
10. Physics from Quantum Information 

Motivation: Can quantum physics be reduced to information-theoretic 
principles? 

(i)  No superluminal information transmission between systems by 
measurement on one of them. 

(ii)  No broadcasting of the information contained in an unknown state. 

(iii) No unconditionally secure bit commitment. 

CBH Theorem: A theory is a quantum theory if and only if the 
following information-theoretic constraints are satisfied: 

Strategy: 

• First: What is a quantum theory? Three essential characteristics. 

• Then: Show that these characteristics are equivalent to the three 
information-theoretic constraints. 

I. The Clifton-Bub-Halvorson (CBH) Theorem Clifton, Bub, Halvorson (2003) 
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Three Essential Characteristics of a Quantum Theory 

• What this means: If A and B are distinct, then a measurement of a property 
(observable) of A should not influence a measurement of a property of B. 

• Thus: What (1) says is that if we're dealing with two distinct quantum 
systems (and not just one), then how we measure the properties of one 
should be independent of how we measure the properties of the other. 

• Recall: Some quantum properties (Hardness, Color) are not independent in 
this sense. 

(1)  If A and B are distinct physical systems, then the observables of 
A commute with those of B.  

More precisely: Suppose we represent properties by operators. 

- Two operators OA, OB commute just when OAOB = OBOA. 

-  Or: Just when the order in which you apply them doesn't matter. 

- Which is one way to say they are independent of each other. 

- So: The operators representing Hardness and Color do not commute. 

- Note: For a classical theory, all observables commute. 
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• CBH prove: A necessary and sufficient condition for (1) is: 

 No superluminal information transmission between systems by measurement 
on one of them. 

(1)  If A and B are distinct physical systems, then the observables of 
A commute with those of B.  

Three Essential Characteristics of a Quantum Theory 
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• Motivation: A prohibition on superluminal signaling is equivalent to a 
prohibition on instantaneous signaling (according to Special Relativity). 

-  And: A prohibition on instantaneous signaling is a way of enforcing 
independence. 

any measurement 
Alice does here... 

...cannot instantaneously 
affect the outcomes of 
measurements Bob does here. 

Alice and Bob are independent if: 



- A state ρ of a system A can be cloned just when there is a ready state σ of a 
system B and an operator U on states of the joint system A & B such that                  
U(ρ ⊗ σ) = ρ ⊗ ρ. 

(2)  The observables of an individual system do not all commute with each 
other.  

• CBH prove: A necessary and sufficient condition for (2) is: 

 No broadcasting of the information contained in an unknown state. 

• What this means: Just that there are quantum properties that cannot be 
simultaneously measured (like Hardness and Color). 

• What this means: Broadcasting is the generalization of cloning. 

• So: CBH show that the impossibility of cloning/broadcasting quantum info 
entails (and is entailed by) the noncommutativity of quantum observables. 

The restriction of the joint state T(ρ ⊗ σ) to the system A. 

- A state ρ of a system A can be broadcast just when there is a ready state σ of 
a system B and an operator T on states of the joint system A & B such that         
T(ρ ⊗ σ)|A = T(ρ ⊗ σ)|B = ρ.  
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(3)  There are physically realizable nonlocal entangled states. 

• Recall: If we use a product vector space to represent the state space of a 
composite quantum system, then some states can be entangled in the 
mathematical sense of not being factorizable into a product with terms in 
the subspaces of each subsystem. 

• (3) requires that this part of the mathematical formalism is not surplus: 
there are actual physical composite systems that can be in entangled states. 

• CBH prove: A necessary and sufficient condition for (3) is: 

 No unconditionally secure bit commitment. 

What does this mean... ?
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Bit Commitment Protocol 

• A protocol in which two distrustful parties can exchange information with no 
cheating. 

Steps: 

1.  Alice commits to a message by encoding it in an encrypted bit and sending 
the encryption to Bob. 

2.  Alice announces her commitment after an appropriate time interval. 

3.  The encryption should: 
(a)  Not allow Bob to determine Alice's commitment before she announces it. 

(b)  Not allow Alice to change her commitment after she announces it. 

Example: Alice the Quant claims she can predict the stock market. 

- On Day 1, Alice makes a stock prediction for Day 2, encodes it as a single bit 
(0 for "up", 1 for "down"), and seals it in a safe and gives Boss Bob the key. 

- On Day 2 (after stocks close), Alice announces her prediction. 

- Bob checks to see if it's accurate (and then either fires her or gives her a 
bonus). 
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Alice Bob 

Bit Commitment Protocol: 

Encryption chart 
Hardness  Color 
|hard〉  ⇔ 0  |black〉  ⇔  0 
|soft〉  ⇔  1  |white〉  ⇔  1 

1.  (a)  Alice randomly choses either Hardness or Color to represent her bit. She then 
encodes the bit by measuring a sequence of electrons for that property, recording 
their values by means of an encryption chart. 

