
I. Quantum Computation 
09. Quantum Information Theory, Part II 

• General Goal: To use the inaccessible arbitrarily large amount of information 

encoded in qubits to perform computations in "quantum parallel" (i.e., in 

record time!).  

• Initial (modest) Goal: To compute all possible values of a function f in a single 
computation. 

• First Question: Can classical computations be done using qubits instead of 

classical bits? 
- Can transformations on qubits be defined that reproduce the transformations on bits 

that are needed to implement a classical computer. 
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Classical Computation Using Bits 

To implement a classical computer, it suffices to have an AND transformation 
and a NOT transformation on classical bits defined by the following: 

-  AND takes two input bits and 
produces one output bit. 

-  NOT takes one input bit and 

produces one output bit.   

0 AND 0 = 0  NOT 0 = 1 

0 AND 1 = 0  NOT 1 = 0 

1 AND 0 = 0 

1 AND 1 = 1 

• Initial problem: Transformations on qubits are reversible: the number of input 
qubits always must equal the number of output qubits. 

Why?  Qubit transformations are operators on vector spaces. And an 
operator defined on an n-dim vector space (e.g., n-qubit space) that 
acts on n-dim vectors (e.g., n qubits) can only spit out n-dim vectors. 
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• Changes the third target qubit if the first two control qubits are |1〉|1〉, and 
leaves it unchanged otherwise. 

Solution: The "Controlled-controlled-NOT" CCNOT operator. 

... 

CCNOT|0〉|0〉|0〉 = |0〉|0〉|0〉  CCNOT|0〉|1〉|1〉 = |0〉|1〉|1〉  CCNOT|1〉|1〉|0〉 = |1〉|1〉|1〉 

CCNOT|0〉|0〉|1〉 = |0〉|0〉|1〉  CCNOT|1〉|0〉|0〉 = |1〉|0〉|0〉  CCNOT|1〉|1〉|1〉 = |1〉|1〉|0〉 

CCNOT|0〉|1〉|0〉 = |0〉|1〉|0〉  CCNOT|1〉|0〉|1〉 = |1〉|0〉|1〉 

   

CC
NOT

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
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Claim: CCNOT implements AND and NOT on qubits. 
-  To implement NOT, act with CCNOT on a 3-qubit state in which 

the first two qubits are |1〉|1〉: CCNOT|1〉|1〉|x〉 = |1〉|1〉|NOT x〉. 

-  To implement AND, act with CCNOT on a 3-qubit state in which 
the last qubit is |0〉: CCNOT|x〉|y〉|0〉 = |x〉|y〉|x AND y〉. 
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• So: Any classical computation can be done using qubits instead of bits. 

- In particular: Any classical function that takes n input bits and produces k 
output bits can be implemented using arrays of primitive CCNOT "gates". 

How to Construct a Qubit-Based Function Calculator 

• Let |x〉(n) represent n input qubits that encode the number x. 

• Let |0〉(k) represent k qubits |0〉 (the output register). 

• Let |f(x)〉(k) represent k output qubits that encode the number f(x). 

• Now: Feed Uf a superposition of all possible numbers x it can take as input. 

• Result: A superposition of all possible values of the function in a single 
computation! 

• Define an operator Uf that acts on (n+ k) qubits in the following way:   

Uf |x〉(n)|0〉(k) = |x〉(n)|f(x)〉(k). 
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1.  Prepare as input a superposition of all possible numbers x that can be 
encoded in n bits: 
(i)  Start with an n-qubit state |0〉1|0〉2 ! |0〉n 

(ii) Now apply a Hadamard transformation to each qubit: 

The first term 
encodes the binary 
number for 0. 

Each term in between 
is the binary number 
for each number 
between 0 and 2n – 1. 

The last term 
encodes the 
binary number 
for 2n – 1. 

So the entire sum is a 
superposition that encodes all 
numbers x such that 0 ≤ x < 2n. 

Two Steps: 
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2.  Now attach a k-qubit output register |0〉(k) and apply Uf. 

Two Steps: 
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A superposition of all possible values f(x), 

for 0 ≤ x < 2n, of the function f.  And 

we've effectively calculated them all with 

just a single application of Uf. 

• The Catch: None of these values of f is accessible until we make a 
measurement! 

The Task for Quantum Algorithm construction 

• Given a problem, first construct an appropriate superposition of solutions. 
Then manipulate the superposition so that the relevant terms aquire high 
probability. 
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• Factors large integers into primes in polynomial time. 

- Polynomial time ⇒ the time needed to factor an integer increases 
exponentially as the number of digits increases. 

- Exponential time ⇒ the time needed to factor an integer increases 
as a power of the increase in number of digits of the integer. 

Example: Shor's Factorization Algorithm (1994) 

• To factor integer N, current classical algorithms require 104(logN)1/3 steps. 

• The largest numbers capable of such factorization have ~150 (base 10) digits. 

Why is fast prime factorization important? 

