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1. C-bits vs. Qubits

o (lassical Information Theory

C-bit = a state of a classical 2-state system: either "0" or "1".

! Physical examples:

1
1
1
E - The state of a mechanical on/off switch. :
1
1
1

i - The state of an electronic device capable of distinguishing a voltage difference.

o Quantum Information Theory

Qubit = a state of a quantum 2-state system: |0), |1), or a|0) + b[1).




General form of a qubit
| Q) = al0) + b|1), where |a]? + |02 =1

According to the Ergenvalue-eigenvector Rule

e | @) has no determinate value (of Hardness, say).
e It's value only becomes determinate (0 or 1; hard or soft) when we measure it.
e All we can say about |@Q) is:

(a) Pr(value of |Q) is 0) = |al?.

(b) Pr(value of |Q) is 1) = |b|>.

e Common Claim: A qubit |Q) = a|0) 4+ b|1) encodes an arbitrarily large
amount of information, but at most only one classical bit's worth of
information in a qubit is accessible.

- a and b encode an arbitrarily large amount of information.
- But the outcome of a measurement performed on | Q) is its collapse
to either |0) or |1), which each encode just one classical bit.



2. Transformations on Single Qubits

. . . 1 0
e Let |0) and |1) be given the matrix representations: |0) = [ ] 1) = [ ]

e Define the following operators that act on |0) and |1):

]:10 X:01 y_| 0 1 Z:10
0 1 1 0 -1 0 0 -1
Identity Negation Negation/Phase-change Phase-change
10) = [0) X]0) = 1) Y|0) = —[1) 210) = 10)
1) = |1) X[1) = |0) Y|1) = 10) Z11) = —[1)

[ o= (o )
Vo =0 )

Hadamard operator: Takes a basis qubit and outputs a superposition




3. Transformations on Two Qubits
o Let {|0),, |1);}, {]|0),, |1)5} be bases for the single qubit state spaces H;, H,.

o Then: A basis for the 2-qubit state space H; ® H, is given by
{10)410)2, 10)111)5, [1)1]0)9, [1)1]1)5}

e Let these basis vectors be given the following matrix representations:

1 0 0

|O>1|0>2 — |O>1’1>2 — ‘1>1|O>2 — |1>1’1>2 —

_ O O O

0 1 0
0 0 1
0 0 0
e The Controlled-NOT 2-qubit operator is then defined by:

CN0T|O>1|O>2 — |O>1|0>2 CN0T|1>1|0>2 — |1>1|1>2
CN0T|O>1|1>2 — |O>1’1>2 CN0T|1>1|1>2 — ’1>1’O>2

Acts on two basis qubits.
e Changes the second if the first is |1).

e Leaves the second unchanged otherwise.

CNOT _

— o O O
S = O O

o O O =
o O = O



4. The No-Cloning Theorem

Claim: Unknown qubits cannot be "cloned'".
e In particular, there is no (unitary, linear) operator U such that

Ulv){]0)y = |v){|v)5, where |v), is an arbitrary qubit.

————————————————————————————————————————————————————————————

E - Then: Ula),|0); = [a)y]a), and UJb),|0); = [b),|b),, for qubits [a),, [b);. E
! - Now: Consider a qubit |¢); = a|a); + §|b),. Since U is linear, i
E Ulc)1|0), = Ulala),]0)y + B]6)1]0),) i
; = (aUla),[0), + BUIB),[0),) |
i = ala)i|a), + B]b),]b), :

- But: By definition, U acts on |¢), according to:
Ulch|0)y = [e)1]c)y = a?|a),]a)y + aBla),|b)y + Balb)i|a)y, + B2[b)1]b),.

e Note: Known qubits (like |1);) can be cloned (ex: Cyo|1)1]0)y = [1),]1),).



II. Quantum Cryptography

C’I"UDtOOTCLZ?hU Basics

e plaintert = message to be encoded. (Private)
e cryptotext = encoded message. (Public)

e encoding/decoding procedure = procedure used to encode plaintext and
decode cryptotext. (Public)

e key = device required to implement encoding/decoding procedure. (Private)



Example: One-time pad (Vernam 1917)

A B C D FE .. XY Z ? . s alphanumeric
00 01 02 03 04 .. 23 24 25 26 27 28 29 convention
L\

plaintext (private)
S HA KFEF NNOTSTI RRVEFED

18 07 00 10 04 13 26 13 14 19 26 18 19 08 17 17 04 03

key (private)
15 04 28 13 14 06 21 11 23 18 09 11 14 01 19 05 22 07

encoding/decoding procedure (public)
Add plaintext to key and take remainder after division by 30.

cryptotext (public)
03 11 28 23 18 19 17 24 07 07 05 29 03 09 06 22 26 10

o Technical Result (Shannon 1949): One-time pad is guaranteed secure,
as long as the key is completely random, has same length as
plaintext, is never reused, and is not intercepted by a third party.




