
16.	Einstein	and	General	Relativistic	Spacetimes
Problem:	Special	relativity	does	not	account	for	gravitational	force.

Two	requirements
(1) New	theory	("general	relativity")	must	reduce	to	special	relativity	in	

sufficiently	flat	regions	of	spacetime:

• Replace	𝑑𝑠2 =	𝜂𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈with	𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈.

flat Minkowski metric non-flat metric

• Require	𝑔𝜇𝜈 to	reduce	to	𝜂𝜇𝜈 in	small	regions	of	spacetime.

arbitrarily curved surface

Any sufficiently small 
piece looks flat

• To	include	gravity...
Geometricize	it!		Make	it	a	
feature	of	spacetime	geometry.
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4. Hole	Argument



16.	Einstein	and	General	Relativistic	Spacetimes

Two	requirements

• To	include	gravity...

(2) Curvature	of	spacetime	must	be	related	to	matter	density:

• The	Einstein	equations	(1916):

Einstein tensor = encodes 
curvature of spacetime as a 
function of 𝑔𝜇𝜈

Stress-energy tensor =
encodes matter density

𝐺𝜇𝜈(𝑔𝜇𝜈)	=	𝜅𝑇𝜇𝜈

• Consequence:	The	Minkowski	metric	is	the	solution	for	zero	curvature	
𝐺𝜇𝜈(𝜂𝜇𝜈)	=	0 (i.e.,	spatiotemporal	flatness).
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• To	include	gravity...
Geometricize	it!		Make	it	a	
feature	of	spacetime	geometry.
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A	general	relativistic	spacetime is	a	4-dim	collection	of	points	such	that	
between	any	two	(infinitesimally	close)	points,	there	is	a	definite	spacetime	
interval	given	by	𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈,	where	𝑔𝜇𝜈 is	a	Lorentzianmetric	that	
satisfies	the	Einstein	equations.	

"reduces	to	the	Minkowski	
metric	at	any	point"
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Arbitrary	General	Relativistic	Spacetime

Variable light-cone structure at each 
point: light-cones can twist and turn 
due to curvature.

Minkowski	Spacetime

Invariant light-cone structure at 
each point: light-cones all have 
same size and orientation.

• Idea:	The	light-cone	structure	constrains	the	motion	of	physical	objects	
(traveling	on	timelike	worldlines).

• And:	In	an	arbitrary	general	relativistic	spacetime,	the	matter	density	
determines	the	light-cone	structure.
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1.	The	Geometrization	of	Gravity	in	GR

Two	key	observations:
(i) Geometry

Equation	for	a	straight	line:

or		𝑥(𝑡)	=	𝑣0𝑡 +	𝑥0,			where	𝑣0,	𝑥0 = constants

𝑡

𝑥

𝑥(𝑡)	=	𝑣0𝑡 +	𝑥0

𝑥0•

•
−𝑥0/𝑣0

𝑑%𝑥
𝑑𝑡%

= 0,

• In	inertial	frames,	Newton's	2nd	Law	is

• In	the	absence	of	external	forces	(𝐹 =	0)	an	object's	position	𝑥(𝑡) as	a	
function	of	time	is	the	equation	of	a	straight	line!	(Newton's	1st	Law.)

𝐹 = 𝑚𝑎 = 𝑚
𝑑%𝑥
𝑑𝑡%

.
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(ii) Physics
• Consider	when	the	external	force	an	object	experiences	is	due	to	gravity:

The	Newtonian gravitational	force on	an	object	of	mass	𝑚𝑔

due	to	another	object	of	mass	𝑀 a	distance	𝑟 away.

gravitational mass inertial mass

measure of inertia of an object--tendency 
of object to obey Newton's 1st Law

⇓

Φ=	−𝐺𝑀/𝑟 is	the	Newtonian	gravitational	potential	field (describes	
the	particular	gravitational	field	produced	by	mass	𝑀).

