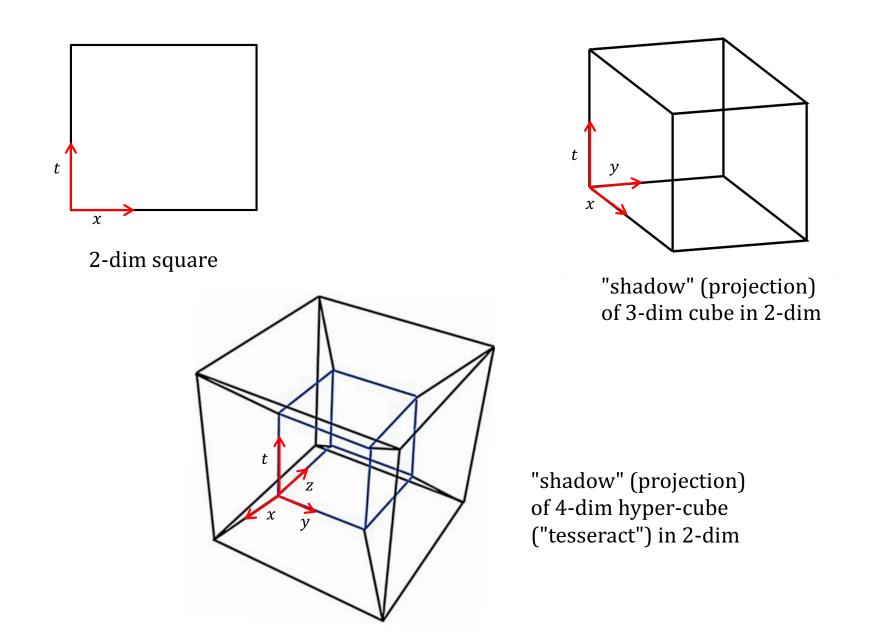
11. Spacetime

Types of Spacetime
 Classical Spacetimes

1. Types of Spacetimes

• A *spacetime* is a 4-dim collection of points with additional structure.

