09. Quantum Information Theory, Part 11
I. Quantum Computation

e General Goal: To use the inaccessible arbitrarily large amount of information
encoded in qubits to perform computations in "quantum parallel" (i.e., in

record time!).

e Initial (modest) Goal: To compute all possible values of a function fin a single
computation.

o First Question: Can classical computations be done using qubits instead of

classical bits?
- Can transformations on qubits be defined that reproduce the transformations on bits

that are needed to implement a classical computer.



Classical Computation Using Bits

To implement a classical computer, it suffices to have an AND transformation
and a NOT transformation on classical bits defined by the following;:

0AND O =0 NOTO =1 - AND takes two input bits and
0 AND1 =0 NOT1 =0 produces one output bit.
1 ANDO = 0 - NOT takes one input bit and
1 AND 1 = 1 produces one output bit.

e Initial problem: Transformations on qubits are reversible: the number of input

qubits always must equal the number of output qubits.

————————————————————————————————————————————————————————————————————————

i Why? Qubit transformations are operators on vector spaces. And an i
: operator defined on an n-dim vector space (e.g., n-qubit space) that i
: acts on n-dim vectors (e.g., n qubits) can only spit out n-dim vectors. |



Solution: The "Controlled-controlled-NOT" CC),, operator.

e Changes the third target qubit if the first two control qubits are |1)|1), and
leaves it unchanged otherwise.

CCro1|0)[0)]0) = [0)]0)[0) CCror|0)[1)[1) = 10)[1)]1) CCror|1)1)|0) = [1)|1)]1)
CCror|0)[0)[1) = 0)]0)[1) CCror|1)10)|0) = [1)[0)]0) CCror|1)1)|1) = [1)[1)]0)
CCror|0)[1)]0) = 10)[1)]0) CCyor(1)|0)[1) = [1)|0)[1)
10000000 1 0 0
01000000 0 1 0
00100000 0 0 0
00010000 0 0 0
CCypp = 0)[0)[0) = 0)[0)[1) = DL =
"=l 000100 0 0)[0)(0) 0 0)[0)[1) 0 [1)[1)[L) 0
00000O0T10 0 0 0 0
00000O0GO0TO 01 0 0 0
00000O0O0T10 0 0 1

P e e o e e e e e e e e o e e e e M e e e e e e Em e e e e e M e mm e e mm e e e e e e e e e e e e = =y

i Claim: CCyyr implements AND and NOT on qubits. i
E - To implement NOT, act with CC),, on a 3-qubit state in which E
. the first two qubits are |[1)|1): CCypr|1)|1)|2) = |1)|1)|NOT z). |
i - To implement AND, act with CCy,; on a 3-qubit state in which i
i the last qubit is [0): CCypr|2)|1)|0) = |2)|y)|z AND v). :



e So0: Any classical computation can be done using qubits instead of bits.

- In particular: Any classical function that takes n input bits and produces k

output bits can be implemented using arrays of primitive CCy, "gates".

How to Construct a Qubit-Based Function Calculator

o Let x>(n) represent n input qubits that encode the number z.

e Let |0) represent k qubits |0) (the output register).

e Let |f(z))) represent k output qubits that encode the number f(z).

e Define an operator U, that acts on (n+ k) qubits in the following way:
Uf\$>(n)|0>(k) = |$>(n)’f(fl7)>(k)-

e Now: Feed U;a superposition of all possible numbers z it can take as input.

e Result: A superposition of all possible values of the function in a single
computation!



Two Steps:

1. Prepare as input a superposition of all possible numbers x that can be

encoded in n bits:

(i) Start with an n-qubit state |0),|0), --- |0),

(ii) Now apply a Hadamard transformation to each qubit:

(H1 ®H2 ®...®Hn)|0>1|0>2... |()>n

= (V) o0+ )00+ m, ), + )

= (V&) {o)01, 10, + [0)0),+ 1), + -

\( J
The first term
encodes the binary Fach term in between

number for 0. 15 the binary number
for each number
between 0 and 2™ — 1.

The last term
encodes the

binary number
for 2n — 1.

So the entire sum is a
superposition that encodes all

numbers x such that 0 < x < 2™



Two Steps:
2. Now attach a k-qubit output register |0),, and apply U,.

U, (\/% )n 2 _|2),|0),, = (\/g )n > U la),0), = (\/g )” 2_|%) @)y,

________________________________________

i A superposition of all possible values f(x),
s for 0 < z < 27, of the function f. And
i we've effectively calculated them all with

i just a single application of U,

________________________________________

e The Catch: None of these values of fis accessible until we make a

measurement!

The Task for Quantum Algorithm construction

e GGiven a problem, first construct an appropriate superposition of solutions.
Then manipulate the superposition so that the relevant terms aquire high
probability.



Example: Shor's Factorization Algorithm (199/)

e Factors large integers into primes in polynomial time.

- Polynomzial time = the time needed to factor an integer increases
exponentially as the number of digits increases.

- Exponential time = the time needed to factor an integer increases
as a power of the increase in number of digits of the integer.

e To factor integer N, current classical algorithms require 10410sM"”* steps.

e The largest numbers capable of such factorization have ~150 (base 10) digits.