• Newton's	2nd	Law	becomes:			−𝑚𝑔∂Φ =	𝑚𝑖𝑎

measure of degree to which an object 
experiences the Newtonian gravitational force

⇓

• Is	𝑚𝑔 the	same	as	𝑚𝑖?
- Conceptually	and	mathematically,	no!
- Physically,	yes! All	known	experiments	indicate	that	𝑚𝑔 =𝑚𝑖.	

𝐹 =
𝐺𝑀𝑚'

𝑟%

= −𝑚'𝜕Φ

6



Consequence	of	𝑚𝑔 =𝑚𝑖:	

Universality	of	Gravitational	Force
In	any	given	gravitational	field	(described	by	some	Φ),	all objects	
fall	with	the	same acceleration	𝑎 =	−∂Φ.

• This	is	regardless of	the	object's	internal	
properties	(it's	mass,	charge,	etc.).

The gravitational force is universal: 
it affects all objects in the same way.

• Not	universal! How	much	an	object	accelerates	
in	given	E- and	B-fields	depends	on	its	charge	
and	its	inertial	mass	in	the	ratio	𝑞/𝑚𝑖.

Different objects will experience 
different electromagnetically-
induced accelerations.

Electromagnetic force experienced by an object 
with electric charge q moving at speed v in the 
presence of electric E and magnetic B fields.

Constrast	with	the	electromagnetic	force:

�⃗�)* = 𝑞(𝐸 + �⃗�×𝐵)

or

• Newton's	2nd	Law	becomes:

𝑞 𝐸 + �⃗�×𝐵 = 𝑚+�⃗� �⃗� =
𝑞
𝑚+

𝐸 + �⃗�×𝐵
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Since	gravity	is	universal,	let's	incorporate	it	into	the	structure	of	spacetime!		
- Let's	"geometrize"	it.

• We	can	view	these	particular "∂Φ"-straight	lines	in	the	curved	space	as	the	
paths	of	objects	that	are	undergoing	gravitationally-induced	acceleration.

• The	"extra"	term	∂Φ can	be	encoded	into	a	"non-flat"	metric.

• The	motion	of	an	object	in	a	gravitational	field	is	given	by

A curved line in a flat space.𝑑%𝑥
𝑑𝑡%

= 𝑎 = −𝜕Φ

• We	can	rewrite	it	as:

A straight line in a curved space!𝑑%𝑥
𝑑𝑡%

+ 𝜕Φ = 0
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In	flat Galilean	and	Minkowski	spacetimes,	there	is	a	distinction	between:

Earth	
at	rest

straight non-
accelerated 
trajectory

positively	charged	
plate	at	rest

+

straight	trajectories;	
no	forces	present

𝑚𝑎 =	0

𝑑'𝑥
𝑑𝑡'

= 0

spacestation

gravitationally-
accelerated curved 
trajectory

electron

−

EM-accelerated 
curved trajectory

vs.

curved	trajectories;	
forces	present

𝑚𝑎 =	𝐹

𝑑'𝑥
𝑑𝑡'

≠ 0
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In	curved general	relativistic	spacetimes:

• No distinction	between	straights	and	grav.-accelerated	trajectories.
• Still a	distinction	between	straights/grav.-accelerated	trajectories,	and	all	other
force-induced	accelerated	trajectories.

+

"old" straight still 
considered as 
straight

gravitationally-accelerated 
curved trajectory now 
considered as straight, too

straight	trajectories;	
no	forces	present

𝑚𝑎 =	0

𝑑'𝑥
𝑑𝑡'

+ 𝜕Φ = 0

−

EM-accelerated 
curved trajectory 
still considered 
curved

vs.

curved	trajectories;	
forces	present

𝑚𝑎 =	𝐹

𝑑'𝑥
𝑑𝑡'

+ 𝜕Φ ≠ 0
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Consequences	of	Geometrizing	Gravity
1. Inertial	reference	frames	(defined	by	the	families	of	straight	trajectories	in	

spacetime)	now	include	objects	at	rest,	in	constant	motion,	or gravitationally	
accelerating.