• Classical RSA Encryption: 

- public encryption key = product pq of two (very large) primes. 

- private decryption key = p, q separately 

- Thus: Factorizing pq (in your lifetime) would let you break RSA encryption 
(standard encryption for web transactions). 
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Two essential facts underlie Shor's algorithm: 
(a) Factorizing a large integer is equivalent to determining the period r 

of an associated periodic function f(x+r) = f(x). 

(b) A discrete Fourier transform maps a function g(x) of period r on 
the domain (0, 2n−1) to a function G(c) which has (approximately) 
non-zero values only at multiples of 2n/r. 

Protocol 

• By Fact (a), to factorize a given large integer, suppose we've determined that 
we need to find the period r of an appropriate periodic function f(x). 
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Step 1 

• Construct a superposition of all possible solutions of f(x) for 0 ≤ x < 2n. 

Our Good Friend the qubit-
based function calculator!
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Step 2 

• Measure f(x); i.e., compute one value of it, say f(x0). 

where g(x) = 1 for x = x0 + kr, and zero otherwise (for k an integer). 

1
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0
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∑

• Also: g(x) has the same period r as f(x), since g(x) = g(x0 + kr). 

• So: To find the period of f(x), we now need to find the period of g(x). 

• Note: The output register now has a single term |f(x0)〉(k), but the input 
register |x〉(n) is still in a superposition of all those values of x for which 
f(x) = f(x0). 

There are 2n/r such values.



• By Fact (b), G(c) is non-zero only for c = j2n/r, for integer j. 
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Step 3 

• Act on the input register with a quantum Fourier transformation: 

where G(c) is the discrete Fourier transform of g(x). 
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• This produces a value of j2n/r. 

• We can now calculate (or approximate closely) the value of r. 

• Which means: The right hand side can be written as 
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Step 4 

• Conduct a measurement on the input register: 
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II. Interpretive Issues. 
(1) How are quantum computers different from classical computers? 

• A quantum computer can compute anything that a classical computer can. 

- Recall: Any computation implemented using bits can be implemented using qubits. 

• A classical computer can compute anything that a quantum computer can. 
- Any computation implemented using qubits can be implemented using bits and a 

probabilistic algorithm. 

- Intuitively: There are probabilistic classical 2-state systems that can simulate the 
output of quantum 2-state systems, (although perhaps not as efficiently). 

Claim: Apart from hardware differences (quantum 2-state 
systems vs. classical 2-state systems), the essential difference 
between a quantum computer and a classical computer is that 
the former are ideally much more efficient than the latter. 
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(2) Is quantum information different from classical information? 

Information = What is produced by an information 
source that is required to be reproducible at the 
receiver if the transmission is to be counted a success. 

Two Types of Information Source     (Timpson 2008) 

I. Classical information source   
- Abstractly: Produces letters from a set {a1, a2, ..., an} with probabilities pi = p(ai). 

- Messages = sequences of letters. Ex: a7a3a4... 

- Concretely: Produces physical systems (e.g., on-off switches) in classical states   
{a1, a2, ..., an}. 

- Output = sequence of classical states. Ex: a7a3a4...   

II(a). Quantum information, Pure Source 
- Produces physical systems (e.g., electrons) in "pure" quantum states 

{|a1〉, |a2〉, ..., |an〉}. 

- Output = sequence of quantum pure states. Ex: |a7〉|a3〉|a4〉... 

12 



II(b). Quantum information, Entanglement Source 
- Produces physical systems (i.e., electrons) in entangled quantum states which 

include other systems inaccessible to the source. 

- Output = sequence of quantum entangled states. 

Example: 

B = {B1, B2, ...} = {electrons produced by source} 

A = {A1, A2, ...} = {electrons entangled with source electrons} 

C = {C1, C2, ...} = {"target" electrons at receiver} 

- Suppose: Electron Bi is produced at source in an entangled state |ψ〉AiBi
 with 

electron Ai. 

-  Goal: To reproduce this entangled state at receiver, but between Ai and Ci: |ψ〉AiCi
. 

-  In general: If source produces sequence of states |ψ〉AiBi
|ψ'〉AjBj

|ψ''〉AkBk
..., then 

successful transmission occurs if receiver reproduces sequence of states                   
|ψ〉AiCi

|ψ'〉AjCj
|ψ''〉AkCk

... . 
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• Upshot: No fundamental difference between classical and quantum 
information (just a difference in types of sources). 
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• Moreover: Recall the Shannon Entropy for classical information: 

- Specifies the minimal number of bits required to encode the output of a 
classical information source (Shannon's 1948 Noiseless Coding Theorem). 

H(X)=− p(x
i
)log2 p(xi )

i

∑

- ρ = the state associated with the output of a quantum information source. 

- Specifies the minimal number of qubits required to encode the output of a 
quantum information source (Schumacher 1995). 

• The von Neumann Entropy: 

S(ρ)=−Trρ log2 ρ