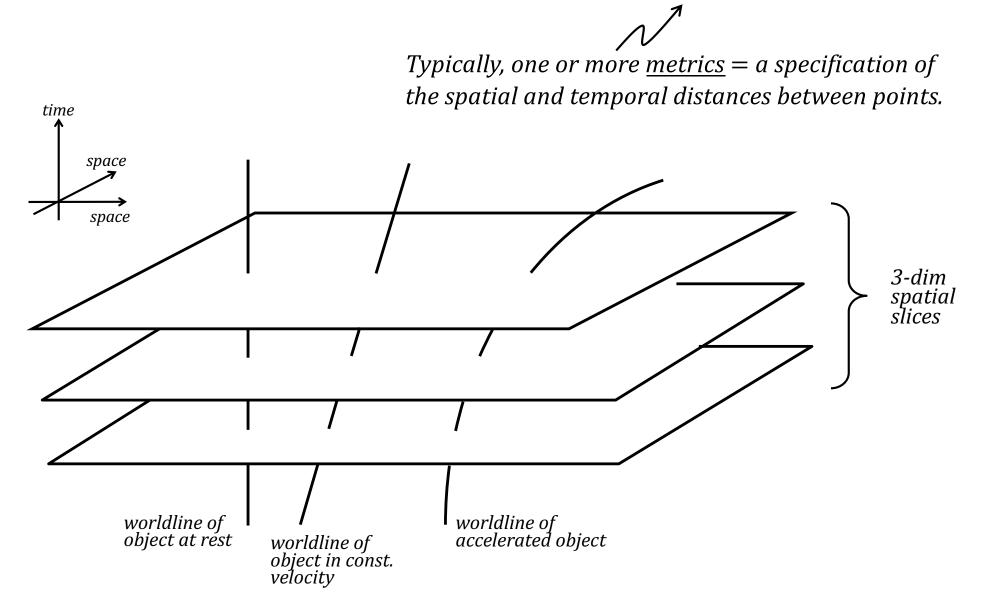


11. Spacetime

Types of Spacetime
 Classical Spacetimes

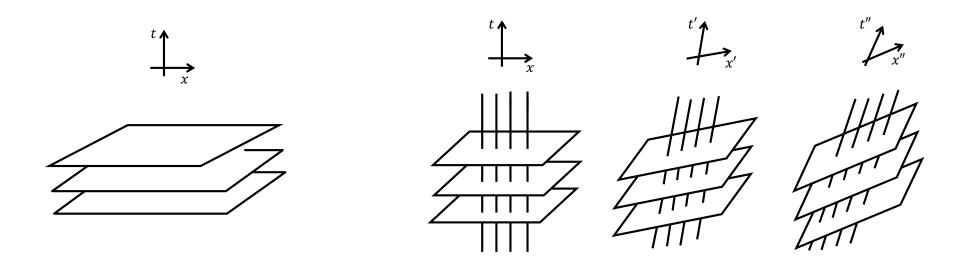
1. Types of Spacetimes

• A *spacetime* is a 4-dim collection of points with *additional structure*.



Two ways spacetimes can differ:

- (1) Different ways of specifying distances between points yield different types of spacetimes.
 - *Classical spacetimes* have *separate* spatial and temporal metrics: only one way to split time from space (spatial and temporal distances are *absolute*).
 - *Relativistic spacetimes* have a *single* spatiotemporal metric, and how it gets split into spatial and temporal parts depends on one's inertial reference frame (spatial and temporal distances are *relative*).

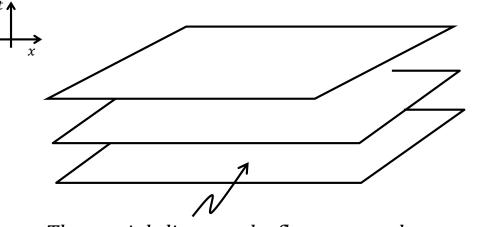


Classical spacetime: only one way to split time from space.

Relativistic spacetime: many ways to split time from space.

- (2) Metrics can be *flat* or *curved*: how one specifies the distance between points encodes the curvature of the spacetime.
 - *Classical spacetimes* can be flat or curved.
 - *Relativistic spacetimes* can be flat (Minkowski spacetime) or curved (general relativistic spacetimes).

Two ways curvature can manifest itself



The spatial slices can be flat or curved.

How the spatial slices are "rigged" together can be flat or curved.

2. Classical Spacetimes

<u>Newtonian spacetime</u> is a 4-dim collection of points such that:

- (N1) Between any two points p, q, with coordinates (t, x, y, z) and (t', x', y', z'), there is a definite *temporal interval* T(p, q) = t' t.
- (N2) Between any two points p, q, with coordinates (t, x, y, z) and (t', x', y', z'), there is a definite *Euclidean distance*

$$R(p,q) = \sqrt{(x'-x)^2 + (y'-y)^2 + (z'-z)^2}$$

<u>(N1) and (N2) entail</u>:

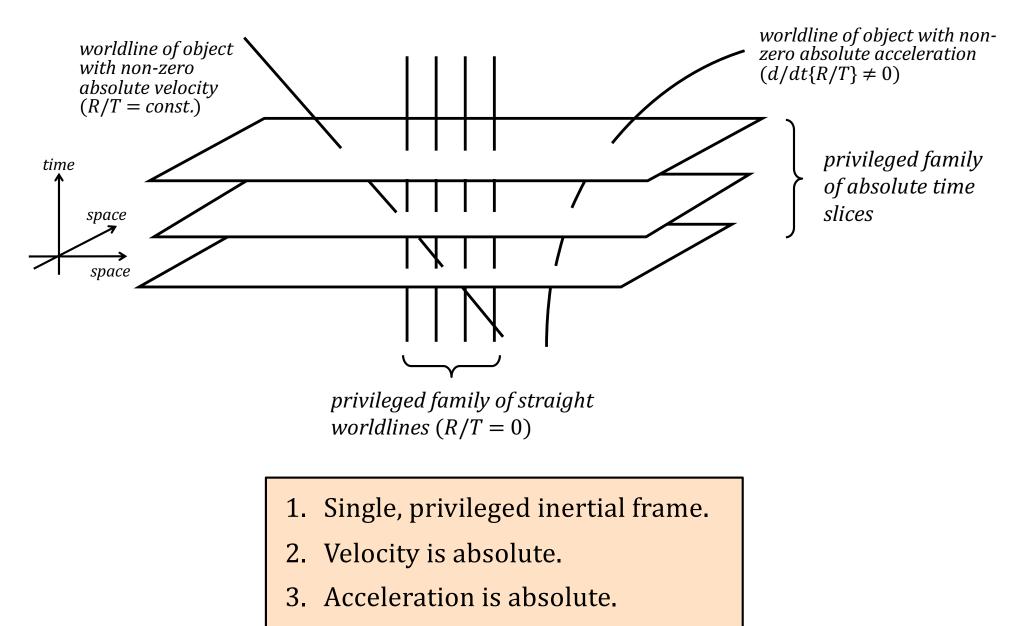
(a) All worldlines have a definite *absolute velocity*.