2. Gravitationally-induced acceleration	is	thus	relative	(in	exactly	the	same	way	
that	position	and	velocity	are	relative):	Whether	or	not	you	are	gravitationally	
accelerating	depends	on	your	frame	of	reference.

3. All	other types	of	acceleration	are	still	absolute:	Whether	or	not	you	are	non-
gravitationally-accelerating	is	independent	of	your	frame	of	reference	(such	
accelerations	always	come	"packaged"	with	attendant	forces).
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(a) Under	a	substantivalist	interpretation:	The	gravitational	field	is	no	longer	a	
physical	field	that	exists	in spacetime;	rather	it	is	now	part	of	the	curvature	of	
spacetime	itself.
- We've	demoted the	status	of	the	gravitational	field	from	physics	to	geometry.

(b) Under	a	relationist interpretation:	The	metric	field	is	physically	real	and	just	is	
what	was	previously	called	the	gravitational	field.
- We've	promoted the	status	of	the	metric	field	from	geometry	to	physics.

• Both	interpretations	agree	that	the	structure of	spacetime	is	no	longer	flat,	as	in	
Special	Relativity	and	Newtonian	dynamics.

Interpretation	of	Geometrizing	Gravity

• They	disagree	over	how	spacetime	structure	manifests	itself.
- A	substantivalist	says	it's	the	structure	of	a	real	spacetime.
- A	relationalist	says	it's	the	structure	of	a	real	physical	field	(the	metric	field).
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2.	The	Conventionality	of	Geometry	in	GR

• Can	the	grav	force	be	thought	of	as	an	undetectable	deformation	force?
- Present	in	the	"simple"	flat	geometry,	but	absent	in	the	complicated	curved	geometry.

• Suppose:	There	is	a	unique split	between	inertial	structure and	gravity in	GR.
- Suppose	the	contents	of	the	parenthesis	in	(B) can	always	be	written	uniquely	as	two	
distinct	terms).

• Then:	Since	all	observations	indicate	𝑚𝑔 =𝑚𝑖,	there	would	be	no	observational	
difference	between	(A) and	(B).

• Realist	Response:	The	curved	geometry	description	is,	arguably,	much	simplier.

• Is	it	a	matter	of	convention	whether	or	not	to	geometrize	the	gravitational	
force?

(A) Flat	geometry	& grav.	force (B) Curved	geometry	& no	grav.	force

𝑑'𝑥
𝑑𝑡'

𝑚( = −𝑚)𝜕Φ
𝑑'𝑥
𝑑𝑡'

𝑚( +𝑚)𝜕Φ = 0
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Claim:	Clock	B ticks	slower	than	Clock	A.	

One	consequence	of	𝑚𝑔 =𝑚𝑖:	The	gravitational	redshifting	of	clocks.

Observations	of	clocks	in	a	uniformly	accelerating	frame...

B

A

Why?	To	compare	clocks,	send	light	signals:

(i) Correlate	frequency of	a	light	signal	with	Clock	B.

B

tick tick tick...

(iii)Since	A is	accelerating	away	from	light	signal,	it	will	
receive	signal	at	lower frequency	(i.e.,	shifted	to	the	
red);	hence	Awill	measure	B as	ticking	slower.

(ii) Send	correlated	light	signal	from	B to	A.
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...should	be	indistinguishable	from	observations	of	clocks	in	a	(homogeneous)	
gravitational	field:

One	consequence	of	𝑚𝑔 =𝑚𝑖:	The	gravitational	redshifting	of	clocks.

B

A
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Prediction:	Gravity	slows	clocks	(gravitational	"red-shift").

Experimental	Evidence: 1956	Pound-Rebka	experiment	in	tower	at	Jefferson	Lab	
on	Harvard	campus.
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Two	ways	to	explain	the	gravitational	red-shifting	of	clocks

Δ𝑡0= emission	time	for	light	signal
Δ𝑡1= absorption	time	for	light	signal

Δ𝑡0
Δ𝑡1

path of trailing 
edge of light signal

path of leading 
edge of light signal

B A

𝑡

𝑥
Flat	Geometry

• Experiments	indicate	Δ𝑡1> Δ𝑡0.

