of	the	system	
(like	momentum,	position,	spin,	etc.).	A	property	is	quantifiable	in	the	sense	that	it	
possesses	values.	One	way	to	represent	a	property	in	quantum	mechanics	is	by	a	linear	
operator	𝑂;	i.e.,	a	map	𝑂	that	acts	on	vectors	in	a	vector	space	ℋ	such	that	for	any	|𝜓⟩	∈	ℋ,	
O|𝜓⟩	is	also	a	vector	in	ℋ.	Linearity	means	that	the	action	of	𝑂	can	be	brought	through	
sums	of	vectors,	and	multiplication	of	vectors	by	scalars	𝛼,	𝛽,	so	that	𝑂(𝛼|𝜓⟩+𝛽|𝜙⟩)	=	
𝛼𝑂|𝜓⟩	+	𝛽𝑂|𝜙⟩.	
	
Note:	An	operator	can	be	represented	by	the	"outer-product"	|𝜓⟩⟨𝜙|	of	a	ket	vector	|𝜓⟩	
and	a	bra	vector	⟨𝜙|,	since	when	you	act	with	this	on	any	vector	|𝜑⟩	you	get	another	
vector	|𝜓⟩⟨𝜙|𝜑⟩	(this	latter	expression	is	a	vector	since	"|𝜓⟩"	is	a	vector	and	"⟨𝜙|𝜑⟩"	is	a	
number).	

	
An	eigenvector	of	an	operator	𝑂	is	a	vector	|𝜆⟩	that	does	not	change	its	orientation	when	𝑂	
acts	on	it,	which	means	𝑂|𝜆⟩	=	𝜆|𝜆⟩,	for	some	scalar	𝜆.	This	scalar	is	called	an	eigenvalue	of	
𝑂.	If	𝑂	represents	a	property	of	a	physical	system,	then	an	eigenvalue	of	𝑂	represents	a	
possible	value	of	that	property,	and	the	corresponding	eigenvector	of	𝑂	represents	the	
state	of	the	system	in	which	it	possesses	that	value	of	that	property.	This	is	codified	in:	
	
Eigenvector/Eigenvalue	Rule:	A	system	possesses	the	value	𝜆	of	the	property	
represented	by	an	operator	𝑂	if	and	only	if	the	system	is	in	a	state	represented	by	the	
eigenvector	|𝜆⟩	of	𝑂.	

	
Note:	A	Hermitian	(or	self-adjoint)	operator	on	ℋ	is	a	linear	operator	𝑂	such	that	
⟨𝑏|(𝑂|𝑎⟩)	=	(⟨𝑏|𝑂)|𝑎⟩,	for	any	vectors	|𝑎⟩,	|𝑏⟩	∈	ℋ.	If	𝑂	is	represented	by	a	matrix,	then	
this	means	that	𝑂	=	𝑂†,	where	"𝑂†"	is	the	complex-transpose	(the	"Hermitian	conjugate",	
or	"adjoint")	of	𝑂.	One	can	show	that	the	eigenvalues	of	a	Hermitian	operator	are	real	
numbers,	and	its	eigenvectors	form	an	orthonormal	basis	of	ℋ	(which	means	that	any	
vector	|𝜓⟩	in	ℋ	can	be	expanded	in	the	eigenvector	basis	of	a	Hermitian	operator).	These	
features	suggest	that	if	we're	going	to	use	operators	to	represent	properties,	we	should	
restrict	our	use	to	Hermitian	operators.	

	
There	are	experiments	that	suggest	some	properties	of	a	quantum	system	cannot	
simultaneously	possess	values	(examples	include	position	and	momentum,	and	various	
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spin	properties).	This	means	that	when	a	quantum	system	is	in	a	state	represented	by	an	
eigenvector	of	one	of	these	properties	(like	position),	it	then	possesses	a	value	of	that	
property,	but	cannot	be	said	to	possess	a	value	of	the	other	property	(like	momentum).	
Experiments	suggest	that,	at	most,	all	that	we	can	predict	about	the	other	property	is	the	
probability	of	getting	a	particular	value	of	it	if	we	perform	a	measurement	of	it.	These	
probabilities	are	assigned	to	states	by	the	Born	Rule:	
	
Born	Rule:	The	probability	Pr𝜓(𝑏𝑖|𝐵)	that	a	quantum	system	in	a	vector	state	|ψñ	
possesses	the	value	𝑏𝑖	of	a	property	B	is	given	by:	Pr𝜓(𝑏𝑖|𝐵)	≡	|⟨𝜓|𝑏𝑖⟩|2	=	|𝛼𝑖|2,	where	|𝑏𝑖⟩	
is	the	eigenvector	of	𝐵	with	eigenvalue	𝑏𝑖,	and	𝛼𝑖	is	the	expansion	coefficient	
corresponding	to	|𝑏𝑖⟩	in	the	expansion	of	|𝜓⟩	in	the	eigenvector	basis	of	𝐵.2	

	
In	quantum	mechanics,	there	are	two	ways	a	vector	state	can	change.	In	the	absence	of	a	
measurement,	it	evolves	in	time	via	the	Schrödinger	equation	(the	equation	of	motion	for	
non-relativistic	quantum	mechanics).	Schematically,	|𝜓(𝑡)⟩	=	𝑒−𝑖𝐻𝑡|𝜓(𝑡0)⟩,	for	initial	time	
𝑡0 ,	where	𝐻	is	the	Hamiltonian	operator.	When	a	measurement	occurs,	a	vector	state	
"collapses"	according	to:	
	
Projection	Postulate:	When	a	measurement	of	a	property	𝐵	is	made	on	a	system	in	a	
vector	state	|𝜓⟩	=	∑𝑖𝛼𝑖|𝑏𝑖⟩	expanded	in	the	eigenvector	basis	of	𝐵,	and	the	result	is	the	
value	𝑏𝑖,	then	|𝜓⟩	collapses	to	the	vector	state	|𝑏𝑖⟩.	

	
Ex.	2.	Let	|𝑄⟩	=	√½(|0⟩	+	|1⟩)	be	the	vector	state	of	an	electron	in	a	basis	associated	with	
a	𝑧-axis	spin-½	property.3	Let	|0⟩	be	the	vector	state	in	which	the	electron	has	the	value	
"spin-up"	of	this	property,	and	let	|1⟩	be	the	vector	state	in	which	the	electron	has	the	
value	"spin-down"	of	this	property.	According	to	the	Eigenvector/Eigenvalue	Rule,	in	the	
vector	state	|𝑄⟩,	the	electron	does	not	have	a	value	of	this	property.	According	to	the	Born	
Rule,	the	probability	that	the	outcome	of	a	measurement	of	this	property	is	"spin-up"	is	
|⟨𝑄|0⟩|2	=	|√½|2	=	½,	and	the	probability	that	it	is	"spin-down"	is	the	same,	|⟨𝑄|1⟩|2	=	
|√½|2	=	½.	According	to	the	Projection	Postulate,	if	a	measurement	of	this	property	is	
made,	and	the	outcome	is	"spin-up",	then	|𝑄⟩	collapses	to	|0⟩.	

	
Finally,	the	expectation	value	of	an	observable	O	with	respect	to	a	vector	state	is	its	average	
value	in	that	state.	For	a	vector	state	|𝜓⟩,	it	is	defined	by:	
	
Def.	1	(Expectation	value	for	vector	state).	The	expectation	value	⟨𝑂⟩𝜓	of	an	observable	𝑂	
with	respect	to	a	vector	state	|𝜓⟩	is	given	by	⟨𝑂⟩𝜓	≡	⟨𝜓|𝑂|𝜓⟩.	

	
	

2	Recall	that	if	𝛼	=	𝑥	+	𝑖𝑦	is	a	complex	number,	then	its	absolute	value	is	|𝛼|	=	*𝑥! + 𝑦!.	This	entails,	for	
instance,	that	𝛼∗𝛼	=	𝑥2	+	𝑦2	=	|𝛼|2.	
3	A	spin-½	property	with	respect	to	an	axis	(i.e.,	direction	in	space)	has	two	possible	values:	"spin-up	along	
the	axis",	and	"spin-down	along	the	axis".	For	every	axis	in	3-dim	space,	there's	an	associated	spin-½	
property.	One	way	to	think	of	this	is	in	terms	of	2	degrees	of	freedom	(spin-up	and	spin-down)	for	any	
direction	in	3-dim	space.	
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⟨𝑂⟩𝜓	is	the	value	of	the	property	𝑂	that	you	get	on	average	when	you	measure	the	system	
for	this	property	when	it's	in	the	vector	state	|𝜓⟩.	To	see	this,	let	the	property	be	
represented	by	𝐵	with	eigenvectors	|𝑏𝑖⟩	and	eigenvalues	𝑏𝑖,	and	let	|𝜓⟩	=	∑𝑖𝛼𝑖|𝑏𝑖⟩.	Then	
	
	 ⟨𝐵⟩𝜓	≡	⟨𝜓|𝐵|𝜓⟩	=	(∑𝑖,𝑗𝛼*𝑗⟨𝑏𝑗|)𝐵(∑𝑖𝛼𝑖|𝑏𝑖⟩)	

	 	 =	∑𝑖,𝑗 𝑏𝑖𝛼*𝑗𝛼𝑖⟨𝑏𝑗|𝑏𝑖⟩	

	 	 =	∑𝑖 𝑏𝑖Pr𝜓(𝑏𝑖|𝐵)	 since	⟨𝑏𝑗|𝑏𝑖⟩	=	1	for	𝑖	=	𝑗,	and	0	otherwise	

	
where	Pr𝜓(𝑏𝑖|𝐵)=	|𝛼𝑖|2	=	𝛼*𝑖𝛼𝑖	is	the	probability	(according	to	the	Born	Rule)	for	obtaining	
the	value	𝑏𝑖	of	𝐵	when	the	system	is	in	the	vector	state	|𝜓⟩.	Note	that	∑𝑖 𝑏𝑖Pr𝜓(𝑏𝑖|𝐵)	is	the	
average	value	of	the	set	{𝑏1,	...,	𝑏𝑛}	with	the	probabilities	{Pr𝜓(𝑏1|𝐵),	...,	Pr𝜓(𝑏𝑛|𝐵)}	assigned	
to	its	members.	
	
	
3.	States	as	Density	Operators	
Another	way	to	represent	a	state	in	quantum	mechanics	is	by	a	density	operator.	This	is	
important	for	cases	in	which	a	physical	system	is	associated	with	an	ensemble	{|𝜓𝑖⟩,	𝑝𝑖}	of	
vector	states	|𝜓𝑖⟩,	each	with	a	given	probability	𝑝𝑖.	
	
Def.	2	(Density	operator).	The	density	operator	𝜌	for	a	system	in	one	of	a	number	𝑚	of	
vector	states	|𝜓𝑖⟩	∈	ℋ	each	with	probablity	𝑝𝑖,	is	defined	by	
	 𝜌	≡	∑𝑚

𝑖=1 𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖|					where	∑
𝑚
𝑖=1 𝑝𝑖	=	1	

	
Note	1:	The	vector	states	{|𝜓𝑖⟩}	are	not	necessarily	orthogonal	to	each	other,	and	𝑚	is	not	
necessarily	the	dimension	𝑛	of	ℋ.	But	𝜌	can	always	be	re-expressed	in	terms	of	a	basis	
{|𝜙𝑖⟩}	of	ℋ	as	𝜌	=	∑𝑛

𝑖=1 𝜆𝑖|𝜙𝑖⟩⟨𝜙𝑖|,	where	|𝜙𝑖⟩	are	eigenvectors	of	𝜌	with	eigenvalues	𝜆𝑖,	
such	that	each	𝜆𝑖	≥	0	(this	is	a	consequence	of	the	fact	that	𝜌	is	a	Hermitian	operator).	
And	if	𝜌	represents	an	ensemble	{|𝜙𝑖⟩,	𝜆𝑖}	of	vector	states	|𝜙𝑖⟩	with	probabilities	𝜆𝑖,	we	
require	∑𝑖 𝜆𝑖	=	1.	
	
Note	2:	A	given	density	operator	𝜌	can	describe	more	than	one	ensemble	of	vector	states.	
Ex.	3.		𝜌	=	½|𝑎⟩⟨𝑎|	+	½|𝑏⟩⟨𝑏|	=	¾|0⟩⟨0|	+	¼|1⟩⟨1|,	where	|𝑎⟩	=	√¾|0⟩+√¼|1⟩,	|𝑏⟩	=	
√¾|0⟩	−√¼|1⟩.	𝜌	is	the	density	operator	for	a	system	in	vector	state	|𝑎⟩	with	probability	
½	and	vector	state	|𝑏⟩	with	probability	½,	and	also	for	a	system	in	vector	state	|0⟩	with	
probability	¾	and	vector	state	|1⟩	with	probability	¼.	