H 

C 

• Random 
choice! 

 (c)  Alice then sends her electrons to Bob. 

 (b) Alice then generates a list of bits associated with her electrons. 

Alice's list 
H :  1  0  1  0  0  1  1  1  0  1  0  1  1  0  0... 

(Bennett and Brassard 1984) 
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 (b) Bob then generates two lists, one for the values of electrons measured for 
Hardness, the other for the values of electrons measured for Color. 

Bob's lists 
H :  1  -  -  0  -  -  1  -  0  1  -  -  1  -  0... 
C : -  0  0  -  0  1  -  1  -  -  1  0  -  1... 

Encryption chart 
Hardness  Color 
|hard〉  ⇔ 0  |black〉  ⇔  0 
|soft〉  ⇔  1  |white〉  ⇔  1 

H 

C 

• Random 
choice! 

2.  (a)  Upon reception of an electron, Bob randomly picks a Hardness box or a Color 
box to send it through. 

Alice Bob 

H 

C 

• Random 
choice! 

Bit Commitment Protocol: (Bennet and Brassard 1984) 
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 (b) Bob verifies Alice's commitment by comparing her list with his. There should be 
perfect correlation between one of his lists and Alice's, and no correlation 
between the other of his lists and Alice's. 

Alice Bob 

3.  (a)  After the appropriate time interval, Alice announces her commitment (encoded as 
either "Hardness" or "Color"), and certifies it by sending Bob her bit list. 

H 

C 

• Random 
choice! 

H 

C 

• Random 
choice! 

Encryption chart 
Hardness  Color 
|hard〉  ⇔ 0  |black〉  ⇔  0 
|soft〉  ⇔  1  |white〉  ⇔  1 

Bob's lists 
H :  1  -  -  0  -  -  1  -  0  1  -  -  1  -  0... 
C : -  0  0  -  0  1  -  1  -  -  1  0  -  1... 

Alice's list 
H :  1  0  1  0  0  1  1  1  0  1  0  1  1  0  0... 

Bit Commitment Protocol: (Bennet and Brassard 1984) 
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• Alice cannot cheat by announcing her commitment after the fact 
(i.e., if she originally committed to Hardness, she cannot, at Step #3, 
announce Color). 

• Why? This requires Alice to reproduce Bob's "incorrect" list (his Color list in 
this case). And she cannot know with certainty the values of Color of any of 
the electrons she already measured for Hardness! 

How Alice Can't Cheat: rats! 

• Alice can entangle each electron she sends Bob with another electron. 

• She can then wait and announce her commitment after the fact and 
hide this by measuring her electrons for the correct property after 
Bob has done his measurements. 

• The bit list she then constructs will then be perfectly correlated with 
Bob's correct list, and uncorrelated with Bob's incorrect list. 

How Alice Can Cheat: woo-hoo! 
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Example: 

-  Alice then sends Bob electron B1 and keeps electron A1. 

- If Bob then measures his electron B1 for Color and gets the value black, the 

entangled state collapses to |white〉A1|black〉B1. 

- If Bob measures electron B1 for Color and gets the value white, the entangled state 

collapses to |black〉A1|white〉B1. 

- Suppose Alice now discovers the correct prediction is Color. 

-  She can then measure her electron A1 for Color: if she gets the value white, she 

knows Bob got black, and if she gets black, she knows Bob got white. 

-  So she can reconstruct Bob's correct Color list. 

- (And similarly if Hardness was the correct prediction.) 

- At Step #1, Alice prepares two electrons in an entangled state, say 

 

1

2
(|hard〉A1|soft〉B1 + |soft〉A1|hard〉B1) =  

 

1

2
(|white〉A1|black〉B1 + |black〉A1|white〉B1)  
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General Claim:   (Bub 2004) 

A quantum theory is a theory about the representation and 
manipulation of information. 

• Not a theory about particles or waves... 

• Information = "a new sort of physical entity". 

• An entangled state = "a nonclassical communication channel". 

Why this is potentially significant 

• There is no general consensus on how to interpret quantum mechanics! 

An interpretation 
of a theory T. 

A description of what the world 
would be like if T were true. = 

What would the world be like if quantum mechanics were true?

II. Implications. 
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The Measurement Problem 

According to the standard formulation, there are two ways the state of a 
quantum system can change: 

(a)  In the presence of a measurement: Indeterministic, instantaneous collapse 
(Projection Postulate). 

(b)  In the absence of a measurement:  Deterministic, temporal evolution via the 
Schrödinger equation. 

- Suppose the state of our system is given by |Q〉 =     (|white〉 + |black〉). 
 

1

2

- Suppose the state of our system at ti is given by |Q〉. 