B A

Δ𝑡0

Δ𝑡1

𝑡

𝑥
Curved	Geometry

• If	spacetime	is	curved,	then	the	result	is	explained	by	the	fact	that	the	paths	taken	by	
leading	and	trailing	edges	of	light	signal	are	not	"parallel".
- The	experimental	result	is	explained	without	reference	to	a	force	acting	on	clocks	in	a	way	different	
from	how	it	acts	on	other	things.

- Rather,	we	can	say	that	gravity,	as	spacetime	curvature,	affects	all	objects	in	the	same	way.

• If	spacetime	is	flat,	we	should	have	Δ𝑡1= Δ𝑡0.
- The	experimental	result	must	be	explained	by	claiming	that	gravity	affects	clocks	in	a	way	
different	from	its	effects	on	other	objects	(so	it	doesn't	affect	all	things	in	the	same	way).
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BUT:	There	isn't	a	unique	split	between	inertial	structure	and	gravity	in	GR.

• Under	a	standard	condition	(that	the	connection	be	symmetric),	the	term	
schematically	represented	by	(𝑑2𝑥/𝑑𝑡2 +	∂Φ) cannot	be	split	into	an	inertial	part	
𝑑2𝑥/𝑑𝑡2 and	a	gravitational	part	∂Φ.

• So:	Under	this	standard	condition,	geometry	is	not conventional	in	GR!

Suppose	we	relax	this	standard	condition.

- We	get	a	theory	("teleparallel	gravity")	that	looks	like	GR	and	in	which	
a	"split"	between	(what	looks	like)	inertial	structure	and	(what	looks	
like)	gravitation	can	be	achieved.

- But:	The	verdict	is	still	out	on	whether	this	is	an	equivalent	way	of	
formulating	GR,	or	whether	it	counts	as	an	entirely	different	theory!
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Recall	Mach:	Water	is	rotating	with	respect	to	the	"fixed	stars"	in	Newton's	Bucket.

3.	Mach's	Principle	and	GR

indistinguishable	
from

Water	at	rest;	fixed	stars	rotating.Water	rotating;	fixed	stars	at	rest.

sphere of fixed 
stars = matter 
density of universe

Mach's	Principle:	The	matter	density in	the	universe	is	the	cause	of	
inertial	forces	on	objects	undergoing	non-inertial	motion

• Details? How does	the	matter	density	of	the	universe	cause	inertial	forces?
- Mach	provides	no	explanation.
- Einstein	thinks	general	relativity	supplies	the	explanation!
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In	GR:		The	structure	of	spacetime...
...determines the	inertial	frames	of	reference	(i.e.,	the	families	of	straights).
...is	determined	by the	matter	density.

• Newton's	substantivalist	(Einstein's	interpretation):

The	structure	of	spacetime	is	the	cause	of	
inertial	forces	on	accelerating	objects.

• In	GR:	The	matter	density	in	the	universe	determines	the	structure	of	
spacetime,	which	then	determines	the	inertial	frames	of	reference.

• Is	"determining	the	inertial	frames	of	reference"	the	same	as	"being	the	
cause	of	inertial	forces"?

• Mach's	relationalist:

The	matter	density	in	the	universe	is	the	cause	
of	inertial	forces	on	accelerating	objects.

Does GR agree with Newton's substantivalist or Mach's relationalist?
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(1) Does	the	GR	account	support	substantivalism	or	relationalism?

(a) A	substantivalist	may	say:	"The	structure	of	spacetime	is	given	by	
properties	of	real	spacetime	points."
- Take	all	physical	fields	out	of	the	universe	and	real	spacetime	would	be	left.

(b) A	relationalist	may	say:	"The	structure	of	spacetime	is	given	by	
properties	of	the	metric	field,	which	is	a	real	physical	field."
- Take	all	physical	fields	out	of	the	universe	and	nothing	would	be	left.

Depends	on	how	you	interpret	the	"structure	of	spacetime":

Three	Questions	of	Interpretation

Should	the	metric	field	also	be	considered	a	matter	field?
Substantivalist:	No!
Relationalist:	Yes!