	
One	reason	to	use	density	operators	to	represent	states	is	that	they	allow	you	to	distinguish	
between	"pure"	states	and	"mixed"	states:	
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Def.	3	(Pure/mixed	state).	If	a	density	operator	can	be	expressed	as	𝜌	=	|𝜓⟩⟨𝜓|,	then	it	is	
called	a	pure	density	operator	state.	Otherwise,	it	is	called	a	mixed	density	operator	
state.	

	
Ignorance	interpretation	of	mixed	states:	A	pure	density	operator	state	𝜌	=	|𝜓⟩⟨𝜓|	
corresponds	to	a	vector	state	|𝜓⟩	with	probability	1.	A	mixed	density	operator	state	has	the	
form	𝜌	=	𝑝1|𝜓1⟩⟨𝜓1|	+	𝑝2|𝜓2⟩⟨𝜓2|	+	...,	which,	on	the	surface,	means	the	system	is	either	in	
the	vector	state	|𝜓1⟩	with	probablity	𝑝1,	or	vector	state	|𝜓2⟩	with	probability	𝑝2,	etc.	So,	on	
the	surface,	a	mixed	density	operator	state	is	associated	with	a	degree	of	uncertainty	as	to	
which	vector	state	the	system	is	in.	But	care	should	be	taken,	since,	as	noted	above,	a	given	
density	operator	can	describe	more	than	one	ensemble	of	vector	states.	Moreover,	an	
ignorance	interpretation	cannot	be	applied	to	a	mixed	density	operator	state	of	a	
subsystem	of	a	larger	composite	system	when	the	composite	system	is	in	an	entangled	
pure	density	operator	state.	In	this	situation,	the	subsystem	cannot	be	said	to	be	in	a	
definite	pure	density	operator	state	(see	Example	10	below).	
	
Def.	4	(Trace).	The	trace	of	an	operator	𝑂	acting	on	a	vector	space	ℋ	is	the	sum	of	the	
diagonal	elements	of	a	matrix	representation	of	𝑂:	
	 Tr𝑂	≡	∑𝑖 ⟨𝑤𝑖|𝑂|𝑤𝑖⟩,			where	{|𝑤𝑖⟩}	is	a	basis	for	ℋ.	

	
Note:	If	𝑂	is	a	Hermitian	operator	on	ℋ,	then	its	eigenvectors	{|𝜆𝑖⟩}	form	a	basis	for	ℋ,	
and	its	trace	is	the	sum	of	its	eigenvalues:	Tr𝑂	=	∑𝑖 ⟨𝜆𝑖|𝑂|𝜆𝑖⟩	=	∑𝑖 𝜆𝑖⟨𝜆𝑖|𝜆𝑖⟩	=	∑𝑖 𝜆𝑖.	

	
Claim	1:	Tr𝜌	=	1	for	both	pure	and	mixed	density	operator	states.	
Proof:	Since	𝜌	is	Hermitian,	Tr𝜌	=	∑𝑖 𝜆𝑖	=	1,	where	the	𝜆𝑖	are	the	eigenvalues	of	𝜌.	
	
Claim	2:	
(a)	 𝜌	is	a	pure	density	operator	state	if	and	only	if	Tr𝜌2	=	1.	
(b)	 𝜌	is	a	mixed	density	operator	state	if	and	only	if	Tr𝜌2	<	1.	
Proof:	First	recall	that	any	density	operator	state	can	be	expressed	by	𝜌	=	∑𝑛

𝑖=1 𝜆𝑖|𝜙𝑖⟩⟨𝜙𝑖|,	
where	|𝜙𝑖⟩	are	eigenvectors	of	𝜌	that	form	a	basis	for	ℋ,	and	𝜆𝑖	are	eigenvalues	of	𝜌	such	
that	∑𝑖 𝜆𝑖	=	1.	Then	

	 	𝜌2	=	∑𝑛
𝑖=1 𝜆𝑖|𝜙𝑖⟩⟨𝜙𝑖|∑𝑛

𝑗=1 𝜆𝑗|𝜙𝑗⟩⟨𝜙𝑗|	

	 	 =	∑𝑖,𝑗 𝜆𝑖 𝜆𝑗|𝜙𝑖⟩⟨𝜙𝑖|𝜙𝑗⟩⟨𝜙𝑗|	

	 	 =	∑𝑖 𝜆𝑖2|𝜙𝑖⟩⟨𝜙𝑖|	 since	⟨𝜙𝑖|𝜙𝑗⟩	=	1	for	𝑖	=	𝑗,	and	0	otherwise	

So	the	eigenvalues	of	𝜌2	are	𝜆𝑖2 ,	and	thus	Tr𝜌2	=	∑𝑖 𝜆𝑖2 .	Note	that	𝜌2	=	𝜌	if	and	only	if	𝜌	is	
pure,	and	𝜌2	≠	𝜌	if	and	only	if	𝜌	is	mixed.	
(a)	 Suppose	𝜌	is	a	pure	density	operator	state.	Then	𝜌2	=	𝜌.	So	Tr𝜌2	=	Tr𝜌	=	1,	from	

Claim	1.	Now	suppose	𝜌	is	a	density	operator	state	and	Tr𝜌2	=	1.	Then	∑𝑖 𝜆𝑖2 	=	1.	But	
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we	also	have	∑𝑖 𝜆𝑖	=	1.	Now	∑𝑖 𝜆𝑖2 	=	∑𝑖 𝜆𝑖	=	1	if	and	only	if	one	of	the	𝜆𝑖		is	1	and	the	
rest	are	0.	And	this	means	𝜌	=	|𝜙⟩⟨𝜙|;	i.e.,	𝜌	is	pure.	

(b)	 Suppose	𝜌	is	a	mixed	density	operator	state.	From	the	above,	Tr𝜌2	=	∑𝑖 𝜆𝑖2 ,	and	in	
general	∑𝑖 𝜆𝑖2 	≤	∑𝑖 𝜆𝑖	=	1.	So	Tr𝜌2	≤	1,	with	equality	if	and	only	if	𝜌	is	pure.	So	if	𝜌	is	
mixed,	then	Tr𝜌2	<	1.	Finally,	suppose	𝜌	is	a	density	operator	state	and	Tr𝜌2	<	1.	
From	the	above,	Tr𝜌2	=	∑𝑖 𝜆𝑖2 ,	so	∑𝑖 𝜆𝑖2 	<	1.	Together	with	∑𝑖 𝜆𝑖	=	1,	this	excludes	
the	case	of	one	of	the	𝜆𝑖 	being	1	and	the	rest	0	(i.e.,	the	pure	case).	So	𝜌	must	be	
mixed.	

	
Note:	A	mixed	density	operator	state	is	not	the	same	as	a	vector	state	in	a	superposition.	
The	density	operator	𝜌I	=	½|0⟩⟨0|	+	½|1⟩⟨1|	is	a	mixed	density	operator	state	of	a	system	
I	that	has	prob	½	of	being	in	the	vector	state	|0⟩	and	prob	½	of	being	in	the	vector	state	
|1⟩.	This	is	different	from	a	system	II	in	a	superposed	vector	state	√½{|0⟩	+|1⟩}.	The	
density	operator	for	system	II	is	𝜌II	=	½{|0⟩	+|1⟩}{⟨0|	+⟨1|}	=	½{|0⟩⟨0|	+	|0⟩⟨1|	+	|1⟩⟨0|	
+	|1⟩⟨1|}.	Note	that	this	is	a	pure	density	operator	state.	

	
Finally,	the	expectation	value	of	an	observable	𝑂	with	respect	to	a	density	operator	state	is	
defined	as	follows:	
	
Def.	5	(Expectation	value	for	density	operator	state).	The	expectation	value	⟨𝑂⟩𝜌	of	an	
observable	O	with	respect	to	a	density	operator	state	𝜌	is	given	by	⟨𝑂⟩𝜌	≡	Tr𝜌𝑂.	

	
As	with	Def.	1,	⟨𝑂⟩𝜌	is	the	value	of	the	property	𝑂	that	you	get	on	average	when	you	
measure	the	system	for	this	property	when	it's	in	the	density	operator	state	ρ.	Since	ρ	
represents	an	ensemble	{|𝜓𝑗⟩,	𝑝𝑗}	of	vector	states,	the	average	value	of	𝑂	should	be	a	
weighted	sum	of	the	average	value	of	𝑂	in	each	vector	state	|𝜓𝑗⟩,	weighted	by	the	
probability	distribution	𝑝𝑗.	In	other	words	⟨𝑂⟩𝜌	=	∑𝑗 𝑝𝑗⟨𝑂⟩𝜓𝑗 .	To	see	this,	let	the	property	be	
represented	by	𝐵	with	eigenvectors	and	eigenvalues	|𝑏𝑖⟩	and	𝑏𝑖,	and	let	|𝜓𝑗⟩	=	∑𝑘𝛼𝑘𝑗|𝑏𝑘⟩,	so	
𝜌	=	∑𝑗 𝑝𝑗|𝜓𝑗⟩⟨𝜓𝑗|	=	∑𝑗, 𝑘, 𝑙 𝑝𝑗𝛼𝑗𝑘𝛼∗𝑗𝑙|𝑏𝑘⟩⟨𝑏𝑙|.	Then	
	
	 ⟨𝐵⟩𝜌	≡	Tr𝜌𝐵	=	∑𝑖 ⟨𝑏𝑖|𝜌𝐵|𝑏𝑖⟩	

	 =	∑𝑖, 𝑗, 𝑘, 𝑙 𝑝𝑗𝑏𝑖𝛼𝑗𝑘𝛼
∗𝑗𝑙á𝑏𝑖|𝑏𝑘⟩⟨𝑏𝑙|𝑏𝑖⟩	

	 =	∑𝑗 𝑝𝑗∑𝑖 𝑏𝑖𝛼𝑗𝑖𝛼
∗𝑗𝑖 	

	 =	∑𝑗 𝑝𝑗∑𝑖 𝑏𝑖Pr𝜓𝑗(𝑏𝑖|𝐵)	=	∑𝑗 𝑝𝑗⟨𝑂⟩𝜓𝑗 	

	
	
4.	Multipartite	States	and	Quantum	Entanglement	
Quantum	entanglement	involves	subsystems	of	a	larger	"multipartite"	(i.e.,	"multiple	
parts")	system	which	is	characterized	by	a	product	vector	space.	Let	ℋ𝐴	and	ℋ𝐵	be	𝑛-dim	
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and	𝑚-dim	vector	spaces.	The	product	vector	space	ℋ𝐴⨂ℋ𝐵	is	an	(𝑛×𝑚)-dim	vector	space	
with	an	inner-product	given	by	
	
	 ⟨𝜙𝐴⨂𝜙𝐵|𝜓𝐴⨂𝜓𝐵⟩	≡	⟨𝜙𝐴|𝜓𝐴⟩⟨𝜙𝐵|𝜓𝐵⟩		
	
where	|𝜓𝐴⟩,	|𝜙𝐴⟩	∈	ℋ𝐴,	|𝜓𝐵⟩,	|𝜙𝐵⟩	∈	ℋ𝐵,	and	|𝜓𝐴⨂𝜓𝐵⟩,	|𝜙𝐴⨂𝜙B⟩	∈	ℋ𝐴⨂ℋ𝐵.4	
	
If	{|𝑣1⟩,	...,	|𝑣𝑛⟩}	and	{|𝑤1⟩,	...,	|𝑤𝑚⟩}	are	bases	for	ℋ𝐴	and	ℋ𝐵,	then	a	basis	for	ℋ𝐴⨂ℋ𝐵	is	
given	by	{|𝑣1𝑤1⟩,	|𝑣1𝑤2⟩,	...,	|𝑣1𝑤𝑚⟩,	|𝑣2𝑤1⟩,	...,	|𝑣𝑛𝑤𝑚⟩}.	Any	vector	|𝜓⟩	in	ℋ𝐴⨂ℋ𝐵	can	be	
expanded	in	this	basis:	|𝜓⟩	=	𝑎11|𝑣1𝑤1⟩+𝑎12|𝑣1𝑤2⟩+⋯+𝑎𝑛𝑚|𝑣𝑛𝑤𝑚⟩.	
	
A	product	space	may	be	the	product	of	more	than	two	lower-dim	spaces,	and	may	admit	
more	than	one	decomposition	into	lower-dim	spaces.	For	instance,	a	16-dim	product	space	
can	be	decomposed	into	a	product	of	four	2-dim	spaces,	or	a	product	of	two	4-dim	spaces.5		
	
	
4.1.	Multipartite	Vectors	and	Quantum	Entanglement	
There	are	2	types	of	vectors	in	a	product	vector	space:	product	vectors,	and	non-product	
vectors.	
	
Def.	6	(Product/non-product	vector).	A	product	vector	in	a	product	space	ℋ	with	respect	
to	a	decomposition	ℋ	= ℋ1⨂⋯⨂ℋ𝑛	is	a	vector	|𝜓⟩	that	can	be	written	as	a	product	of	𝑛	
vectors	|𝜓⟩	= |𝑣1⟩⨂⋯⨂|𝑣𝑛⟩,	where	|𝑣𝑖⟩	∈	ℋ𝑖.	A	non-product	vector	in	ℋ	is	a	vector	that	
is	not	a	product	vector.	