For worldline γ , and any two points p, q on γ , the *absolute velocity* of γ with respect to p, q can be defined by R(p, q)/T(p, q).

- (b) There is a privileged collection of worldlines defined by R(p, q)/T(p, q) = 0.
- (c) All worldlines have a definite *absolute acceleration*.

For worldline γ , and points p, q on γ , the *absolute acceleration* of γ with respect to p, q can be defined by $d/dt\{R(p, q)/T(p, q)\}$.

Newtonian Spacetime



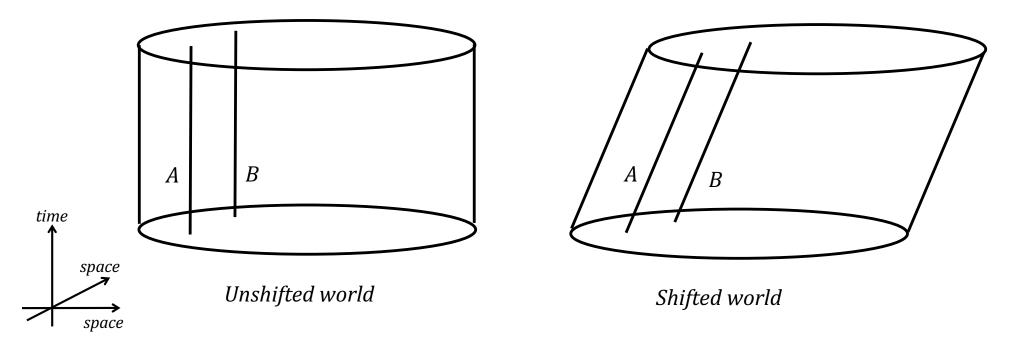
4. Simultaneity is absolute.

• Newtonian spacetime has enough structure to support the Principle of Inertia.

```
<u>Principle of Inertia in Newtonian Spacetime</u>
Objects follow straight worldlines (R/T = const)
unless acted upon by external forces.
```

• <u>But</u>: Newtonian spacetime also supports Leibiz's Kinematic Shift!

Kinematic Shift in Newtonian Spacetime



- In Newtonian spacetime, the unshifted and shifted worlds are distinct!
 - Families of straight lines with different slopes can be distinguished from each other.

Galilean spacetime is a 4-dim collection of points such that:

(G1) Between any two points p, q, with coordinates (t, x, y, z) and (t', x', y', z'), there is a definite *temporal interval* T(p, q) = t' - t.

(G2) Between any two *simultaneous* points p_t , q_t , with coordinates (t, x, y, z) and (t, x', y', z'), there is a definite *Euclidean distance*,

$$R(p_t, q_t) = \sqrt{(x' - x)^2 + (y' - y)^2 + (z' - z)^2}$$

(G3) Any worldline γ through point p has a definite curvature $S(\gamma, p)$.

<u>(G2) entails</u>:

- No absolute spatial distance between points at different times on any worldline γ .
- <u>So</u>: No absolute velocity for any worldline: velocity is relative!
- <u>So</u>: No single privileged frame of reference.

(G3) entails: acceleration remains absolute!

For worldline γ and point p on γ , the *absolute acceleration* of γ with respect to p is given by $S(\gamma, p)$.

