
I. Quantum Computation
09. Quantum Information Theory, Part II

• General Goal: To use the inaccessible arbitrarily large amount of information

encoded in qubits to perform computations in "quantum parallel" (i.e., in

record time!).

• Initial (modest) Goal: To compute all possible values of a function f in a single
computation.

• First Question: Can classical computations be done using qubits instead of

classical bits?
- Can transformations on qubits be defined that reproduce the transformations on bits

that are needed to implement a classical computer.

1

Classical Computation Using Bits

To implement a classical computer, it suffices to have an AND transformation
and a NOT transformation on classical bits defined by the following:

- AND takes two input bits and
produces one output bit.

- NOT takes one input bit and

produces one output bit.

0 AND 0 = 0 NOT 0 = 1

0 AND 1 = 0 NOT 1 = 0

1 AND 0 = 0

1 AND 1 = 1

• Initial problem: Transformations on qubits are reversible: the number of input
qubits always must equal the number of output qubits.

Why? Qubit transformations are operators on vector spaces. And an
operator defined on an n-dim vector space (e.g., n-qubit space) that
acts on n-dim vectors (e.g., n qubits) can only spit out n-dim vectors.

2

• Changes the third target qubit if the first two control qubits are |1〉|1〉, and
leaves it unchanged otherwise.

Solution: The "Controlled-controlled-NOT" CCNOT operator.

...

CCNOT|0〉|0〉|0〉 = |0〉|0〉|0〉 CCNOT|0〉|1〉|1〉 = |0〉|1〉|1〉 CCNOT|1〉|1〉|0〉 = |1〉|1〉|1〉

CCNOT|0〉|0〉|1〉 = |0〉|0〉|1〉 CCNOT|1〉|0〉|0〉 = |1〉|0〉|0〉 CCNOT|1〉|1〉|1〉 = |1〉|1〉|0〉

CCNOT|0〉|1〉|0〉 = |0〉|1〉|0〉 CCNOT|1〉|0〉|1〉 = |1〉|0〉|1〉

CC
NOT

=

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⏐0〉⏐0〉⏐0〉=

1
0
0
0
0
0
0
0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⏐0〉⏐0〉⏐1〉=

0
1
0
0
0
0
0
0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⏐1〉⏐1〉⏐1〉=

0
0
0
0
0
0
0
1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Claim: CCNOT implements AND and NOT on qubits.
- To implement NOT, act with CCNOT on a 3-qubit state in which

the first two qubits are |1〉|1〉: CCNOT|1〉|1〉|x〉 = |1〉|1〉|NOT x〉.

- To implement AND, act with CCNOT on a 3-qubit state in which
the last qubit is |0〉: CCNOT|x〉|y〉|0〉 = |x〉|y〉|x AND y〉.

3

• So: Any classical computation can be done using qubits instead of bits.

- In particular: Any classical function that takes n input bits and produces k
output bits can be implemented using arrays of primitive CCNOT "gates".

How to Construct a Qubit-Based Function Calculator

• Let |x〉(n) represent n input qubits that encode the number x.

• Let |0〉(k) represent k qubits |0〉 (the output register).

• Let |f(x)〉(k) represent k output qubits that encode the number f(x).

• Now: Feed Uf a superposition of all possible numbers x it can take as input.

• Result: A superposition of all possible values of the function in a single
computation!

• Define an operator Uf that acts on (n+ k) qubits in the following way:

Uf |x〉(n)|0〉(k) = |x〉(n)|f(x)〉(k).

4

1. Prepare as input a superposition of all possible numbers x that can be
encoded in n bits:
(i) Start with an n-qubit state |0〉1|0〉2 ! |0〉n

(ii) Now apply a Hadamard transformation to each qubit:

The first term
encodes the binary
number for 0.

Each term in between
is the binary number
for each number
between 0 and 2n – 1.

The last term
encodes the
binary number
for 2n – 1.

So the entire sum is a
superposition that encodes all
numbers x such that 0 ≤ x < 2n.

Two Steps:

= 1

2()
n

|0〉
1
|0〉

2
! |0〉

n
+ |0〉

1
|0〉

2
! |1〉

n
+ ! |1〉

1
|1〉

2
! |1〉

n{ } = 1
2()

n

|x〉
(n)

x=0

2n−1

∑

= 1

2()
n

|0〉
1

+ |1〉
1() |0〉

2
+ |1〉

2()! |0〉
n

+ |1〉
n(){ }

H

1
⊗H

2
⊗!⊗H

n
()|0〉1|0〉2! |0〉

n

5

2. Now attach a k-qubit output register |0〉(k) and apply Uf.

Two Steps:

U

f
1
2()

n

|x〉
(n)

|0〉
(k)∑ = 1

2()
n

U
f
|x〉

(n)
|0〉

(k)∑ = 1
2()

n

|x〉
(n)

|f (x)〉
(k)∑

A superposition of all possible values f(x),

for 0 ≤ x < 2n, of the function f. And

we've effectively calculated them all with

just a single application of Uf.

• The Catch: None of these values of f is accessible until we make a
measurement!

The Task for Quantum Algorithm construction

• Given a problem, first construct an appropriate superposition of solutions.
Then manipulate the superposition so that the relevant terms aquire high
probability.

6

• Factors large integers into primes in polynomial time.

- Polynomial time ⇒ the time needed to factor an integer increases
exponentially as the number of digits increases.

- Exponential time ⇒ the time needed to factor an integer increases
as a power of the increase in number of digits of the integer.

Example: Shor's Factorization Algorithm (1994)

• To factor integer N, current classical algorithms require 104(logN)1/3 steps.

• The largest numbers capable of such factorization have ~150 (base 10) digits.

Why is fast prime factorization important?