	
Ex.	4.	Let	ℋ𝐴	and	ℋ𝐵	be	2-dim	vector	spaces	with	bases	{|0⟩𝐴,	|1⟩𝐴}	and	{|0⟩𝐵,	|1⟩𝐵}.	Then	
the	4-dim	product	space	ℋ𝐴⨂ℋ𝐵	is	spanned	by	the	basis	{|0⟩𝐴|0⟩𝐵,	|0⟩𝐴|1⟩𝐵,	|1⟩𝐴|0⟩𝐵,	
|1⟩𝐴|1⟩𝐵}.	Any	vector	|𝑄⟩	in	ℋ𝐴⨂ℋ𝐵	can	be	expanded	as	|𝑄⟩	=	𝑎|0⟩𝐴|0⟩𝐵	+	𝑏|0⟩𝐴|1⟩𝐵	+	
𝑐|1⟩𝐴|0⟩𝐵	+	𝑑|1⟩𝐴|1⟩𝐵.	An	example	of	a	non-product	vector	in	ℋ𝐴⨂ℋ𝐵	is	
	
	 √½{|0⟩𝐴|0⟩𝐵	+	|1⟩𝐴|1⟩𝐵}	
	
This	vector	cannot	be	factored	into	a	product	of	two	vectors	with	one	in	ℋ𝐴	and	the	other	
in	ℋ𝐵.	Examples	of	product	vectors	in	ℋ𝐴⨂ℋ𝐵	are:	

	
	 (i)	 √¼{|0⟩𝐴|0⟩𝐵	+	|0⟩𝐴|1⟩𝐵	+	|1⟩𝐴|0⟩𝐵	+	|1⟩𝐴|1⟩𝐵}	
	 (ii)	 √½{|0⟩𝐴|0⟩𝐵	+	|1⟩𝐴|0⟩𝐵}	
	 (iii)	 |0⟩𝐴|0⟩𝐵	

	

	
4	Instead	of	"|𝜓𝐴⨂𝜓B⟩"	we	can	alternatively	write	"|𝜓𝐴𝜓𝐵⟩"	or	"|𝜓𝐴⟩|𝜓𝐵⟩"	or	"|𝜓𝐴⟩⨂|𝜓𝐵⟩".	
5	As	long	as	the	dimension	𝑛	of	a	vector	space	isn't	a	prime	number,	it	will	admit	at	least	one	decomposition	
into	the	product	of	lower-dim	spaces.	How	many	decompositions	it	admits	will	depend	on	the	prime	
factorization	of	𝑛.	
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(i)	can	be	factored	into	√¼{|0⟩𝐴	+	|1⟩𝐴}{|0⟩𝐵	+	|1⟩𝐵},	and	(ii)	can	be	factored	into	
√½{|0⟩𝐴	+	|1⟩𝐴}|0⟩𝐵.	In	both	cases,	we	have	a	product	of	two	vectors,	one	in	ℋ𝐴	and	the	
other	in	ℋ𝐵.	(iii)	is	already	in	this	form.	

	
There	are	two	important	facts	about	product	vectors	and	non-product	vectors.	
	
Fact	1.	A	vector	in	a	product	vector	space	ℋ	can	be	a	non-product	vector	with	respect	to	
one	decomposition	of	ℋ,	and	a	product	vector	with	respect	to	another	decomposition.	

	
Fact	1	says	that	whether	or	not	a	vector	is	a	non-product	vector	is	relative	to	a	
decomposition	of	the	product	vector	space	it's	an	element	of.	
	
Ex.	5.	(Rieffel	&	Pollak	2011,	39–40.)	Let	ℋ	=	ℋ1⨂ℋ2⨂ℋ3⨂ℋ4	be	a	decomposition	of	a	
16-dim	product	space	ℋ	into	four	2-dim	spaces,	and	let	{|0⟩𝑖,	|1⟩𝑖},	𝑖	=	1...4,	be	a	basis	for	
each	of	the	2-dim	spaces	ℋ𝑖.	Then	a	basis	for	ℋ	in	this	decomposition	is	given	by	the	16-
member	set,	
	
	 {|0⟩1|0⟩2|0⟩3|0⟩4 ,	|0⟩1|0⟩2|0⟩3|1⟩4 ,	...,	|1⟩1|1⟩2|1⟩3|1⟩4}	
	
Another	decomposition	is	given	by	ℋ	=	ℋ13⨂ℋ24,	where	ℋ13	and	ℋ24	are	4-dim	spaces.	
Let	{|00⟩13,	|01⟩13,	|10⟩13,	|11⟩13}	and	{|00⟩24,	|01⟩24,	|10⟩24,	|11⟩24}	be	bases	for	ℋ13	and	
ℋ24,	respectively.	Then	a	basis	for	ℋ	in	this	decomposition	is	given	by	the	16-member	set	
	
	 {|00⟩13|00⟩24 ,	|00⟩13|01⟩24 ,	...,	|11⟩13|11⟩24}	
	
Now	consider	the	vector	in	ℋ	given	by	
	

	 |𝜓⟩	 =	½{|0⟩1|0⟩2|0⟩3|0⟩4	+	|0⟩1|1⟩2|0⟩3|1⟩4	+	|1⟩1|0⟩2|1⟩3|0⟩4	+	|1⟩1|1⟩2|1⟩3|1⟩4}	
	 =	√½{|00⟩13	+	|11⟩13}	⨂	√½{|00⟩24	+	|11⟩24}	
	
|𝜓⟩	is	a	non-product	vector	with	respect	to	the	decomposition	ℋ	=	ℋ1⨂ℋ2⨂ℋ3⨂ℋ4,	
and	a	product	vector	with	respect	to	the	decomposition	ℋ	=	ℋ13⨂ℋ24.	

	
The	second	important	fact	about	product	vectors	and	non-product	vectors	has	to	do	with	
correlations	between	observables	represented	by	product	operators.	
	
Def.	7	(Product	operator).	Let	𝑂𝐴	and	𝑂𝐵	be	operators	on	vector	spaces	ℋ𝐴	and	ℋ𝐵,	and	
let	|𝜓𝐴⟩	∈	ℋ𝐴,	|𝜓𝐵⟩	∈	ℋ𝐵,	and	|𝜓𝐴⨂𝜓𝐵⟩	∈	ℋ𝐴⨂ℋ𝐵.	Then	the	product	operator	𝑂𝐴	⨂𝑂𝐵	is	
defined	by	(𝑂𝐴	⨂𝑂𝐵)|𝜓𝐴⨂𝜓𝐵⟩	≡	𝑂𝐴|𝜓𝐴⟩⨂𝑂𝐵|𝜓𝐵⟩.	

	
Note:	This	definition	generalizes	to	𝑛-partite	product	vector	spaces	ℋ=ℋ1⨂⋯⨂ℋ𝑛,	and	
product	operators	𝑂1⨂⋯⨂𝑂𝑛,	where	𝑂𝑖	is	an	operator	on	ℋ𝑖.	
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Two	observables	𝑂𝐴,	𝑂𝐵	are	correlated	in	a	vector	state	just	when	their	joint	expectation	
value	cannot	be	factored	into	a	product	of	their	expectation	values	taken	separately:	
	
Def.	8	(Correlated	observables	for	vector	state).	Let	𝑂𝐴	and	𝑂𝐵	be	operators	on	vector	
spaces	ℋ𝐴	and	ℋ𝐵	with	identity	operators	𝐼𝐴	and	𝐼𝐵,	and	let	|𝜓⟩	∈	ℋ𝐴⨂ℋ𝐵.	Then	the	
observables	represented	by	𝑂𝐴	and	𝑂𝐵	are	correlated	in	vector	state	|𝜓⟩	just	when	
⟨𝑂𝐴⨂𝑂𝐵⟩𝜓	≠	⟨𝑂𝐴⨂𝐼𝐵⟩𝜓⟨𝐼𝐴⨂𝑂𝐵⟩𝜓.	

	
Claim:	Under	the	Born	Rule,	the	observables	represented	by	𝑂𝐴	and	𝑂𝐵	are	correlated	if	
and	only	if	they	are	statistically	dependent,	which	means:	
	
	 Pr𝜓(𝑎𝑖, 𝑏𝑗|𝑂𝐴, 𝑂𝐵)	≠	Pr𝜓(𝑎𝑖|𝑂𝐴)Pr𝜓(𝑏𝑗|𝑂𝐵),					for	all	𝑖,	𝑗	
	
where	Pr𝜓(𝑎𝑖, 𝑏𝑗|𝑂𝐴, 𝑂𝐵)	is	the	joint	probability	of	obtaining	the	values	𝑎𝑖, 𝑏𝑗	of	𝑂𝐴	and	𝑂𝐵	
in	the	state		|𝜓⟩,	and	Pr𝜓(𝑎𝑖|𝑂𝐴),	Pr𝜓(𝑏𝑗|𝑂𝐵)	are	the	probabilties	of	obtaining	these	results	
separately.	

	
The	second	important	fact	then	is:	
	
Fact	2.	Observables	represented	by	the	operators	𝑂𝑖	appearing	in	a	product	operator	
𝑂1⨂⋯⨂𝑂𝑛	are	uncorrelated	in	a	product	vector	state	and	correlated	in	a	non-product	
vector	state.	

	
Ex.	6.	Let's	look	at	the	simple	case	of	a	bipartite	product	operator	𝑂𝐴	⨂𝑂𝐵	on	ℋ𝐴⨂ℋ𝐵.	
Let	|𝜓prod⟩	=	|𝜓𝐴𝜓𝐵⟩	∈	ℋ𝐴⨂ℋ𝐵	be	a	product	vector,	and	let	|𝜓non⟩	=	√½{|𝜓𝐴𝜙𝐵⟩	+	
|𝜙𝐴𝜓𝐵⟩}	∈	ℋ𝐴⨂ℋ𝐵	be	a	non-product	vector.	Then	
	
	 ⟨𝑂𝐴⨂𝑂𝐵⟩𝜓prod	 =	⟨𝜓𝐴𝜓𝐵|(𝑂𝐴⨂𝑂𝐵)|𝜓𝐴𝜓𝐵⟩	
	 	 =	⟨𝜓𝐴𝜓𝐵|(𝑂𝐴|𝜓𝐴⟩⨂𝑂𝐵|𝜓𝐵⟩)	 definition	of	product	operator	
	 	 =	⟨𝜓𝐴|𝑂𝐴|𝜓𝐴⟩⟨𝜓𝐵|𝑂𝐵|𝜓𝐵⟩	 definition	of	inner-product	for	product	space	

	 	 =	⟨𝜓𝐴|𝑂𝐴|𝜓𝐴⟩(⟨𝜓𝐵|𝐼𝐵|𝜓𝐵⟩)(⟨𝜓𝐴|𝐼𝐴|𝜓𝐴⟩)⟨𝜓𝐵|𝑂𝐵|𝜓𝐵⟩	
	 	 =	⟨𝜓𝐴𝜓𝐵|(𝑂𝐴⨂𝐼𝐵)|𝜓𝐴𝜓𝐵⟩⟨𝜓𝐴𝜓𝐵|(𝐼𝐴⨂𝑂𝐵)|𝜓𝐴𝜓𝐵⟩	
	 	 =	⟨𝑂𝐴⨂𝐼𝐵⟩𝜓prod⟨𝐼𝐴⨂𝑂𝐵⟩𝜓prod	
	