 Δt

р

Galilean Spacetime worldline of object with non-zero absolute acceleration ($S \neq 0$) privileged family of absolute time slices time space no privileged family of straights (no way to distinguish one family space of straights from another)

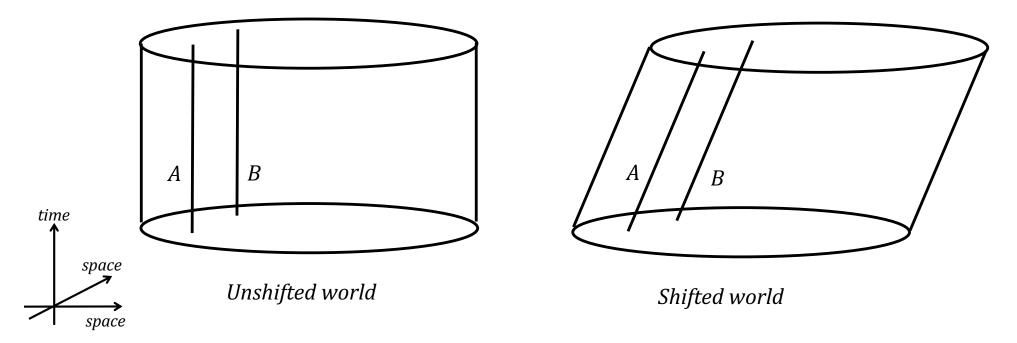
- 1. Many inertial frames; none privileged.
- 2. Velocity is relative.
- 3. Acceleration is absolute.
- 4. Simultaneity is absolute.

• Galilean spacetime has enough structure to support the Principle of Inertia.

<u>Principle of Inertia in Galilean Spacetime</u> Objects follow straight worldlines (S = 0) unless acted upon by external forces.

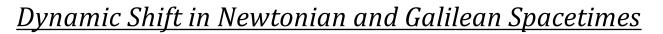
• <u>And</u>: Galilean spacetime does not support Leibiz's Kinematic Shift!

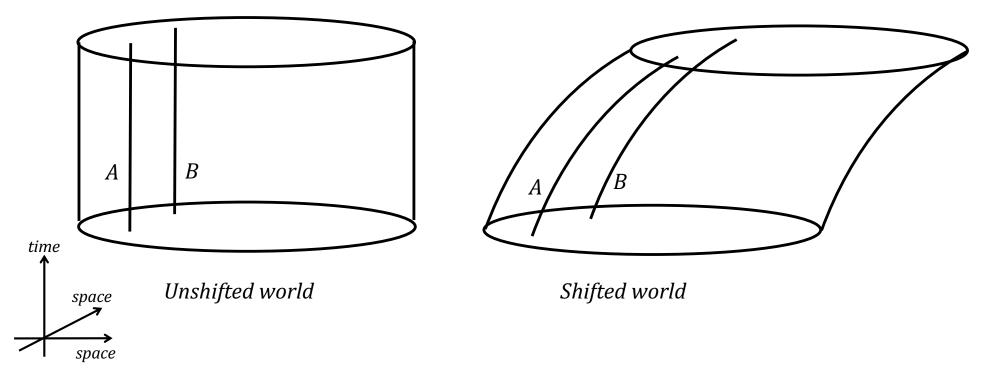
Kinematic Shift in Galilean Spacetime



• In Galilean spacetime, the unshifted and shifted worlds are indistinguishable! (Families of straight lines cannot be distinguished from each other.) What about Clarke's Dynamic Shift?

• Both Newtonian and Galilean spacetimes support the Dynamic Shift:





- In Newtonian spacetime, the unshifted and shifted worlds differ on their values of absolute acceleration $d/dt\{R/T\}$.
- In Galilean spacetime, the unshifted and shifted worlds differ on their values of absolute acceleration *S*.
- (In both Newtonian and Galilean spacetime, straight worldlines are distinct from curved worldlines.)

Galilean Spacetime <u>Newtonian Spacetime</u> privileged family of absolute time slices privileged family of straight no privileged family of straights worldlines (R/T = 0)Single, privileged inertial frame. Many inertial frames; none privileged. 1. 1. Velocity is absolute. Velocity is relative. 2. 2. Acceleration is absolute. Acceleration is absolute. 3. 3. Simultaneity is absolute. Simultaneity is absolute. 4. 4.