𝐺𝜇𝜈(𝑔𝜇𝜈)	=	𝜅𝑇𝜇𝜈

metric field matter fields



• In	GR,	there	are	"vacuum"	solutions to	the	Einstein	equations.
- Non-flat	solutions	in	which	the	matter	density	is	zero:	𝑇𝜇𝜈= 0
- "Gravitational	waves"	with	no	sources.

(2) Does	the	GR	account	support	Mach's	Principle?
Depends	on	how	you	interpret	what	matter	is!

𝐺𝜇𝜈=	𝜅𝑇𝜇𝜈= 0
Doesn't necessarily 
mean zero curvature!

(a) A	substanativalist	may	say:	"In	GR,	there	can	be	inertial	forces	(as	
experienced	by	gravitational	waves)	in	a	universe	devoid	of	matter!
- So	Mach's	Principle	does	not	hold	in	general."

(b) A	relationalist	may	say:	"In	vacuum	solutions,	the	inertial	forces	are	still	
determined	by	a	matter	field;	namely,	the	metric	field!
- Moreover,	such	'vacuum'	solutions	don't	really	describe	universes	devoid	of	matter;	
what	they	describe	are	universes	in	which	the	only	matter	field	is	the	metric	field!		

- So	Mach's	Principle	does	hold	in	general!"
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(b) A	relationalist	may	respond:	"This	supports	my	view:	Gravitational	waves	are	
propagations	in	the	metric	field."

(3) Do	vacuum	solutions	support	substantivalism	or	relationalism?

(a) A	substantivalist	may	say:	"This	supports	my	view:	Gravitational	waves	are	
propagations	of	spacetime	itself.

23

"One hundred years after Albert Einstein predicted the existence of 
gravitational waves, scientists have finally spotted these elusive ripples in 
space-time. In a highly anticipated announcement, physicists with the 
Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) 
revealed on 11 February that their twin detectors have heard the 
gravitational 'ringing' produced by the collision of two black holes about 
400 megaparsects (1.3 billion light-years) from Earth."
Casteivecchi & Witze (2016) 'Eintein's Gravitational Waves Found at Last', 
Nature News.



Symmetries	and	Equations	of	Motion
Symmetries = transformations	that	leave	equations	of	motion	unchanged.
- Newton's	equations:	Symmetries	= Galilean	transformations
- Maxwell's	equations:	Symmetries	= Lorentz	transformations
- Einstein	equations:	Symmetries	= "diffeomorphisms"

4.	Leibniz	Shifts	in	GR:	The	Hole	Argument

• Manifold	Substantivalism:	The	4-dim	collection	of	points	(a	manifold)	of	a	general	
relativistic	spacetime	represents	real	substantival	spacetime	points.

• Claim	(Hole	Argument):	If	we	adopt	a	manifold	substantivalist	interpretation	of	
GR,	then	we	have	to	conclude	that	GR	is	indeterministic!

𝑑

diffeomorphism = transformation	between	points	on	a	manifold
= arbitrary coordinate	transformation

=	𝑑(𝑝)•
𝑝

•
𝑞

𝑀
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What	this	means:

𝑔𝜇𝜈

𝑝 • 𝑞
•

𝑀

• Let	𝑑∗𝑔𝜇𝜈 be	what	you	get	when	you	act	with	𝑑 on	𝑔𝜇𝜈.

• Then:	If	𝐺𝜇𝜈(𝑔𝜇𝜈) = 𝜅𝑇𝜇𝜈,	then	𝐺𝜇𝜈(𝑑∗𝑔𝜇𝜈) =	𝜅𝑇𝜇𝜈.
- If	𝑔𝜇𝜈 is	a	solution	to	the	Einstein	equations	with	matter	distribution	𝑇𝜇𝜈,	then	so	is	𝑑∗𝑔𝜇𝜈.