	 ⟨𝑂𝐴⨂𝑂𝐵⟩𝜓non	=	½{⟨𝜓𝐴𝜙𝐵| 	+	⟨𝜙𝐴𝜓𝐵|}(𝑂𝐴	⨂𝑂𝐵){|𝜓𝐴𝜙𝐵⟩	+	|𝜙𝐴𝜓𝐵⟩}	
	 	 =	½{⟨𝜓𝐴|⟨𝜙𝐵|	+	⟨𝜙𝐴|⟨𝜓𝐵|}{𝑂𝐴|𝜓𝐴⟩𝑂𝐵|𝜙𝐵⟩	+	𝑂𝐴|𝜙𝐴⟩𝑂𝐵|𝜓𝐵⟩}	
	 	 =	½{⟨𝜓𝐴|𝑂𝐴|𝜓𝐴⟩⟨𝜙𝐵|𝑂𝐵|𝜙𝐵⟩	+	⟨𝜙𝐴|𝑂𝐴|𝜓𝐴⟩⟨𝜓𝐵|𝑂𝐵|𝜙𝐵⟩	
	 	 	 +	⟨𝜓𝐴|𝑂𝐴|𝜙𝐴⟩⟨𝜙𝐵|𝑂𝐵|𝜓𝐵⟩	+	⟨𝜙𝐴|𝑂𝐴|𝜙𝐴⟩⟨𝜓𝐵|𝑂𝐵|𝜓𝐵⟩}	
	 	 =	½{⟨𝑂𝐴⟩𝜓𝐴⟨𝑂𝐵⟩𝜙𝐵	+	⟨𝜙𝐴|𝑂𝐴|𝜓𝐴⟩⟨𝜓𝐵|𝑂𝐵|𝜙𝐵⟩	+	⟨𝜓𝐴|𝑂𝐴|𝜙𝐴⟩⟨𝜙𝐵|𝑂𝐵|𝜓𝐵⟩	
	 	 	 +	⟨𝑂𝐴⟩𝜙𝐴⟨𝑂𝐵⟩𝜓𝐵}	
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	 ⟨𝑂𝐴⨂𝐼𝐵⟩𝜓non	 =	½{⟨𝜓𝐴𝜙𝐵| 	+	⟨𝜙𝐴𝜓𝐵|}(𝑂𝐴	⨂𝐼𝐵){|𝜓𝐴𝜙𝐵⟩	+	|𝜙𝐴𝜓𝐵⟩}	
	 	 =	½{⟨𝜓𝐴|⟨𝜙𝐵|	+	⟨𝜙𝐴|⟨𝜓𝐵|}{𝑂𝐴|𝜓𝐴⟩|𝜙𝐵⟩	+	𝑂𝐴|𝜙𝐴⟩|𝜓𝐵⟩}	
	 	 =	½{⟨𝜓𝐴|𝑂𝐴|𝜓𝐴⟩⟨𝜙𝐵|𝜙𝐵⟩	+	⟨𝜙𝐴|𝑂𝐴|𝜓𝐴⟩⟨𝜓𝐵|𝜙𝐵⟩	
	 	 	 +	⟨𝜓𝐴|𝑂𝐴|𝜙𝐴⟩⟨𝜙𝐵|𝜓𝐵⟩	+	⟨𝜙𝐴|𝑂𝐴|𝜙𝐴⟩⟨𝜓𝐵|𝜓𝐵⟩}	
	 	 =	½{⟨𝑂𝐴⟩𝜓𝐴	+	⟨𝑂𝐴⟩𝜙𝐴}	
	
Similarly,	⟨𝐼𝐴⨂𝑂𝐵⟩𝜓non	=	½{⟨𝑂𝐵⟩𝜙𝐵	+	⟨𝑂𝐵⟩𝜓𝐵}.	So	
	
	 ⟨𝑂𝐴	⨂𝐼𝐵⟩𝜓non⟨𝐼𝐴⨂𝑂𝐵⟩𝜓non	=	¼{⟨𝑂𝐴⟩𝜓𝐴⟨𝑂𝐵⟩𝜙𝐵	+	⟨𝑂𝐴⟩𝜓𝐴⟨𝑂𝐵⟩𝜓𝐵	+	⟨𝑂𝐴⟩𝜙𝐴⟨𝑂𝐵⟩𝜙𝐵	+	⟨𝑂𝐴⟩𝜙𝐴⟨𝑂𝐵⟩𝜓𝐵}	
	 	
Hence	⟨𝑂𝐴⨂𝑂𝐵⟩𝜓non	≠	⟨𝑂𝐴	⨂𝐼𝐵⟩𝜓non⟨𝐼𝐴⨂𝑂𝐵⟩𝜓non	
	 	 	

This	generalizes	to	multipartite	product	operators	and	multipartite	product	vector	states.	
This	movitates	the	following	definition	of	a	quantum	entangled	vector	state:	
	
Def.	9	(Entangled	vector	state).	A	state	represented	by	a	multipartite	vector	|𝜓⟩	is	
quantum	entangled	just	when	|𝜓⟩	is	a	non-product	state.	

	
Recall	Ex.	4's	non-product	vector	√½{|0𝐴⟩|0𝐵⟩	+	|1𝐴⟩|1𝐵⟩}	in	ℋ𝐴⨂ℋ𝐵.	According	to	Def.	9,	
this	is	a	quantum	entangled	two	qubit	state	in	which	qubit	𝐴	is	in	a	superposition	of	|0⟩	and	
|1⟩,	and	qubit	𝐵	is	in	a	superposition	of	|0⟩	and	|1⟩,	and	the	two	superpositions	are	
"entangled";	i.e.,	they	cannot	be	separated	into	a	qubit	𝐴	part	and	a	qubit	𝐵	part.	According	
to	the	Eigenvector/Eigenvalue	Rule,	neither	qubit	has	a	definite	value.	If	we	measure	qubit	
𝐴	and	get	the	value	"0",	then	according	to	the	Projection	Postulate,	the	two	qubit	state	
collapses	to	|0𝐴⟩|0𝐵⟩,	which	is	a	two	qubit	state	in	which	qubit	𝐴	has	the	value	"0"	and	qubit	
𝐵	has	the	value	"0".	Note	that	we	did	not	measure	qubit	𝐵.	So	prior	to	the	measurement	on	
qubit	𝐴,	qubit	𝐵	had	no	definite	value,	and	after	the	measurement	on	qubit	𝐴,	both	qubits	
have	definite	values.	Qubits	𝐴	and	𝐵	thus	exhibit	a	correlation.6	Einstein,	Podolsky	and	
Rosen	(1935)	found	this	disturbing:	A	measurement	on	qubit	𝐴	instantaneously	affects	the	
state	of	qubit	𝐵,	no	matter	how	far	apart	they	might	be.	Einstein	called	this	"spooky	action	
at	a	distance"	and	thought	it	violated	special	relativity's	prohibition	on	superluminal	
signalling.	But	it's	not	that	spooky	for	two	reasons:	
	
(a)	While	the	correlation	can't	be	explained	by	a	causal	signal	that	𝐴	sends	to	𝐵,	an	

explanation	in	terms	of	a	common	cause	might	still	be	possible:	perhaps	qubits	𝐴	and	𝐵	
interacted	in	the	past	and	this	interaction	established	the	correlation.	(It	turns	out	that	
a	common	cause	explanation	can	also	be	ruled	out,	but	this	was	only	established	by	Bell	
in	1964.	See	Appendix	2	for	details.)	

	
(b)	The	correlation	cannot	be	used	to	send	signals	faster	than	the	speed	of	light.	This	is	the	

essence	of	the	"No	Signalling	Theorem"	(Theorem	A1.2	in	Appendix	1).	
	

6	More	precisely,	they	exhibit	a	correlation	between	two	single-qubit	observables	each	of	which	has	the	
possible	values	"0"	and	"1".		
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Our	example	of	an	entangled	vector	state,	call	it	|Φ+⟩,	has	3	variations:	
	
|Φ+⟩	=	√½{|0𝐴⟩|0𝐵⟩	+	|1𝐴⟩|1𝐵⟩}	
|Φ−⟩	=	√½{|0𝐴⟩|0𝐵⟩	−	|1𝐴⟩|1𝐵⟩}	
|Ψ+⟩	=	√½{|0𝐴⟩|1𝐵⟩	+	|1𝐴⟩|0𝐵⟩}	
|Ψ−⟩	=	√½{|0𝐴⟩|1𝐵⟩	−	|1𝐴⟩|0𝐵⟩}	

	
These	are	called	"Bell	states",	or	sometimes	"EPR	states".	Recall	that	a	basis	for	ℋ𝐴⨂ℋ𝐵	is	
given	by	{|0𝐴⟩|0𝐵⟩,	|0𝐴⟩|1𝐵⟩,	|1𝐴⟩|0𝐵⟩,	|1𝐴⟩|1𝐵⟩}.	Another	basis	is	given	by	{|Φ+⟩,	|Φ−⟩,	|Ψ+⟩,	
|Ψ−⟩}.	
	
	
4.2.	Multipartite	Density	Operators	and	Quantum	Entanglement	
There	are	3	types	of	density	operators	that	act	on	a	product	vector	space:	product	density	
operators,	separable	density	operators,	and	non-separable	density	operators.	
	
Def.	10	(Product/separable/non-separable	density	operator).	Let	ℋ	= ℋ1⨂⋯⨂ℋ𝑛	be	an	
𝑛-partite	product	space.	A	product	density	operator	on	ℋ	is	a	density	operator	𝜌prod	
that	can	be	written	as	the	product	of	𝑛	terms	𝜌prod	=	𝜌1⨂⋯⨂𝜌𝑛,	where	𝜌𝑘	is	a	pure	
density	operator	on	ℋ𝑘.	A	separable	density	operator	on	ℋ	is	a	density	operator	𝜌sep	
that	can	be	written	as	a	sum	of	product	density	operators	𝜌sep	=	∑𝑖 𝑝𝑖 (𝜌𝑖

1⨂⋯⨂𝜌𝑖𝑛),	

where	∑𝑖 𝑝𝑖=	1,	and	𝜌𝑖
𝑘	is	a	pure	density	operator	on	ℋ𝑘.	A	non-separable	density	

operator	on	ℋ	is	a	density	operator	that	is	not	separable.	
	
Note:	A	product	density	operator	𝜌prod	=	𝜌1⨂⋯⨂𝜌𝑛	=	|𝜙1⟩⟨𝜙1|⨂⋯⨂|𝜙𝑛⟩⟨𝜙𝑛|	=	
|𝜙1⋯𝜙𝑛⟩⟨𝜙1⋯𝜙𝑛|	corresponds	to	a	product	vector	|𝜙1⋯𝜙𝑛⟩.	A	separable	density	operator	
𝜌sep	=	∑𝑖 𝑝𝑖 (𝜌𝑖

1⨂⋯⨂𝜌𝑖𝑛)	=	∑𝑖 𝑝𝑖 |𝜙𝑖
1⋯𝜙𝑖

𝑛⟩⟨𝜙𝑖
1⋯𝜙𝑖

𝑛|	then	represents	an	ensemble	of	
product	vectors	{|𝜙𝑖

1⋯𝜙𝑖
𝑛⟩;	𝑝𝑖}.	So	a	non-separable	density	operator	is	a	density	operator	

that	cannot	be	written	as	an	ensemble	of	product	vectors.	
	
Ex.	7.	The	mixed	density	operator	½|00⟩⟨00|+½|11⟩⟨11|	is	separable:	it	corresponds	to	
an	ensemble	{|00⟩,	|11⟩;	½,	½}	of	product	vectors.	The	pure	density	operator	
½{|00⟩+|11⟩}{⟨00|+⟨11|}	is	non-separable:	it	corresponds	to	the	non-product	vector	
√½{|00⟩+|11⟩}	.	

	
Does	Fact	2	hold	for	density	operator	states?	Note	first	that	we	can	modify	Def.	8	for	
density	operator	states	by	replacing	expectation	values	with	respect	to	vector	states	⟨...⟩𝜓	
with	expectation	values	with	respect	to	density	operator	states	⟨...⟩𝜌.	Note	second	that	there	
are	now	two	types	of	"non-product"	density	operator:	separable	and	non-separable	density	
operators.	Do	both	types	exhibit	correlations	for	product	operators?	
	



	 12	

Let's	look	at	the	simple	bipartite	case.	Let	𝜌prod	=	𝜌𝐴⨂𝜌𝐵	and	𝜌sep	=	∑𝑖 𝑝𝑖 (𝜌𝑖
𝐴⨂𝜌𝑖𝐵)	be	a	

product	density	operator	and	a	separable	density	operator	on	ℋ𝐴⨂ℋ𝐵.	Then	for	any	
product	operator	𝑂𝐴	⨂𝑂𝐵,	we	have	
	
	 ⟨𝑂𝐴	⨂𝑂𝐵⟩𝜌prod	 =	Tr𝜌prod(𝑂𝐴	⨂𝑂𝐵)	
	 	 =	Tr(𝜌𝐴⨂𝜌𝐵)(𝑂𝐴	⨂𝑂𝐵)	

	 	 =	∑𝑖 ⟨𝜓
𝐴
𝑖𝜓𝐵𝑖 |(𝜌𝐴⨂𝜌𝐵)(𝑂𝐴	⨂𝑂𝐵)|𝜓𝐴𝑖𝜓𝐵𝑖 ⟩	 biorthogonal	decomposition	theorem	

	 	 =	∑𝑖 ⟨𝜓𝐴𝑖 |𝜌𝐴𝑂𝐴|𝜓𝐴𝑖 ⟩⟨𝜓𝐵𝑖 |𝜌𝐵𝑂𝐵|𝜓𝐵𝑖 ⟩	

	 	 =	(Tr𝜌𝐴𝑂𝐴)(Tr𝜌𝐵𝑂𝐵)	
	 	 =		⟨𝑂𝐴⟩𝜌𝐴⟨𝑂𝐵⟩𝜌𝐵	
	 	 =	⟨𝑂𝐴⨂𝐼𝐵⟩𝜌prod⟨𝐼𝐴⨂𝑂𝐵⟩𝜌prod	
	
So	product	density	operator	states	do	not	exhibit	correlations	for	product	operators.	This	
should	be	obvious,	since	a	product	density	operator	state	corresponds	to	a	product	vector	
state,	and	there	are	no	correlations	between	observables	with	respect	to	a	product	vector	
state.	
	