- There are no privileged locations in Newtonian and Galilean spacetimes (they are homogeneous).
- *<u>Recall</u>: Aristotle's cosmos has a privileged location...*

<u>Aristotelian spacetime</u> is a 4-dim collection of points such that:

- (A1) Between any two points p, q, with coordinates (t, x, y, z) and (t', x', y', z'), there is a definite *temporal interval* T(p, q) = t' t.
- (A2) Between any two points p, q, with coordinates (t, x, y, z) and (t', x', y', z'), there is a definite *Euclidean distance*

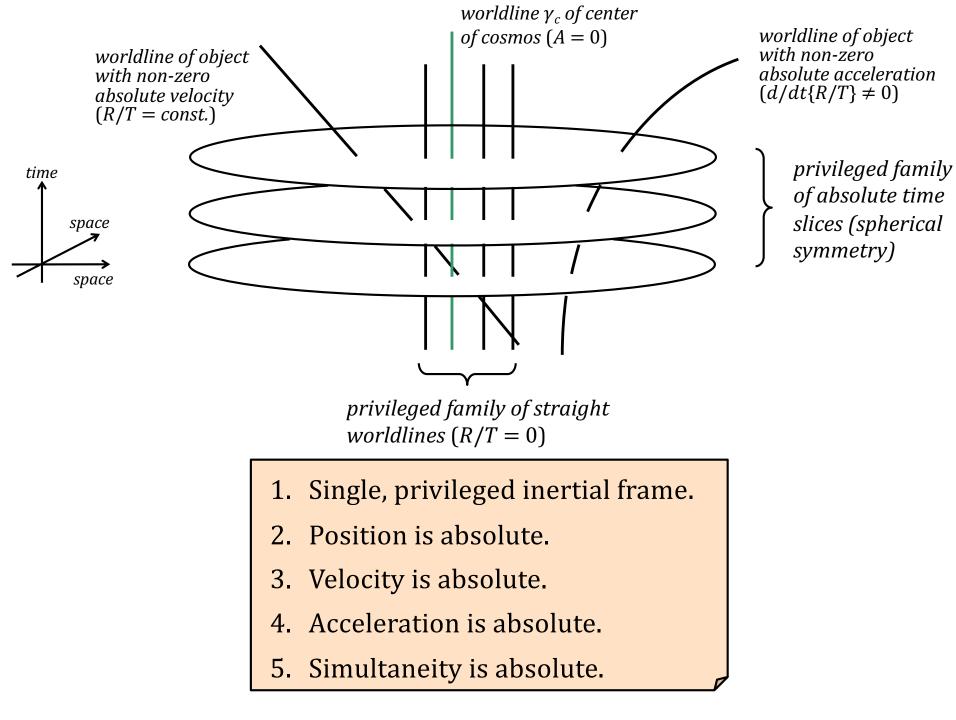
$$R(p,q) = \sqrt{(x'-x)^2 + (y'-y)^2 + (z'-z)^2}$$

(A3) Any worldline γ through point p has a definite location $A(\gamma, p)$.

Consequence of (A3):

- Location is absolute.
- Define the worldline γ_c of the center of the cosmos by $A(\gamma_c, p) = 0$, for all points p on γ_c .

Aristotelian Spacetime



- Newtonian, Galilean, and Aristotelian spacetimes support the Principle of Inertia (they all can distinguish straight worldlines from curved worldlines).
 - Galilean spacetime does this minimally: no additional superfluous structure.
 - Newtonian and Aristotelian spacetimes have additional superfluous structure.
- Are there classical spacetimes that do not have enough structure to distinguish straight worldlines from curved worldlines?

Acceleration, like position and velocity, is a relative term and cannot be interpreted absolutely." (*Matter and Motion* 1877)

James Clerk Maxwell (1831-1879)

• <u>But</u>: With respect to Newton's Bucket Experiment...

"This concavity of the surface depends on the absolute motion of rotation of the water and not on its relative rotation."

• Absolute rotation but *no* absolute (linear) acceleration?

<u>Maxwellian spacetime</u> is a 4-dim collection of points such that:

- (M1) Between any two points p, q, with coordinates (t, x, y, z) and (t', x', y', z'), there is a definite *temporal interval* T(p, q) = t' t.
- (M2) Between any two *simultaneous* points p_t , q_t , with coordinates (t, x, y, z) and (t, x', y', z'), there is a definite *Euclidean distance*,