• 𝑑∗𝑔𝜇𝜈 is	obtained	from	𝑔𝜇𝜈 by	"shifting"	it	to	a	different	set	of	points.
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What	this	means:

𝑑∗𝑔𝜇𝜈

𝑝 • 𝑞
•

𝑀

• Let 𝑑∗𝑔𝜇𝜈 be	what	you	get	when	you	act	with	𝑑 on	𝑔𝜇𝜈.

• 𝑑∗𝑔𝜇𝜈 is	obtained	from	𝑔𝜇𝜈 by	"shifting"	it	to	a	different	set	of	points.

• Then:	If	𝐺𝜇𝜈(𝑔𝜇𝜈) = 𝜅𝑇𝜇𝜈,	then	𝐺𝜇𝜈(𝑑∗𝑔𝜇𝜈) =	𝜅𝑇𝜇𝜈.
- If	𝑔𝜇𝜈 is	a	solution	to	the	Einstein	equations	with	matter	distribution	𝑇𝜇𝜈,	then	so	is	𝑑∗𝑔𝜇𝜈.

• Recall:	Leibniz	proposed	static	and	kinematic	shifts.
- The	appropriate	type	of	shift	in	GR	is	a	shift-by-a-diffeomorphism!
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Now:	Construct	a	"hole"	diffeomorphism	h	such	that:
(1) ℎ = identity	outside	a	region	𝐻 (the	"hole")	of	𝑀.
(2) ℎ ≠ identity	inside	𝐻.

𝑀

𝐻

𝑔𝜇𝜈
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Now:	Construct	a	"hole"	diffeomorphism	h	such	that:
(1) ℎ = identity	outside	a	region	𝐻 (the	"hole")	of	𝑀.
(2) ℎ ≠ identity	inside	𝐻.

𝑀

𝐻

ℎ∗𝑔𝜇𝜈
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Now:	Construct	a	"hole"	diffeomorphism	h	such	that:
(1) ℎ = identity	outside	a	region	𝐻 (the	"hole")	of	𝑀.
(2) ℎ ≠ identity	inside	𝐻.

• Manifold	substantivalists	must	claim	that	𝑔𝜇𝜈 and	ℎ∗𝑔𝜇𝜈 describe	different	
states	of	affairs.

• But:	𝑔𝜇𝜈 and	ℎ∗𝑔𝜇𝜈 are	physically	indistinguishable (both	are	solutions	for	the	
same	matter	distribution).

• So:	Manifold	substantivalists	must	conclude	that	the	Einstein	equations	are	
indeterministic.

𝑀

𝐻

29

A complete specification of the matter distribution outside the 
hole fails to uniquely determine the metric inside the hole.

• 𝑔𝜇𝜈 and	ℎ∗𝑔𝜇𝜈
disagree	inside	𝐻.

• 𝑔𝜇𝜈 and	ℎ∗𝑔𝜇𝜈 agree	
outside	𝐻.

• ℎ shifts	the	metric	
𝑔𝜇𝜈 only	in	the	hole.



Some	Options:

2. Modify	your	spacetime	substantivalism.
- Claim	that	spacetime	points	(or	regions)	are	real,	but	this	doesn't	necessarily	mean	𝑔𝜇𝜈
and	ℎ∗𝑔𝜇𝜈 describe	distinct	states	of	affairs.

- Maybe	spacetime	points	obtain	their	"identities"	in	strange	ways.
- Maybe	they	obtain	them	only	after	a	field	has	been	"spread"	over	them,	and	not	before.

3. Modify	your	spacetime	realism.
- Claim	that	spacetime	structure	can	be	thought	of	as	real	without	having	to	additionally	
claim	that	spacetime	points	are	real	(or	that	manifold	regions	are	real).

Non-Trivial options: they influence how you might 
attempt to reconcile GR with quantum theory!

1. Adopt	a	relationist	interpretation	of	GR.
- Since	𝑔𝜇𝜈 and	ℎ∗𝑔𝜇𝜈 describe	the	same	spacetime	relations	between	objects,	
and	differ	only	on	what	points	they	are	spread	over,	a	relationist	will	claim	
they	are	not	distinct:	they	represent	the	same	state	of	affairs.
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