On	the	other	hand,	note	that:	
	
	 ⟨𝑂𝐴	⨂𝑂𝐵⟩𝜌sep	 =	Tr𝜌sep(𝑂𝐴	⨂𝑂𝐵)	

	 	 =	∑𝑖 𝑝𝑖Tr(𝜌𝑖
𝐴⨂𝜌𝑖𝐵)(𝑂𝐴	⨂𝑂𝐵)	

	 	 =	∑𝑖 𝑝𝑖 (Tr𝜌𝑖
𝐴𝑂𝐴)(Tr𝜌𝑖𝐵𝑂𝐵)	

	 	 ≠	⟨𝑂𝐴⨂𝐼𝐵⟩𝜌sep⟨𝐼𝐴⨂𝑂𝐵⟩𝜌sep	
	
So	separable	density	operator	states	exhibit	correlations	for	product	operators.	This	is	
because	the	sum	in	the	third	line	above	prevents	the	expectation	value	from	factorizing	
into	an	𝐴-part	and	a	𝐵-part.	The	same	thing	happens	for	a	non-separable	density	operator	
state.7	So	non-separable	density	operator	states	also	exhibit	correlations	for	product	
operators.	However,	the	correlations	present	in	a	separable	density	operator	state	can	be	
interpreted	as	due	to	classical	procedures:	they	involve	assigning	a	probability	distribution	
𝑝𝑖	to	a	collection	of	product	vector	states	to	get	an	ensemble	{|𝜙𝑖

1⋯𝜙𝑖
𝑛⟩;	𝑝𝑖}.	The	correlations	

present	in	a	non-separable	density	operator	state	cannot	be	interpreted	in	this	way.	This	
motivates	describing	separable	density	operator	states	as	exhibiting	"classical	
correlations"	and	non-separable	density	operator	states	as	exhibiting	"non-classical	
correlations".	Since	quantum	entanglement	is	supposed	to	involve	correlations	that	are	not	

	
7	This	is	harder	to	explicitly	demonstrate;	but	think	about	it:	a	non-separable	density	operator	cannot	be	
written	as	a	separable	density	operator,	which	means	it	can't	be	written	as	a	product	density	operator,	either.	
And	product	density	operators	are	the	only	type	of	density	operator	for	which	expectation	values	of	product	
operators	factorize.		
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present	in	classical	systems,	we're	led	to	identify	non-separable	density	operators	with	
quantum	entangled	states:	
	
Def.	11	(Entangled	density	operator	state).	A	state	represented	by	a	multipartite	density	
operator	𝜌	is	quantum	entangled	just	when	𝜌	is	non-separable.	

	
Ex.	8.	(Rieffel	&	Polak	2011.	pg.	224).	The	mixed	density	operator	½|00⟩⟨00|+½|11⟩⟨11|	
is	separable	and	exhibits	classical	correlations.	The	pure	density	operator	|Φ+⟩⟨Φ+|	=	
½{|00⟩+|11⟩}{⟨00|+⟨11|}	is	entangled	and	exhibits	non-classical	correlations.	
	
Warning!	A	density	operator	state	that	corresponds	to	an	ensemble	of	non-product	(i.e.,	
entangled)	vector	states	is	not	necessarily	non-separable.	Consider	the	ensemble	of	
entangled	vector	states	{|Φ+⟩,	|Φ−⟩;	½,	½},	where	|Φ+⟩	=	√½{|00⟩	+	|11⟩}	and	|Φ−⟩	=	
√½{|00⟩	−	|11⟩}.	The	density	operator	state	that	corresponds	to	this	ensemble	is	𝜌	=	
½|Φ+⟩⟨Φ+|+½|Φ−⟩⟨Φ−|,	which	can	also	be	written	as	½|00⟩⟨00|+½|11⟩⟨11|.	Expressed	
in	this	latter	way,	𝜌	is	separable.	
	

If	all	we're	concerned	with	are	pure	states	(i.e.,	states	that	can	be	represented	by	vectors),	
then	a	quantum	entangled	state	is	just	a	non-product	vector	state.	But	if	we	want	to	take	
into	account	mixed	states	(i.e.,	states	that	have	to	be	represented	by	mixed	density	
operators),	then	a	quantum	entangled	state	is	a	non-separable	density	operator	state.8	
	
	
5.	Reduced	Density	Operators	and	Entanglement	Entropy	
Entanglement	entropy	is	a	way	of	measuring	the	extent	to	which	a	density	operator	state	is	
quantum	entangled.	To	understand	it,	we	need	to	understand	the	notion	of	a	reduced	
density	operator,	which	first	requires	the	notion	of	the	partial	trace:	
	
Def.	12	(Partial	trace).	Let	𝑂	=	𝑂𝐴⨂𝑂𝐵	be	an	operator	acting	on	a	product	vector	space	
ℋ𝐴⨂ℋ𝐵,	and	let	{|𝑤𝐵𝑖⟩}	be	a	basis	for	ℋ𝐵.	The	partial	trace	Tr𝐵(𝑂𝐴⨂𝑂𝐵)	of	𝑂𝐴⨂𝑂𝐵	over	
ℋ𝐵	is	defined	by	Tr𝐵(𝑂𝐴⨂𝑂𝐵)	≡	∑𝑖 ⟨𝑤𝐵𝑖|𝑂𝐴⨂𝑂𝐵|𝑤𝐵𝑖⟩.	

	
Note:	Tracing	out	the	degrees	of	freedom	of	ℋ𝐵	from	a	product	operator	𝑂𝐴⨂𝑂𝐵	results	
in	an	operator	on	ℋ𝐴 :	Tr𝐵(𝑂𝐴⨂𝑂𝐵)	=	∑𝑖 ⟨𝑤𝐵𝑖|𝑂𝐴⨂𝑂𝐵|𝑤𝐵𝑖⟩	=	∑𝑖𝑂𝐴⟨𝑤𝐵𝑖|𝑂𝐵|𝑤𝐵𝑖⟩	=	
𝑂𝐴Tr(𝑂𝐵),	which	is	an	operator	on	ℋ𝐴 .	

	
Def.	13	(Reduced	density	operator).	Let	𝜌𝐴𝐵	be	a	density	operator	for	a	composite	system	
with	subsystems	𝐴	and	𝐵.	The	reduced	density	operator	for	system	𝐴	is	defined	by	𝜌𝐴	≡	
Tr𝐵(𝜌𝐴𝐵).	

	

	
8	It's	not	quite	as	simple	as	this.	It	turns	out	that	for	multipartite	mixed	density	operator	states	for	systems	
with	more	than	just	two	subsystems,	the	notion	of	quantum	entanglement	is	hard	to	formalize!	See	Earman	
(2015)	for	an	extended	discussion.	
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𝜌𝐴	is	supposed	to	be	the	density	operator	for	subsystem	𝐴	obtained	by	tracing	out	the	
degrees	of	freedom	of	subsystem	𝐵	from	the	composite	system	𝐴𝐵.	
	
Ex.	9.	Let	𝜌𝐴𝐵	=	𝜏⨂𝜎.	Then	𝜌𝐴	=	Tr𝐵(𝜏⨂𝜎)	=	𝜏Tr(𝜎)	=	𝜏,	and	𝜌𝐵	=	𝜎.	

	
Ex.	10.	For	the	entangled	vector	state	|𝜓𝐴𝐵⟩	=	√½{|0𝐴0𝐵⟩	+	|1𝐴1𝐵⟩},	we	have:	
𝜌𝐴𝐵	 =	|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|	=	½{|0𝐴0𝐵⟩	+	|1𝐴1𝐵⟩}{⟨0𝐴0𝐵|	+	⟨1𝐴1𝐵|}	
	 =	½{|0𝐴0𝐵⟩⟨0𝐴0𝐵|	+	|1𝐴1𝐵⟩⟨0𝐴0𝐵|	+	|0𝐴0𝐵⟩⟨1𝐴1𝐵|	+	|1𝐴1𝐵⟩⟨1𝐴1𝐵|}	
	 =	½{|0𝐴⟩⟨0𝐴|⨂|0𝐵⟩⟨0𝐵|	+	|1𝐴⟩⟨0𝐴|⨂|1𝐵⟩⟨0𝐵|	+	|0𝐴⟩⟨1𝐴|⨂|0𝐵⟩⟨1𝐵|	
	 	 	 +	|1𝐴⟩⟨1𝐴|⨂|1𝐵⟩⟨1𝐵|}	
𝜌𝐴	 =	Tr𝐵(𝜌𝐴𝐵)	
	 =	½{Tr𝐵(|0𝐴0𝐵⟩⟨0𝐴0𝐵|)	+	Tr𝐵(|1𝐴1𝐵⟩⟨0𝐴0𝐵|)	+	Tr𝐵(|0𝐴0𝐵⟩⟨1𝐴1𝐵|)	
	 	 	 	 +	Tr𝐵(|1𝐴1𝐵⟩⟨1𝐴1𝐵|)}	
	 =	½{|0𝐴⟩⟨0𝐴|⟨0𝐵|0𝐵⟩	+	|1𝐴⟩⟨0𝐴|⟨0𝐵|1𝐵⟩	+	|0𝐴⟩⟨1𝐴|⟨1𝐵|0𝐵⟩	+	|1𝐴⟩⟨1𝐴|⟨1𝐵|1𝐵⟩}	
	 =	½{|0𝐴⟩⟨0𝐴|	+	|1𝐴⟩⟨1𝐴|}	=	½𝐼𝐴	
𝜌𝐵	 =	Tr𝐴(𝜌𝐴𝐵)	=	½{|0𝐵⟩⟨0𝐵|	+	|1𝐵⟩⟨1𝐵|}	=	½𝐼𝐵	

	
Comments	on	Example	10:	
(a)	The	2-qubit	entangled	density	operator	state	𝜌𝐴𝐵	is	pure,	since	Tr(𝜌𝐴𝐵2)	=	1.	The	

density	operator	states	𝜌𝐴,	𝜌𝐵	of	qubits	𝐴	and	𝐵	are	mixed,	since	Tr(𝜌𝐴2)	=	Tr(𝜌𝐵2)	<	1.	
(b)	Suppose	we	wrote	the	2-qubit	vector	state	as	|𝜓𝐴𝐵⟩	=	√½{𝑎|0𝐴⟩(1/𝑎)|0𝐵⟩	+	

𝑏|1𝐴⟩(1/𝑏)|1𝐵⟩},	for	arbitrary	constants	𝑎,	𝑏.	Then	there's	an	ambiguity	over	what	
vector	state	qubit	𝐴	is	in:	is	it	√½{|0𝐴⟩	+ |1𝐴⟩},	or	√½{𝑎|0𝐴⟩	+ 𝑏|1𝐴⟩}?	But	there's	no	
ambiguity	over	what	reduced	density	operator	state	it's	in.	It's	still	½𝐼𝐴.	So	using	
vectors	to	represent	states	of	composite	systems	can	be	ambiguous	in	a	way	that	using	
density	operators	is	not	(another	reason	to	use	density	operators	to	represent	states).	

(c)	The	qubit	𝐴	reduced	density	operator	𝜌𝐴	looks	like	the	density	operator	for	a	system	in	
vector	state	|0𝐴⟩	with	probability	½	and	in	vector	state	|1𝐴⟩	with	probability	½.	And	
similarly	for	𝜌𝐵.	Moreover,	qubits	𝐴	and	𝐵	are	correlated:	whenever	one	of	them	is	0,	so	
is	the	other;	and	whenever	one	of	them	is	1,	so	is	the	other.	Thus,	if	they	are	in	definite	
states,	the	2-qubit	system	should	be	in	the	state	corresponding	to	𝜌𝐴𝐵	=	
½{|0𝐴⟩⟨0𝐴|⨂|0𝐵⟩⟨0𝐵|	+	|1𝐴⟩⟨1𝐴|⨂|1𝐵⟩⟨1𝐵|}.	But	by	assumption,	this	in	not	the	case.	So	
an	ignorance	interpretation	of	𝜌𝐴	and	𝜌𝐵	cannot	be	applied.	(This	is	an	example	of	
subsystems	in	mixed	density	operator	states	that	are	part	of	a	larger	composite	system	
in	a	pure	entangled	state.)	

	
Def.	14	(Von	Neumann	entropy).	The	von	Neumann	entropy	𝑆vN(𝜌)	of	a	state	𝜌	is	defined	
by	𝑆vN(𝜌)	≡	−Tr(𝜌ln 𝜌).	