$$R(p_t, q_t) = \sqrt{(x' - x)^2 + (y' - y)^2 + (z' - z)^2}$$

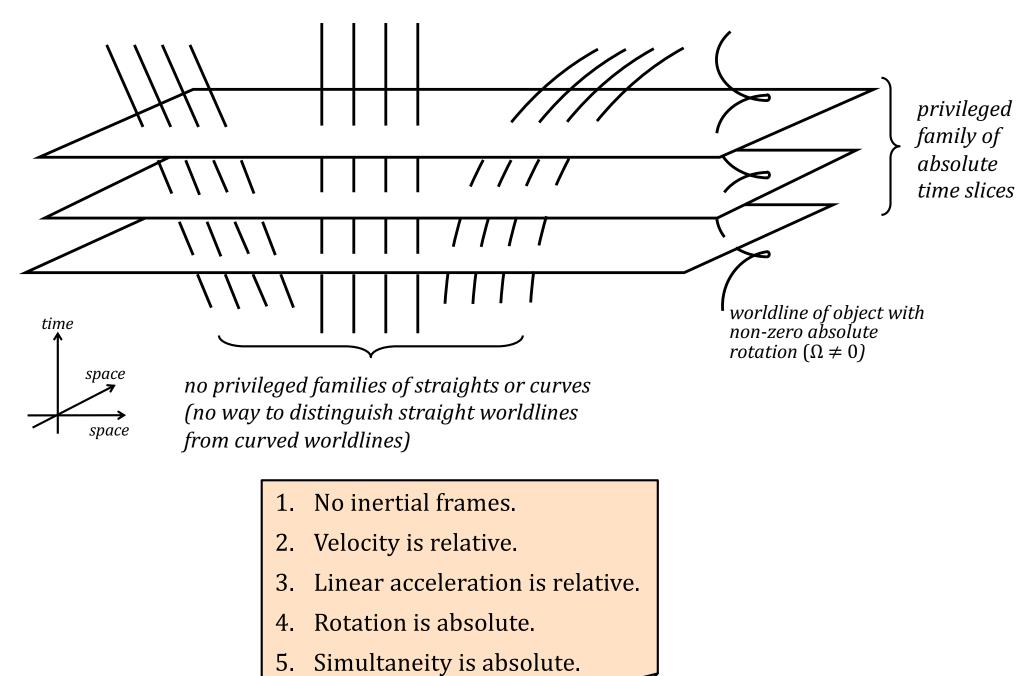
(M3) Any worldline γ through point p has a definite twist $\Omega(\gamma, p)$.

<u>(M3) entails</u>:

- *Linear* acceleration is no longer absolute!
 - There is not enough structure in Maxwellian spacetime to distinguish straight worldlines from curved worldlines.
- But rotation still is absolute!
 - M3 allows us to tell when a worldline is "twisted".

For worldline γ and point p on γ , the *absolute rotation* of γ *with respect to* p is given by $\Omega(\gamma, p)$.

Maxwellian Spacetime



Leibnizian spacetime is a 4-dim collection of points such that:

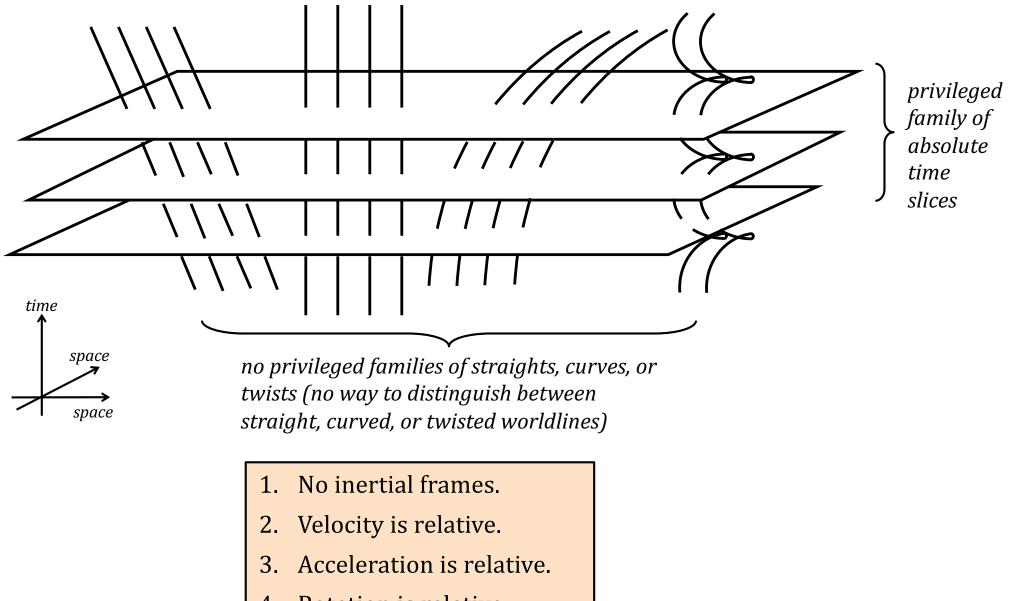
- (L1) Between any two points p, q, with coordinates (t, x, y, z) and (t', x', y', z'), there is a definite *temporal interval* T(p, q) = t' t.
- (L2) Between any two *simultaneous* points p_t , q_t , with coordinates (t, x, y, z) and (t, x', y', z'), there is a definite *Euclidean distance*,