• Classical RSA Encryption:

- public encryption key = product pq of two (very large) primes.

- private decryption key = p, q separately

- Thus: Factorizing pq (in your lifetime) would let you break RSA encryption
(standard encryption for web transactions).

7

Two essential facts underlie Shor's algorithm:
(a) Factorizing a large integer is equivalent to determining the period r

of an associated periodic function f(x+r) = f(x).

(b) A discrete Fourier transform maps a function g(x) of period r on
the domain (0, 2n−1) to a function G(c) which has (approximately)
non-zero values only at multiples of 2n/r.

Protocol

• By Fact (a), to factorize a given large integer, suppose we've determined that
we need to find the period r of an appropriate periodic function f(x).

8

U

f
1

2n
|x〉

(n)
|0〉

(k)
x=0

2n−1

∑ = 1

2n
|x〉

(n)
|f (x)〉

(k)
x=0

2n−1

∑

Step 1

• Construct a superposition of all possible solutions of f(x) for 0 ≤ x < 2n.

Our Good Friend the qubit-
based function calculator!

9

Step 2

• Measure f(x); i.e., compute one value of it, say f(x0).

where g(x) = 1 for x = x0 + kr, and zero otherwise (for k an integer).

1

2n
|x〉
(n)
|f (x)〉

(k)
x=0

2n−1

∑ collapse⎯ →⎯⎯⎯ C g(x)|x〉
(n)
|f (x

0
)〉
(k)

x=0

2n−1

∑

• Also: g(x) has the same period r as f(x), since g(x) = g(x0 + kr).

• So: To find the period of f(x), we now need to find the period of g(x).

• Note: The output register now has a single term |f(x0)〉(k), but the input
register |x〉(n) is still in a superposition of all those values of x for which
f(x) = f(x0).

There are 2n/r such values.

• By Fact (b), G(c) is non-zero only for c = j2n/r, for integer j.

10

Step 3

• Act on the input register with a quantum Fourier transformation:

where G(c) is the discrete Fourier transform of g(x).

C g(x)|x〉
(n)
|f (x

0
)〉
(k)

x=0

2n−1

∑ quantum FT⎯ →⎯⎯⎯⎯ ′C G(c)|c〉
(n)
|f (x

0
)〉
(k)

c=0

2n−1

∑

• This produces a value of j2n/r.

• We can now calculate (or approximate closely) the value of r.

• Which means: The right hand side can be written as

′C G(j 2n
r
)|j 2n

r
〉
(n)
|f (x

0
)〉
(k)

j=0

r−1/2n

∑

Step 4

• Conduct a measurement on the input register:

′C G(j 2n
r
)|j 2n

r
〉
(n)
|f (x

0
)〉
(k)

j=0

r−1/2n

∑ collapse⎯ →⎯⎯⎯ |j 2n
r
〉
(n)
|f (x

0
)〉
(k)

II. Interpretive Issues.
(1) How are quantum computers different from classical computers?

• A quantum computer can compute anything that a classical computer can.

- Recall: Any computation implemented using bits can be implemented using qubits.

• A classical computer can compute anything that a quantum computer can.
- Any computation implemented using qubits can be implemented using bits and a

probabilistic algorithm.

- Intuitively: There are probabilistic classical 2-state systems that can simulate the
output of quantum 2-state systems, (although perhaps not as efficiently).

Claim: Apart from hardware differences (quantum 2-state
systems vs. classical 2-state systems), the essential difference
between a quantum computer and a classical computer is that
the former are ideally much more efficient than the latter.

11

(2) Is quantum information different from classical information?

Information = What is produced by an information
source that is required to be reproducible at the
receiver if the transmission is to be counted a success.

Two Types of Information Source (Timpson 2008)

I. Classical information source
- Abstractly: Produces letters from a set {a1, a2, ..., an} with probabilities pi = p(ai).

- Messages = sequences of letters. Ex: a7a3a4...

- Concretely: Produces physical systems (e.g., on-off switches) in classical states
{a1, a2, ..., an}.

- Output = sequence of classical states. Ex: a7a3a4...

II(a). Quantum information, Pure Source
- Produces physical systems (e.g., electrons) in "pure" quantum states

{|a1〉, |a2〉, ..., |an〉}.

- Output = sequence of quantum pure states. Ex: |a7〉|a3〉|a4〉...

12

II(b). Quantum information, Entanglement Source
- Produces physical systems (i.e., electrons) in entangled quantum states which

include other systems inaccessible to the source.

- Output = sequence of quantum entangled states.

Example:

B = {B1, B2, ...} = {electrons produced by source}

A = {A1, A2, ...} = {electrons entangled with source electrons}

C = {C1, C2, ...} = {"target" electrons at receiver}

- Suppose: Electron Bi is produced at source in an entangled state |ψ〉AiBi
 with

electron Ai.

- Goal: To reproduce this entangled state at receiver, but between Ai and Ci: |ψ〉AiCi
.

- In general: If source produces sequence of states |ψ〉AiBi
|ψ'〉AjBj

|ψ''〉AkBk
..., then

successful transmission occurs if receiver reproduces sequence of states
|ψ〉AiCi

|ψ'〉AjCj
|ψ''〉AkCk

... .

13

• Upshot: No fundamental difference between classical and quantum
information (just a difference in types of sources).

14

• Moreover: Recall the Shannon Entropy for classical information:

- Specifies the minimal number of bits required to encode the output of a
classical information source (Shannon's 1948 Noiseless Coding Theorem).

H(X)=− p(x
i
)log2 p(xi)

i

∑

- ρ = the state associated with the output of a quantum information source.

- Specifies the minimal number of qubits required to encode the output of a
quantum information source (Schumacher 1995).

• The von Neumann Entropy:

S(ρ)=−Trρ log2 ρ