	
Note	1:	In	this	definition,	"ln 𝜌"	is	a	function	"ln"	that	acts	on	an	operator	𝜌.	We	know	
what	ln 𝑥	does	to	a	number	𝑥,	but	what	does	it	do	to	an	operator?	Let	𝐵	be	an	operator	
such	that	𝐵|𝜓𝑖⟩	=	𝑏𝑖|𝜓𝑖⟩,	and	let	𝑓(𝑥)	be	a	function	on	the	real	numbers.	Then	we	can	
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define	the	corresponding	operator	function	𝑓(𝐵)|𝜓𝑖⟩	≡	𝑓(𝑏𝑖)|𝜓𝑖⟩.	In	other	words,	the	
operator	function	𝑓(𝐵) 	is	defined	to	be	the	operator	with	eigenvalue	𝑓(𝑏𝑖).	Thus	if	𝜌	=	
∑𝑛
𝑖=1 𝜆𝑖|𝜙𝑖⟩⟨𝜙𝑖|	so	that	𝜌|𝜙𝑖⟩=	𝑝𝑖|𝜙𝑖⟩	then	ln 𝜌|𝜙𝑖⟩	=	ln 𝜆𝑖|𝜙𝑖⟩.	This	means	we	can	rewrite	

Def.	14	as:	−Tr(𝜌ln 𝜌)	=	−∑𝑖 ⟨𝜙𝑖|(𝜌ln 𝜌)|𝜙𝑖⟩	=	−∑𝑖 𝜆𝑖ln 𝜆𝑖⟨𝜙𝑖|𝜙𝑖⟩	=	−∑𝑖 𝜆𝑖ln 𝜆𝑖.	
	
Note	2:	From	Def.	5,	−Tr(𝜌ln 𝜌)	=	⟨−ln 𝜌⟩𝜌.	In	other	words,	𝑆(𝜌)	is	the	expectation	value	
of	the	operator	−ln 𝜌	in	the	state	𝜌.	
	
Note	3:	If	𝜌	is	a	density	operator	state	on	an	𝑛-dim	vector	space	ℋ,	then	the	maximum	
value	of	𝑆vN(𝜌)	is	ln 𝑛.	
Proof:	The	maximum	value	of	𝑆vN(𝜌)	=	𝑆vN(𝜆𝑖)	occurs	for	that	value	𝜆𝑖*	of	𝜆𝑖	which	makes	
the	derivative	of	𝑆vN(𝜆𝑖)	vanish.	The	derivative	of	𝑆vN(𝜆𝑖)	is	given	by	(𝑑/𝑑𝜆𝑖)𝑆vN(𝜆𝑖)	=	
−∑𝑖 ln 𝜆𝑖,	or	𝑑𝑆vN(𝜆𝑖)	=	−∑𝑖 ln 𝜆𝑖𝑑𝜆𝑖.	So	we	need	to	solve	for	𝜆𝑖

*	in:	
	 𝑑𝑆vN(𝜆𝑖*)	=	−∑𝑖 ln 𝜆𝑖

*𝑑𝜆𝑖	=	0	
Note	that	∑𝑖 𝜆𝑖	=	1,	so	∑𝑖𝑑𝜆𝑖	=	0,	and	this	holds	even	if	we	multiply	∑𝑖𝑑𝜆𝑖	by	an	arbitrary	
constant	𝛼.	So,	in	general:		
	 −∑𝑖 (ln 𝜆𝑖

* 	−	𝛼)𝑑𝜆𝑖	=	0	
Thus	ln 𝜆𝑖* 	=	𝛼,	or	𝜆𝑖* 	=	𝑒𝛼.	If	we	substitute	this	back	into	∑𝑖 𝜆𝑖	=	1,	we	get	∑𝑖 𝑒𝛼	=	𝑛𝑒𝛼	=	1,	
so	𝛼	=	ln (1/𝑛),	and	hence	𝜆𝑖* 	=	(1/𝑛).	So	the	maximum	value	of	𝑆vN(𝜆𝑖)	is	𝑆vN(1/𝑛)	=	
−∑𝑖 (1/𝑛)ln (1/𝑛) = −𝑛(1/𝑛)ln (1/𝑛)	=	ln 𝑛.	
	
Note	4:	A	"maximally	mixed"	density	operator	state	𝜌	=	∑𝑛

𝑖=1 𝜆𝑖|𝜙𝑖⟩⟨𝜙𝑖|	is	a	density	
operator	state	in	which	all	the	𝜆𝑖	are	equal,	which	means	𝜆𝑖	=	1/𝑛.	(Think	of	this	as	the	
"farthest"	away	𝜌	can	be	from	the	pure	state	case	in	which	just	one	𝜆𝑖	is	1	and	all	the	rest	
are	0.)	And	this	entails	𝜌max	=	∑𝑛

𝑖=1 (1/𝑛)|𝜙𝑖⟩⟨𝜙𝑖|	=	(1/𝑛)𝐼𝑛,	where	𝐼𝑛	is	the	identity	
operator.	One	can	now	show	that	𝑆vN(𝜌)	varies	from	zero,	for	a	pure	density	operator,	to	
ln 𝑛	(its	maximum	value),	for	a	maximally	mixed	density	operator	state.	
Proof:	Suppose	𝜌	is	a	pure	density	operator	state.	Then	𝑆vN(𝜌)	=	−∑𝑛

𝑖=1 𝜆𝑖 ln 𝜆𝑖	=	−ln 1	=	0.	
Now	suppose	𝜌max	is	a	maximally	mixed	density	operator	state.	Then	𝑆vN(𝜌max)	=	
−∑𝑛

𝑖=1 (1/𝑛)ln (1/𝑛)	=	−ln (1/𝑛)	=	ln 𝑛.	
	
Note	4	indicates	that	𝑆vN(𝜌)	is	a	measure	of	the	degree	to	which	the	density	operator	𝜌	is	
mixed.	
	
Def.	15	(Entanglement	entropy).	For	a	bipartite	system	𝐴𝐵	in	density	operator	state	𝜌𝐴𝐵,	
the	entanglement	entropy	𝑆𝐴	of	subsystem	𝐴	is	defined	to	be	the	von	Neumann	entropy	
of	𝜌𝐴,	so	𝑆𝐴	≡	𝑆vN(𝜌𝐴)	=	−Tr(𝜌𝐴 ln 𝜌𝐴).	

	
𝑆𝐴	is	a	measure	of	the	degree	to	which	𝜌𝐴	is	mixed.	What	does	𝑆𝐴	have	to	do	with	
entanglement?	One	can	show	the	following	(Neilson	&	Chuang	2010,	pg.	514):		
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Claim:	Let	𝜌𝐴𝐵	=	|𝜓𝐴𝐵⟩⟨𝜓𝐴𝐵|	be	a	pure	density	operator	state	on	a	product	vector	space	
ℋ𝐴⨂ℋ𝐵.	Then	|𝜓𝐴𝐵⟩	is	an	entangled	vector	state	if	and	only	if	𝑆𝐴	>	0	(i.e.,	𝜌𝐴	is	mixed).	
	
Proof:	
(a)	 "⇐".	We'll	first	show	that	if	|𝜓𝐴𝐵⟩	is	not	entangled	(i.e.,	if	it	is	a	product	vector	state),	

then	𝜌𝐴	is	not	mixed	(i.e.,	it	is	pure).	This	means	that	if	𝜌𝐴	is	mixed,	then	|𝜓𝐴𝐵⟩	is	
entangled.	So	suppose	|𝜓𝐴𝐵⟩	=	|𝜑𝐴𝜑𝐵⟩	is	a	product	vector	state,	where	|𝜑𝐴⟩	∈	ℋ𝐴,	and	
|𝜑𝐵⟩	∈	ℋ𝐵,	and	let	{|𝑤𝐵𝑖⟩}	be	a	basis	of	ℋ𝐵.	Then	

	 	𝜌𝐴	=	Tr𝐵(𝜌𝐴𝐵)	=	∑𝑖 ⟨𝑤𝐵𝑖|𝜌𝐴𝐵|𝑤𝐵𝑖⟩	

	 	 =	∑𝑖 ⟨𝑤𝐵𝑖|𝜑𝐴𝜑𝐵⟩⟨𝜑𝐴𝜑𝐵|𝑤𝐵𝑖⟩	

	 	 =	|𝜑𝐴⟩⟨𝜑𝐴|∑𝑖 ⟨𝜑𝐵|𝑤𝐵𝑖⟩⟨𝑤𝐵𝑖|𝜑𝐵⟩	

	 	 =	|𝜑𝐴⟩⟨𝜑𝐴|⟨𝜑𝐵|𝜑𝐵⟩	=	|𝜑𝐴⟩⟨𝜑𝐴|	
	 which	means	𝜌𝐴	is	pure	(i.e.,	not	mixed).	
(b)	 "⇒".	Now	we'll	show	that	if	𝜌𝐴	is	pure,	then	|𝜓𝐴𝐵⟩	is	a	product	vector	state	(i.e.,	not	

entangled).	This	means	that	if	|𝜓𝐴𝐵⟩	is	entangled,	then	𝜌𝐴	is	not	pure	(i.e.,	mixed).	
Strategy:	If	{|𝑤𝐴𝑖⟩}	and	{|𝑤𝐵𝑖⟩}	are	bases	for	ℋ𝐴	and	ℋ𝐵,	then	|𝜓𝐴𝐵⟩	can	be	expanded	
as	|𝜓𝐴𝐵⟩	=	∑𝑖𝛼𝑖|𝑤𝐴𝑖𝑤𝐵𝑖⟩	(this	is	called	a	"biorthogonal	expansion").	We	want	to	show	
that	if	𝜌𝐴	is	pure,	then	there's	only	one	term	in	this	biorthogonal	expansion	of	|𝜓𝐴𝐵⟩,	
which	makes	it	a	product	vector.	

	 	𝜌𝐴	=	Tr𝐵(𝜌𝐴𝐵)	=	∑𝑖 ⟨𝑤𝐵𝑖|𝜌𝐴𝐵|𝑤𝐵𝑖⟩	

	 	 =	∑𝑖 ⟨𝑤𝐵𝑖|∑𝑗 𝛼𝑗|𝑤𝐴𝑗𝑤𝐵𝑗⟩∑𝑘𝛼𝑘*⟨𝑤𝐴𝑘𝑤𝐵𝑘|𝑤𝐵𝑖⟩	

	 	 =	∑𝑖,𝑗,𝑘𝛼𝑗𝛼𝑘*|𝑤𝐴𝑗⟩⟨𝑤𝐴𝑘|⟨𝑤𝐵𝑖|𝑤𝐵𝑗⟩⟨𝑤𝐵𝑘|𝑤𝐵𝑖⟩	

	 	 =	∑𝑖,𝑗𝛼𝑗𝛼𝑖*|𝑤𝐴𝑗⟩⟨𝑤𝐴𝑖|⟨𝑤𝐵𝑖|𝑤𝐵𝑗⟩	

	 	 =	∑𝑖𝛼𝑖𝛼𝑖*|𝑤𝐴𝑖⟩⟨𝑤𝐴𝑖|	

	 If	𝜌𝐴	is	pure,	then	all	the	𝛼𝑖	are	zero	except	for	one;	and	this	entails	|𝜓𝐴𝐵⟩	is	a	product	
vector	state.	

	
So:	When	a	bipartite	system	𝐴𝐵	is	in	a	pure	density	operator	state,	𝑆𝐴	is	a	measure	of	the	
degree	to	which	its	subsystems	are	entangled.	However,	recall	that	a	mixed	density	
operator	state	of	a	subsystem	of	a	composite	system	in	an	entangled	state	cannot	be	given	
an	ignorance	interpretation;	i.e.,	we	can't	read	off	the	statistics	for	the	subsystem	from	its	
mixed	density	operator	state.	This	means	that	𝑆𝐴	cannot	be	a	measure	of	uncertainty	for	
subsystem	𝐴.	(It	can	be	a	measure	of	the	degree	to	which	subsystem	𝐴	is	correlated	with	
subsystem	𝐵,	however.)	
	
	
Appendix	A1:	Entanglement	Theorems	
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Theorem	A1.1	(Conservation	of	Entanglement	Entropy).	For	a	bipartite	system	𝐴𝐵	in	a	pure	
density	operator	state	𝜌𝐴𝐵	associated	with	the	Hilbert	space	ℋ𝐴⨂ℋ𝐵,	the	entanglement	
entropy	𝑆𝐴	of	subsystem	𝐴	is	invariant	under	transformations	of	the	form	𝑈𝐴⨂𝑈𝐵,	where	
𝑈𝐴	and	𝑈𝐵	are	unitary	operators	that	act	on	ℋ𝐴	and	ℋ𝐵.	
	
Proof.	Under	the	action	of	𝑈𝐴⨂𝑈𝐵,	𝜌𝐴	becomes	𝜌𝐴′	=	𝑈𝐴𝜌𝐴𝑈𝐴†,	and	the	entanglement	
entropy	becomes	𝑆(𝜌𝐴′)	=	−Tr[𝑈𝐴𝜌𝐴𝑈𝐴† ln (𝑈𝐴𝜌𝐴𝑈𝐴†)]	=	−Tr(𝜌𝐴 ln 𝜌𝐴)	=	𝑆(𝜌𝐴),	
expanding	the	logarithm	and	using	cyclicity	of	the	trace.	

	
Conservation	of	entanglement	entropy	entails	that	the	entanglement	of	a	bipartite	pure	
state,	as	measured	by	its	entanglement	entropy,	cannot	be	affected	by	unitary	operations	
on	either,	or	both,	of	the	states	of	its	subsystems.	
	