These accounts of state evolution are inconsistent:  
They make distinct predictions!

- Suppose we measure our system for Color and get the value white. 

-  Then the state collpases to |white〉.  

- Then the state of our system at tf > ti is given by U|Q〉, where U = e−iHtf /! 
is a linear operator (and H is the Schrödinger Hamiltonian operator). 
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initial state 

|ready〉m|hard〉e 

pointer set 
to ready 

How to Model a Measurement Process: 

ready 
• 

hard 
• 

soft 
• 

• • 
electron enters electron exits 

|ready〉m|soft〉e 

• Consider composite system of measuring device and electron: m + e. 

• The Schrödinger equation tells us how the state of this composite system 
evolves in time. 

pointer set 
to "hard" 

final state 

Schrödinger 
evolution 

⎯⎯⎯⎯→   |"hard"〉m|hard〉e 

Schrödinger 
evolution 

⎯⎯⎯⎯→    |"soft"〉m|soft〉e 
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|ready〉m|black〉e 

initial state 

   
= 1

2
|ready〉

m
|hard 〉

e
  + |ready〉

m
|soft 〉

e( )

|ready〉m|black〉e 

initial state 

   
= 1

2
|ready〉

m
|hard 〉

e
  + |ready〉

m
|soft 〉

e( )

How to Model a Measurement Process: 

ready 
• 

hard 
• 

soft 
• 

• • 
electron enters electron exits 

• Now: Suppose a black electron is measured for Hardness. 

• But: According to the Projection Postulate, 

final state 
⎯⎯⎯⎯→ 
Schrödinger 
evolution 

   
1
2

|"hard"〉
m
|hard 〉

e
  + |"soft"〉

m
|soft 〉

e( )

either  |"hard"〉m|hard〉e  with prob = 1/2 

or  |"soft"〉m|soft〉e  with prob = 1/2 

⎯⎯⎯⎯→ collapse final state 
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Initial response: 

- According the standard formulation, the Projection Postulate is 
supposed to take over during a measurement. 

- So just ignore what the Schrödinger dynamics predicts when 
measurements occur. 

• But: What exactly is a measurement? When is the Projection Postulate 
supposed to take over from the Schrödinger dynamics? 

• According to the EE Rule, these represent different states! 

final state 

according to Schrödinger evolution 

according to Projection Postulate 
either  |"hard"〉m|hard〉e  with prob = 1/2 

or  |"soft"〉m|soft〉e  with prob = 1/2"

   
1
2

|"hard"〉
m
|hard 〉

e
  + |"soft"〉

m
|soft 〉

e( )
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Some Attempts to Solve the Measurement Problem 

(a)  Dynamical Collapse Interpretations 

(b)  Many Worlds Interpretations 

(c)  Modal Interpretations. 

- Keep the Projection Postulate and modify the Schrödinger dynamics so that 
superpositions will not occur after measurements. 

- Keep the Schrödinger dynamics and give up the Projection Postulate. 
- Claim that each term in a superposition represents a distinct possible world. 
- In particular: When a measurement (or, in general, interaction) occurs, all 

possible outcomes are generated, one per possible world. 

- Keep the Schrödinger dynamics and the Projection Postulate, but give up the 
Eigenvalue/Eigenvector Rule. 

- Claim that there is some set of always-determinate properties for any given 
quantum system, and that this set uniquely determines measurement outcomes. 
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Example of Modal Interpretation: Bohm's Theory. 

configuration space region 
in which black electron 
wave function is non-zero 

• 

H 

hard 

soft 

• 

electron initially 
located at point A 

- Inside Hardness box, black wave function "splits" into soft and hard wave functions. 

soft wave 
function 

hard wave 
function 

• 

• electron finally 
located at point B 

point C 
(no electron) 

- Depending on where electron is initially located, it will either be "carried" up with 
the hard wave function, or down with the soft wave function. 

|black〉|ψA(x)〉 ⎯→     (|hard〉|ψ(x)〉 + |soft〉|ψC(x)〉) 
 

1

2

- Particle positions always have determinate values. 
- The dynamics of such particle positions is defined in terms of a "guiding 

wavefunction" in configuration space that guarantees that the statistical predictions 
of quantum mechanics are satisifed: 
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• Also: Recall Timpson (2008): 

Information = What is produced by an information 
source that is required to be reproducible at the 
receiver if the transmission is to be counted a success. 

• In particular: Information (in the technical sense) is an "abstract noun". 

• "Information" does not refer to a substance (token); rather, it refers to a type. 

General Claim:   (Bub 2004) 

A quantum theory is a theory about the representation and 
manipulation of information. 

So:  Does the CBH Theorem really contribute to an understanding of the 
Measurement Problem? 

• In what sense is this an interpretation of quantum mechanics that addresses 
the Measurement Problem? 
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