Extra Credit \#2 (10pts total)

1. Consider a geometry in which Euclid's 5th postulate is replaced by:

Through any point NO line can be drawn parallel to a given line.
Show that there is at least one triangle in this geometry whose angles sum to more than two right angles.
(Hint: On a line PQ select two points A and B. Construct lines $A C$ and $B D$ perpendicular to $P Q$. What happens in this geometry if AC and BD are extended in both directions?)

2. The geometry of \#1 above is, suitably treated, the geometry of the surface of a sphere. The Earth is, to good approximation, a sphere of circumference $40,000 \mathrm{~km}$.
(a) On this sphere, what is the sum of the angles of a triangle all of whose sides are 10,000 km? (An example of such a triangle is shown as triangle ABC. It has one vertex at the North Pole and extends down to the equator.)
(b) What is the circumference of a circle of radius $10,000 \mathrm{~km}$ in this surface?
(c) The triangle ABC is a right triangle all of whose sides are $10,000 \mathrm{~km}$ long. What is its area? (Reminder: The area of the Earth is 509,300,000 km^{2}.)