Theorem	A1.2	(No-Signalling).	For	a	bipartite	system	𝐴𝐵	in	a	pure	density	operator	state	
𝜌𝐴𝐵	associated	with	the	Hilbert	space	ℋ𝐴⨂ℋ𝐵,	the	reduced	density	operator	state	𝜌𝐴	for	
subsystem	𝐴	is	invariant	under	transformations	of	the	form	𝐼𝐴⨂𝑈𝐵,	where	𝐼𝐴	is	the	identify	
on	ℋ𝐴,	and	𝑈𝐵	is	a	unitary	operator	that	acts	on	ℋ𝐵.	
	
Proof.	Under	the	action	of	𝐼𝐴⨂𝑈𝐵,	𝜌𝐴	becomes	𝜌𝐴′	=	𝐼𝐴𝜌𝐴𝐼𝐴†	=	𝜌𝐴.	

	
The	statistics	that	govern	measurement	outcomes	on	𝐴	are	encoded	in	the	reduced	density	
operator	𝜌𝐴,	so	Theorem	A2	entails	that	a	unitary	operation	on	𝐵	(as	represented	by	the	
operator	𝐼𝐴⨂𝑈𝐵)	cannot	affect	the	statistics	of	measurement	outcomes	performed	on	𝐴.	In	
other	words,	doing	something	to	one	of	the	subsystems	of	a	composite	system	in	an	
entangled	state	cannot	be	detected	in	measurements	on	the	other	subsystem,	and	hence	
cannot	be	used	to	signal	the	other	subsystem.	
	
	
Appendix	A2:	Entanglement	Correlations	
Recall	from	Section	4.2	that	the	observables	represented	by	the	terms	in	a	product	
operator	exhibit	a	correlation	in	a	quantum	entangled	state	that	is	not	due	to	a	classical	
mixture.	Let's	call	such	a	non-classical	correlation,	a	quantum	entanglement	correlation.	
The	task	now	is	to	further	understand	the	sense	in	which	a	quantum	entanglement	
correlation	is	non-classical.	
	
A2.1.	Correlation	
First	let's	recall	what	it	means	for	two	observables	of	a	physical	system	in	a	state	
represented	by	a	vector	|𝜓⟩	to	be	correlated.	From	Def.	8,	the	observables	represented	by	𝐴	
and	𝐵	are	correlated	just	when	there	is	a	vector	state	|𝜓⟩	such	that	⟨𝜓|(𝐴⨂𝐵)|𝜓⟩	≠	
⟨𝜓|𝐴|𝜓⟩⟨𝜓|𝐵|𝜓⟩.	This	says	that	the	expectation	value	⟨𝜓|(𝐴⨂𝐵)|𝜓⟩	of	the	bipartite	
operator	𝐴⨂𝐵	in	the	vector	state	|𝜓⟩	(i.e.,	the	average	value	of	the	observable	represented	
by	𝐴⨂𝐵	in	the	vector	state	|𝜓⟩)	is	not	equal	to	the	product	of	the	expectation	values	of	𝐴	
and	𝐵	separately.	And	this	means	(via	the	Born	Rule)	that	
	
	 Pr𝜓(𝑎,	𝑏|𝐴,	𝐵)	≠	Pr𝜓(𝑎|𝐴)Pr𝜓(𝑏|𝐵)	 (A2.1)	
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which	says	that	the	joint	probability	of	getting	the	values	𝑎,	𝑏	of	𝐴	and	𝐵	in	the	vector	state	
|𝜓⟩	is	not	equal	to	the	product	of	the	probabilities	of	getting	𝑎	for	𝐴,	and	𝑏	for	𝐵,	separately.	
This	means	that	the	observables	𝐴	and	𝐵	are	statistically	dependent	(which	is	another	way	
of	saying	that	𝐴	and	𝐵	are	correlated).	
	
A2.2.	Entanglement	Correlation	
An	entanglement	correlation	is	supposed	to	be	a	non-classical	correlation	between	two	
observables	of	the	subsystems	of	a	composite	system	in	an	entangled	state.	One	way	to	
flesh	this	out	is	to	characterize	a	classical	correlation	as	due	to	either	a	direct	cause,	or	a	
common	cause	(or	both),	and	then	demonstrate	that	an	entanglement	correlation	can	be	
both	direct	cause-violating	and	common	cause-violating.	
	
Let's	characterize	a	correlation	that	is	not	due	to	a	direct	cause	in	the	following	way:	
	
Def.	A2.1	(Direct	cause-violating	correlation).	The	observables	represented	by	𝐴	and	𝐵	
exhibit	a	direct	cause-violating	correlation	just	when	they	are	correlated	and	the	
distance	between	them	(the	distance	between	the	regions	on	which	𝐴	and	𝐵	have	
support)	exceeds	an	appropriate	bound	on	causal	signal	propagation.	

	
This	means	that	the	𝐴	and	𝐵	observables	are	so	far	apart	that	their	correlation	cannot	be	
due	to	a	causal	signal	that	propagates	between	them.	So	their	correlation	cannot	be	due	to	
a	direct	cause.	
	
What	about	a	correlation	that	is	not	due	to	a	common	cause?	Intuitively,	a	common	cause	of	
a	correlation	between	observables	𝐴	and	𝐵	is	a	random	variable	𝜆	in	their	pasts	that	is	the	
cause	of	their	correlation.	Under	a	standard	notion,	this	requires,	in	part,	that	𝐴	and	𝐵	be	
conditionally	statistically	independent	with	respect	to	𝜆:	
	
	 Pr𝜓(𝑎,	𝑏|𝐴,	𝐵,𝜆)	=	Pr𝜓(𝑎|𝐴,𝜆)Pr𝜓(𝑏|𝐵,𝜆)	 (A2.2)	
	
This	means	that	𝜆	screens	off	𝐴	from	𝐵	so	that,	with	respect	to	𝜆,	they	appear	statistically	
independent.9	In	addition	to	(A2.2),	the	standard	notion	of	a	common	cause	also	requires	a	
few	more	conditions	on	𝜆,	𝐴	and	𝐵.10	But	these	aren't	important	for	our	purposes.	What's	
important	for	us	is	that	the	standard	notion	considers	(A2.2)	to	be	a	necessary	condition	
for	𝜆	to	be	a	common	cause	of	a	correlation	between	𝐴	and	𝐵.	So	if	𝐴	and	𝐵	are	correlated,	
and	there	is	no	random	variable	𝜆	such	that	(A2.2)	holds,	then	their	correlation	cannot	be	
due	to	a	common	cause	(according	to	the	standard	notion).	This	suggests	the	following	way	
to	characterize	a	correlation	that	is	not	due	to	a	common	cause:	

	
9	Example:	Let	𝜆	=	a	drop	in	atmospheric	pressure,	𝐴	=	a	storm,	and	𝐵	=	a	drop	in	the	mercury	level	in	a	
barometer.	𝐵	is	relevant	to	𝐴	in	the	absence	of	𝜆,	but	irrelevant	in	the	presence	of	𝜆	(and	similarly,	𝐴	is	
relevant	to	𝐵	in	the	absence	of	𝜆,	but	irrelevant	in	the	presence	of	𝜆).	
10	See,	e.g.,	Hitchcock	and	Redei	(2020).	These	conditions	are	as	follows:	(i)	~𝜆	screens	𝐴	off	from	𝐵:	Pr𝜓(𝑎,	
𝑏|𝐴,	𝐵,~𝜆)	=	Pr𝜓(𝑎|𝐴,~𝜆)Pr𝜓(𝑏|𝐵,~𝜆);	(ii)	𝐴	is	more	probable	given	𝜆	than	in	its	absence:	Pr𝜓(𝑎|𝐴,	𝜆)	>	
Pr𝜓(𝑎|𝐴,	~𝜆);	(iii)	𝐵	is	more	probable	given	𝜆,	than	in	its	absence:	Pr𝜓(𝑏|𝐵,	𝜆)	>	Pr𝜓(𝑏|𝐵,	~𝜆).	
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Def.	A2.2	(Common	cause-violating	correlation).	The	observables	represented	by	𝐴	and	𝐵	
exhibit	a	common	cause-violating	correlation	just	when	they	are	correlated	and	there	
is	no	random	variable	𝜆	such	that	they	are	conditionally	statistically	independent	with	
respect	to	𝜆.	

	
To	show	that	there	can	be	correlations	between	observables	with	respect	to	an	entangled	
vector	state	that	cannot	be	due	to	a	common	cause,	we	have	to	show	that	there	is	no	
random	variable	𝜆	with	respect	to	which	these	observables	are	conditionally	statistically	
independent.	We'll	now	prove	the	following,	slightly	more	specific,	claim:	
	
Claim	A2.1.	There	are	pair-wise	correlations	in	the	entangled	vector	state	|Ψ−⟩	=	
√½{|01⟩	−	|10⟩}	between	four	spin-½	observables	such	that	a	particular	sum	of	their	
expectation	values	violates	an	inequality	that	it	must	satisfy	if	the	correlated	observables	
are	conditionally	statistically	independent.	

	
In	other	words,	
	
(a)	 If	these	correlated	observables	are	conditionally	statistically	independent,	then	a	

particular	sum	of	their	expectation	values	must	satisfy	an	inequality.	
	
(b)	 This	sum	does	not	satisfy	the	inequality.	
	
If	we	can	prove	Claims	(a)	and	(b),	then	these	correlations	are	common	cause-violating.	
The	inequality	in	Claim	(a)	is	called	the	"CHSH"	inequality	(after	Clauser,	Horne,	Shimony	
and	Holt	1969).	Claim	(a)	is	given	specifically	by:	
	
Claim	A2.2	(CHSH	inequality).	Let	A𝑥,	𝐵𝑦,	𝑥,	𝑦	∈	{0,	1}	be	four	spin-½	operators	that	act	on	
2-dim	vector	spaces	ℋ𝐴,	ℋ𝐵,	respectively,	with	values	𝑎,	𝑏	∈	{−1,	+1},	and	let	|𝜓⟩	∈	
ℋ𝐴⊗ℋ𝐵.	If	A𝑥,	𝐵𝑦	are	conditionally	statistically	independent,	then 
	 𝑆	≡	⟨A0⨂𝐵0⟩𝜓	+	⟨A0⨂𝐵1⟩𝜓	+	⟨A1⨂𝐵0⟩𝜓	−	⟨A1⨂𝐵1⟩𝜓	≤	2 

	
To	prove	this,	recall	first	that	(A2.2)	expresses	what	it	means	for	A𝑥	and	𝐵𝑦	to	be	
conditionally	statistically	independent	with	respect	to	𝜆.	In	general,	the	random	variable	𝜆	
may	vary	from	measurement	to	measurement,	and	hence	should	be	characterized	by	a	
probability	distribution	𝑞(𝜆),	so	that	Pr𝜓(𝑎,	𝑏|𝐴𝑥,	𝐵𝑦)	=	∫𝑑𝜆𝑞(𝜆)Pr𝜓(𝑎,	𝑏|𝐴𝑥,	𝐵𝑦,𝜆).	
Conditional	statistical	independence	with	respect	to	𝜆	is	then	given	by	
	
	 Pr𝜓(𝑎,	𝑏|𝐴𝑥,	𝐵𝑦)	=	∫𝑑𝜆𝑞(𝜆)Pr𝜓(𝑎| 𝐴𝑥,𝜆)Pr𝜓(𝑏| 𝐵𝑦,𝜆)	 (A2.3)	
	
Note,	too,	that	the	expectation	values	of	the	four	product	operators	A𝑥⨂𝐵𝑦	in	the	state	|𝜓⟩	
are	given	by	
	
	 ⟨A𝑥⨂𝐵𝑦⟩𝜓	=	∑𝑎,𝑏𝑎𝑏Pr𝜓(𝑎,𝑏|A𝑥,	𝐵𝑦)	 (A2.4)	
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So,	for	example,	
	
	 ⟨𝐴0⨂𝐵0⟩𝜓	 =	Pr𝜓(−1,−1|A0,	𝐵0)	−	Pr𝜓(−1,+1|A0,	𝐵0)	−	Pr𝜓(+1,−1|A0,	𝐵0)	

	 									+	Pr𝜓(+1,+1|A0,	𝐵0)	
	
We	can	now	prove	Claim	A2.2:	
	
Proof:	
⟨𝐴𝑥⨂𝐵𝑦⟩𝜓	 =	∑𝑎,𝑏𝑎𝑏Pr𝜓(𝑎,𝑏|𝐴𝑥,	𝐵𝑦)	

	 =	∑𝑎,𝑏𝑎𝑏∫𝑑𝜆𝑞(𝜆)Pr𝜓(𝑎|𝐴𝑥,𝜆)Pr𝜓(𝑏|𝐵𝑦,𝜆)	 from	(A2.3)	

	 =	∫𝑑𝜆𝑞(𝜆)∑
𝑎
𝑎Pr𝜓(𝑎|𝐴𝑥,𝜆)∑𝑏

𝑏Pr𝜓(𝑏|𝐵𝑦,𝜆)	