$$R(p_t, q_t) = \sqrt{(x' - x)^2 + (y' - y)^2 + (z' - z)^2}$$

- There's still an absolute temporal metric, and an absolute Euclidean spatial metric for the "instantaneous" 3-dim spaces.
 - Space and time are absolute and Euclidean.
- *But*: There's no rotation standard, and there's no acceleration standard.
- All motion is relative! (Relationism at last?)

Hmph! But I do concede that absolute acceleration exists...

Leibnizian Spacetime



- 4. Rotation is relative.
- 5. Simultaneity is absolute.

<u>A Bestiary of Spacetimes</u>

Spacetime	Privileged Frames	Symmetries	Indistinguishable worldlines
Aristotelian	Rigid Euclidean frame with position at origin, zero velocity, zero acceleration, zero rotation.	$x \rightarrow x' = \mathbf{R}x$ $t \rightarrow t' = t + const.$ Rotate in space; translate in time.	
Newtonian	Rigid Euclidean frame with zero velocity, zero acceleration, zero rotation.	$x \rightarrow x' = \mathbf{R}x + const.$ $t \rightarrow t' = t + const.$ Rotate and translate in space; translate in time.	
Galilean	Rigid Euclidean frames with zero acceleration, zero rotation.	$x \rightarrow x' = \mathbf{R}x + \mathbf{v}t + const.$ $t \rightarrow t' = t + const.$ Rotate, translate and boost velocity space; translate in time.	rin
Maxwellian	Rigid Euclidean frames with zero rotation.	$x \rightarrow x' = \mathbf{R}x + \mathbf{a}(t)$ $t \rightarrow t' = t + const.$ Rotate, translate, boost velocity and acceleration in space; translate in the	
Leibnizian	Rigid Euclidean frames.	$x \rightarrow x' = \mathbf{R}(t)x + \mathbf{a}(t)$ $t \rightarrow t' = t + const.$ Rotate in space and time, translate and boost velocity and acceleration space; translate in time.	in the second se

 $\frac{Aristotelian}{x \to x' = \mathbf{R}x}$ $t \to t' = t + const.$

 $\frac{Newtonian}{x \to x'} = \mathbf{R}x + const.$ $t \to t' = t + const.$

 $\frac{Galilean}{x \to x'} = \mathbf{R}x + \mathbf{v}t + const.$ $t \to t' = t + const.$

 $\frac{Maxwellian}{x \to x' = \mathbf{R}x + \mathbf{a}(t)}$ $t \to t' = t + const.$

 $\frac{Leibnizian}{x \to x' = \mathbf{R}(t)x + \mathbf{a}(t)}$ $t \to t' = t + const.$

- What transformations preserve Newton's 2nd Law: $F = md^2x/dt^2$
- Answer: Aristotelian, Newtonian, and Galilean!
- <u>Which means</u>: The most general type of frames that cannot be experimentally distinguished by Newton's 2nd Law are Galilean frames!
- Consider what happens if we transform Newton's 2nd Law using Leibnizian transformations:

$$F = m \frac{d^2}{dt^2} (\mathbf{R}(t)x + \mathbf{a}(t))$$
$$= m \big(\ddot{\mathbf{R}}(t)x + 2\dot{\mathbf{R}}(t)\dot{x} + \mathbf{R}(t)\ddot{x} + \ddot{\mathbf{a}}(t)\big)$$

- The path of an object under no external forces is thus given by:

$$\ddot{x} + \mathbf{R}^{-1}(t)\ddot{\mathbf{R}}(t)x + \mathbf{R}^{-1}(t)\ddot{\mathbf{a}}(t) + 2\mathbf{R}^{-1}(t)\dot{\mathbf{R}}(t)\dot{x} = 0$$

"linear inertial force"