Why is fast prime factorization important?

e Classical RSA Encryption:
- public encryption key = product pq of two (very large) primes.
- private decryption key = p, q separately

- Thus: Factorizing pq (in your lifetime) would let you break RSA encryption
(standard encryption for web transactions).



Two essential facts underlie Shor's algorithm: k

(a) Factorizing a large integer is equivalent to determining the period r
of an associated periodic function f(z+71) = f(z).

(b) A discrete Fourier transform maps a function ¢(z) of period 7 on
the domain (0, 2"—1) to a function G(c¢) which has (approximately)
non-zero values only at multiples of 2%/r.

Protocol

e By Fact (a), to factorize a given large integer, suppose we've determined that
we need to find the period 7 of an appropriate periodic function f(x).

Step 1
e Construct a superposition of all possible solutions of f(z) for 0 < z < 2™

2" —1 2" —1
U, 321200, = 4 ol @l

W

Our Good Friend the qubit-
based function calculator!



Step 2
e Measure f(z); i.e., compute one value of it, say f(z).

ﬁ Z ‘ x>(n)|f(x)>(k) collapse ’ CZ g(ﬂ?)‘ x>(")|f(x0 >>(k)
—0 =0

where g(x) = 1 for x = x, + kr, and zero otherwise (for k£ an integer).

e Note: The output register now has a single term |f(z));), but the input
register |z)., is still in a superposition of all those values of z for which

f(z) = f(z).

There are 2"/ such values.

s

Iso: g(z) has the same period r as f(x), since g(x) = g(x, + kr).

e So: To find the period of f(z), we now need to find the period of g(z).



Step 3

e Act on the input register with a quantum Fourier transformation:

CZ g(.T)’ x>(n) ‘f($0)>(k) quantum FT C/Z G(C)’ C>(n) ’f(x()»(k)

where G(c) is the discrete Fourier transform of g(x).

e By Fact (b), G(c¢) is non-zero only for ¢ = j2"/r, for integer j.

e Which means: The right hand side can be written as

r—1/2"

C'> " GHY)

J=0

j 27">(n) |f($0 >>(k)

Step 4

e Conduct a measurement on the input register:
r—1/2"

S DRCTED TESNT{E) W——— S [T
=0

e This produces a value of j2"/r.

e We can now calculate (or approximate closely) the value of r.
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I1. Interpretive Issues.

(1) How are quantum computers different from classical computers?

Claim: Apart from hardware differences (quantum 2-state
systems wvs. classical 2-state systems), the essential difference
between a quantum computer and a classical computer is that

the former are ideally much more efficient than the latter.

e A quantum computer can compute anything that a classical computer can.

- Recall: Any computation implemented using bits can be implemented using qubits.

e A classical computer can compute anything that a quantum computer can.

- Any computation implemented using qubits can be implemented using bits and a
probabilistic algorithm.

- Intuitively: There are probabilistic classical 2-state systems that can simulate the

output of quantum 2-state systems, (although perhaps not as efficiently).
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(2) Is quantum information different from classical information?

_________________________________________________________

' Information = What is produced by an information
' source that is required to be reproducible at the

receiver if the transmission is to be counted a success.

e o o e o e mm e e E e e Em e Em Em e Em e e e e m e e Em e M e e mm e e E e e e e mm e e e e e e e e e e e =

Two Types of Information Source  (Timpson 2008)

I. Classical information source

- Messages = sequences of letters. Lz: a.azq,...

{a, a,, ..., a,}.

- Output = sequence of classical states. Lz a-asq,...

- Concretely: Produces physical systems (e.g., on-off switches) in classical states

\N

- Abstractly: Produces letters from a set {ay, a,, ..., a,} with probabilities p, = p(a,).

II(a). Quantum information, Pure Source

U, [ag), s fay) ;-

- Output = sequence of quantum pure states. Ez: |a-)|as)|ay)...

\N

- Produces physical systems (e.g., electrons) in "pure” quantum states
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IT(b). Quantum information, Entanglement Source

\\N

- Produces physical systems (i.e., electrons) in entangled quantum states which

include other systems inaccessible to the source.

- Output = sequence of quantum entangled states.

——————————————————————————————————————————————————————————————————

'E:m le:

= {B,, B,, ...} = {electrons produced by source}
= {A,, A,, ...} = {electrons entangled with source electrons}
C={C, C,, ...} ={"target" electrons at receiver}

- Suppose: Electron B, is produced at source in an entangled state [¢) , . with
71

electron A,

- Goal: To reproduce this entangled state at receiver, but between A, and C; 1) 4 ..

171

- In general: If source produces sequence of states |¢) 4 B, |)7) AB, ') 4 4B,

successful transmission occurs if receiver reproduces sequence ' of states

‘¢>AZCZ|¢ >Aj0j|¢”>f4k0k”' ;

, then
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e Upshot: No fundamental difference between classical and quantum
information (just a difference in types of sources).

e Moreover: Recall the Shannon Entropy for classical information:
— _Zp )1og, p(z;)

- Specifies the minimal number of bits required to encode the output of a
classical information source (Shannon's 1948 Noiseless Coding Theorem,).

e The von Neumann Entropy:

S(p) = —Trplog, p

- p = the state associated with the output of a quantum information source.

- Specifies the minimal number of qubits required to encode the output of a
quantum information source (Schumacher 1995).
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