	 =	∫𝑑𝜆𝑞(𝜆)⟨𝐴𝑥⟩𝜓,𝜆⟨𝐵𝑦⟩𝜓,𝜆	 where,	e.g.,	⟨𝐴𝑥⟩𝜓, 𝜆	≡	∑𝑎𝑎Pr𝜓(𝑎|𝐴𝑥,𝜆) 	

So:	
𝑆	 = 	∫𝑑𝜆𝑞(𝜆){⟨𝐴0⟩𝜓,𝜆⟨𝐵0⟩𝜓,𝜆	+	⟨𝐴0⟩𝜓,𝜆⟨𝐵1⟩𝜓,𝜆	+	⟨𝐴1⟩𝜓,𝜆⟨𝐵0⟩𝜓,𝜆	−	⟨𝐴1⟩𝜓,𝜆⟨𝐵1⟩𝜓,𝜆}	
	 = 	∫𝑑𝜆𝑞(𝜆){⟨𝐴0⟩𝜓,𝜆[⟨𝐵0⟩𝜓,𝜆	+	⟨𝐵1⟩𝜓,𝜆]	+	⟨𝐴1⟩𝜓,𝜆[⟨𝐵0⟩𝜓,𝜆	−	⟨𝐵1⟩𝜓,𝜆] }	
	 ≤ 	∫𝑑𝜆𝑞(𝜆){|⟨𝐵0⟩𝜓,𝜆	+	⟨𝐵1⟩𝜓,𝜆|	+	|⟨𝐵0⟩𝜓,𝜆	−	⟨𝐵1⟩𝜓,𝜆| }	

	
The	last	line	is	a	result	of	the	fact	that	the	maximum	value	of	⟨𝐴𝑥⟩𝜓,𝜆	is	+1.	This	is	also	the	
maximum	value	of	⟨𝐵𝑦⟩𝜓,𝜆.	And	this	means	that	the	maximum	value	of	|⟨𝐵0⟩𝜓,𝜆	+	⟨𝐵1⟩𝜓,𝜆|	+	
|⟨𝐵0⟩𝜓,𝜆	−	⟨𝐵1⟩𝜓,𝜆| is	2.	Thus	𝑆	≤ 	2.	
	
So,	if	the	pair-wise	correlations	between	𝐴0,	𝐴1,	𝐵0,	𝐵1	satisfy	(A2.3),	the	CHSH	inequality	
must	hold.	And	this	means	that	if	the	CHSH	inequality	does	not	hold,	then	(A2.3)	does	not	
hold;	i.e.,	the	pair-wise	correlations	between	𝐴0,	𝐴1,	𝐵0,	𝐵1	cannot	be	due	to	a	common	
cause.	The	CHSH	inequality	is	one	version	of	a	Bell	inequality.	There	are	other	ways	of	
deriving	inequalities	for	combinations	of	expectation	values,	depending	on	the	particular	
system	and	the	particular	observables.	All	such	inequalities	go	under	the	general	name	of	
"Bell	inequalities".	They	have	in	common	that	a	violation	of	the	inequality	entails	a	
violation	of	conditional	statistical	independence.	
	
Now	let's	prove	Claim	(b)	above.	We'll	show	that	a	particular	choice	of	𝐴0,	𝐴1,	𝐵0,	𝐵1	
violates	the	CHSH	inequality	with	respect	to	the	entangled	vector	state	|Ψ−⟩	=	√½{|01⟩	−	
|10⟩}.	Our	choice	will	be	the	following	spin-½	operators:	
	
	 𝐴0	=	𝑥� ∙ �⃗�	 𝐴1	=	𝑦� ∙ �⃗�	
	 𝐵0	=	−√½(𝑥� + 𝑦�) ∙ �⃗�	 𝐵1	=	√½(−𝑥� + 𝑦�) ∙ �⃗�	
	
The	vector	𝜎	=	(𝜎𝑥,	𝜎𝑦,	𝜎𝑧)	encodes	the	Pauli	operators	which	act	on	2-dim	vectors	in	the	
following	way	(in	quantum	information	theory,	these	are	called	𝑋,	−𝑖𝑌,	𝑍	operators):	
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	 𝜎𝑥|0⟩	=	|1⟩,	 𝜎𝑥|1⟩	=	|0⟩	
	 𝜎𝑦|0⟩	=	𝑖|1⟩,	 𝜎𝑦|1⟩	=	−𝑖|0⟩	
	 𝜎𝑧|0⟩	=	|0⟩,	 𝜎𝑧|1⟩	=	−|1⟩	
	
𝐴0	represents	the	spin-½	observable	"spin-along-the-𝑥�-axis",	and	𝐴1	represents	"spin-along-
the-𝑦�-axis".	The	axes	of	𝐵0	and	𝐵1	are	at	45°	from	the	𝑥�	and	𝑦�	axes.11	We	can	now	explicitly	
calculate	𝑆	=	⟨𝐴0⨂𝐵0⟩Ψ−	+	⟨𝐴0⨂𝐵1⟩Ψ−	+	⟨𝐴1⨂𝐵0⟩Ψ−	−	⟨𝐴1⨂𝐵1⟩Ψ−.	
	
⟨𝐴0⨂𝐵0⟩Ψ−	=	½{⟨01|	−	⟨10|}(𝐴0⨂𝐵0){|01⟩	−	|10⟩}	
	 =	½{⟨01|	−	⟨10|}[(𝑥� ∙ �⃗�)⨂[-√½(𝑥� + 𝑦�) ∙ �⃗�]]{|01⟩	−	|10⟩}	
	 =	½(−√½){⟨01|	−	⟨10|}[𝜎𝑥⨂(𝜎𝑥	+	𝜎𝑦)]{|01⟩	−	|10⟩}	
	 =	½(−√½){⟨01|	−	⟨10|}[(𝜎𝑥⨂𝜎𝑥)	+	(𝜎𝑥⨂𝜎𝑦)]{|01⟩	−	|10⟩}	
	 =	½(−√½){⟨01|	−	⟨10|}{|10⟩	−	|01⟩	+	[−𝑖|10⟩	−	𝑖|01⟩]}	
	 =	½(−√½){(−1	−	𝑖)	+	(−1	+	𝑖)}	=	√½	
	
⟨𝐴0⨂𝐵1⟩Ψ−	=	½{⟨01|	−	⟨10|}(𝐴0⨂𝐵1){|01⟩	−	|10⟩} 
	 =	½{⟨01|	−	⟨10|}[(𝑥� ∙ �⃗�)⨂[√½(−𝑥� + 𝑦�) ∙ �⃗�]]{|01⟩	−	|10⟩} 
	 =	½(√½){⟨01|	−	⟨10|}[𝜎𝑥⨂(−𝜎𝑥	+	𝜎𝑦)]{|01⟩	−	|10⟩} 
	 =	½(√½){⟨01|	−	⟨10|}[(𝜎𝑥⨂−𝜎𝑥)	+	(𝜎𝑥⨂𝜎𝑦)]{|01⟩	−	|10⟩} 
	 =	½(√½){⟨01|	−	⟨10|}{−|10⟩	+	|01⟩	+	[−𝑖|10⟩	−	𝑖|01⟩]} 
	 =	½(√½){(1	−	𝑖)	−	(−1	−	𝑖)}	=	√½	
	
⟨𝐴1⨂𝐵0⟩Ψ−	=	½{⟨01|	−	⟨10|}(𝐴1⨂𝐵0){|01⟩	−	|10⟩} 
		 =	½{⟨01|	−	⟨10|}[(𝑦� ∙ �⃗�)⨂[-√½(𝑥� + 𝑦�) ∙ �⃗�]]{|01⟩	−	|10⟩} 
		 =	½(−√½){⟨01|	−	⟨10|}[𝜎𝑦⨂(𝜎𝑥	+	𝜎𝑦)]{|01⟩	−	|10⟩} 
		 =	½(−√½){⟨01|	−	⟨10|}[(𝜎𝑦⨂𝜎𝑥)	+	(𝜎𝑦⨂𝜎𝑦)]{|01⟩	−	|10⟩} 
		 =	½(−√½){⟨01|	−	⟨10|}{𝑖|10⟩	+	𝑖|01⟩	+	[|10⟩	−	|01⟩] 
		 =	½(−√½){(𝑖	−	1)	−	(𝑖	+	1)}	=	√½	
	
⟨𝐴1⨂𝐵1⟩Ψ−	=	½{⟨01|	−	⟨10|}(𝐴0⨂𝐵1){|01⟩	−	|10⟩}	
	 =	½{⟨01|	−	⟨10|}[(𝑦� ∙ �⃗�)⨂[√½(−𝑥� + 𝑦�) ∙ �⃗�]]{|01⟩	−	|10⟩}	
	 =	½(√½){⟨01|	−	⟨10|}[𝜎𝑦⨂(−𝜎𝑥	+	𝜎𝑦)]{|01⟩	−	|10⟩}	

	
11	The	two	spin-½	properties	associated	with	the	orthogonal	directions	𝑥S,	𝑦S	could	be	Hardness	and	Color.	The	
two	spin-½	properties	associated	with	the	orthogonal	directions	−√½(𝑥S + 𝑦S),	√½(−𝑥S + 𝑦S)	are	just	two	
other	spin-½	properties	in	directions	oriented	at	45°	from	the	Hardness	and	Color	directions.	



	 22	

	 =	½(√½){⟨01|	−	⟨10|}[(𝜎𝑦⨂−𝜎𝑥)	+	(𝜎𝑦⨂𝜎𝑦)]{|01⟩	−	|10⟩}	
	 =	½(√½){⟨01|	−	⟨10|}{−𝑖|10⟩	−	𝑖|01⟩	+	[|10⟩	−	|01⟩]}	
	 =	½(√½){(−𝑖	−	1)	−	(−𝑖	+	1)}	=	−√½	

	
So	𝑆	=	⟨𝐴0⨂𝐵0⟩𝜓	+	⟨𝐴0⨂𝐵1⟩𝜓	+	⟨𝐴1⨂𝐵0⟩𝜓	−	⟨𝐴1⨂𝐵1⟩𝜓	=	2√2	>	2.	Thus,	in	the	entangled	
vector	state	|Ψ−⟩	=	√½{|0𝐴⟩|1𝐵⟩	−	|1𝐴⟩|0𝐵⟩},	and	for	our	choice	of	spin-½	observables,	
we've	shown	that	𝐴0	and	𝐵0	are	correlated,	as	are	𝐴0	and	𝐵1,	and	𝐴1	and	𝐵0,	and	𝐴1	and	𝐵1.	
And	these	correlations	are	not	conditionally	statistically	independent,	because	their	
expectation	values	with	respect	to	|Ψ−⟩	violate	the	CHSH	inequality.	So	these	correlations	
are	common-cause	violating!	Moreover,	if	we	assume	the	two	entangled	subsystems	are	
separated	by	a	distance	that	exceeds	an	appropriate	bound	on	causal	signal	propagation,	
the	correlations	between	these	four	observables	are	direct	cause-violating.	Thus,	to	the	
extent	that	classical	correlations	are	due	either	to	a	direct	cause	or	a	common	cause	(or	
both),	the	correlations	exhibited	by	our	spin-½	observables	in	our	entangled	vector	state	
are	non-classical.	
	
Note	1:	What's	so	special	about	quantum	mechanics	that	certain	correlations	between	
observables	of	a	system	in	an	entangled	vector	state	violate	a	Bell	inequality?	What's	
special	is	the	way	quantum	mechanics	represents	the	expectation	values	⟨A𝑥⨂𝐵𝑦⟩𝜓	of	a	
bipartite	observable	in	an	entangled	state;	namely,	using	the	machinery	of	operators	and	
vectors.	
	
Note	2:	Many	authors	interpret	the	conditional	statistical	independence	condition	(A2.2),	
or	(A2.3),	as	a	form	of	"locality"	(sometimes	this	is	called	"Bell	locality").	They	then	
interpret	the	violation	of	a	Bell	inequality	by	expectation	values	of	observables	of	a	system	
in	an	entangled	state	as	an	indication	that	an	entangled	state	in	particular,	and	quantum	
mechanics	in	general,	exhibits	non-locality.	The	intuition	apparently	is	that	if	a	direct	
cause-violating	correlation	does	not	admit	a	common	cause,	then	it	involves	some	form	of	
non-locality.	But	this	is	misleading,	since	the	general	notion	of	locality	has	many	meanings,	
and	condition	(A2.2),	or	(A2.3),	is	easily	understood	most	directly	as	a	common	cause	
condition	(as	opposed	to	a	"locality"	condition).	On	the	other	hand,	we	might	use	the	term	
"Einstein	locality"	to	refer	to	the	sense	of	locality	that	a	direct	cause-violating	correlation	
violates	(it	exhibits	"spooky	action-at-a-distance");	and	we	might	use	the	term	"Bell	
locality"	to	refer	to	the	sense	of	locality	that	a	Bell	inequality-violating	correlation	violates.	
Then	we	could	say	that	an	entanglement	correlation	violates	both	Einstein	locality	and	Bell	
locality.	
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