Quantum Key Distribution via Non-orthogonal States

e (Goal: To transmit a private key on possibly insecure channels.

o Set-up: Alice and Bob communicate through 2 public (insecure) channels:
(i) A 2-way classical channel through which they exchange classical bits.

(ii)) A 1-way quantum channel through which Alice sends Bob qubits.

classical channel




classical channel

Random
choice!

Protocol:

1. (a) Alice encodes a random sequence of bits as the Color or Hardness states of

electrons: For each electron, she randomly picks a Color or Hardness box to

put it through, and then selects the bit according to a public encryption chart.

(b) Alice then generates a private list of the value of each electron and the
correponding bit, and a public list of just the property of each electron.

(c) Alice then sends her electrons to Bob wia the quantum channel.

Public encryption chart
Hardness Color
|hardy < 0 |black)y < 0
|softy < 1 |white) < 1

4

Alice's private list
electron 1: hard, 0
electron 2: black, O
ete...

4

Alice's public list

electron 1: definite H-value
electron 2: definite C-value

etc...

4




classical channel

FH‘I
LA
Random g~ @ o e e e e e e o o o o e e e e e e e e s Random ./
choice! choice! \ -
LC ]
Protocol:

2. (a) Upon reception of an electron, Bob randomly picks a Color box or a Hardness
box to send it through.

(b) Bob then generates a private list of the value of each electron received; and a
public list of the property of each electron received.

Bob's private list Bob's public list

electron 1: white electron 1: definite C-value

electron 2: black electron 2: definite C-value
te...

etc... 7 etc -




classical channel

- — L »

Protocol:

3. After all electrons have been transmitted, Alice and Bob use the classical channel to
exchange the Encryption chart and their public lists.

4. (a) Alice and Bob use their public lists to identify those electrons that did not get
their properties disrupted by Bob.
(b) They then use the Encrpytion chart, and their private lists, to identify the bits
associated with these electrons. These bits are used to construct a key.

Alice's public list Bob's public list Public encryption chart

electron 1: definite H-value electron 1: definite C-value Hardness Color

electron 2: definite C-value electron 2: definite C-value |hard) < 0 |black) < 0

etc... etc... |softy & 1 |white) < 1
Alice's private list Bob's private list :-E?sz;LQ-le_: ______________________ ;
electron 1: hard, 0 electron 1: white | - electron 1: no matchup! !
electron 2: black, 0 electron 2: black : - electron 2: matchup! I
etc... etc... : - Bob and Alice now privately share a "0" bit! :



Claim: Any attempt by Eve to intercept the key will be detectable.

Case 1: No Eve

Pr(hard)) = 1/4
- 7 1
/24 Hj <

e alPr(softl) = 1/4

/

1723 IgY-> Pr(black,) = 1/2

e Suppose: Electron 1 sent by Alice is black.
e What's the probability that Bob measures it as black?

e The probability that Bob measures its Color is 1/2; and when a black electron
is measured for Color, it will register as black (of course).

e So: Without Eve present, Pr(Bob gets electron, right) = 1/2.

__________________________________________________________________________



Claim: Any attempt by Eve to intercept the key will be detectable.

A

1/2/71 E :‘ 1/8 #

black, —-=-=------= > .:’ Pr(soft)) = 1/4 ---—______ R .:’
/2 ¥ E -> Pr(black)) = 1/2 1/8 ¥
\\\\ 1/4 A

a -7

.\

1/4 ¥

e With Eve, Pr(Bob gets electron, right) = 1/16 + 1/16 +

E-> Pr(hard,) = 1/8
Pr(black,) = 1/16
ra " (black,) =1/
"2 by (white,) = 1/16
E—> Pr(soft;)) = 1/8
Pr(black,) = 1/16
g 2 Pr(01ack) = 1
] ~a .
Pr(white;) = 1/16
Pr(hard)) = 1/8
7 1
L)
* Pr(soft,) = 1/8
E -> Pr(black,) = 1/4

1/4 = 3/8.
13



e So: If Alice sends 2n electrons, without Eve, on average Bob will get
1/2 x 2n = n right.
e And: With Eve present, on average Bob will get 3/8 x 2n = 3n/4 right.

e So: With Eve present, on average Bob gets 1/4 wrong that he would have
gotten right.

To detect Eve

e Alice and Bob randomly choose half of the electrons Bob got right and now
compare their values of Color/Hardness (recorded in their private lists).

e If these values all agree, then the probability that Eve is present is extremely
low. They can now use the other electrons Bob got right as the key.

o If these values do not all agree, then it's probable that Eve is present and is
disrupting the flow.

14



II1. Quantum Dense Coding

e Goal: To use one qubit to transmit two classical bits.

e But: One qubit (supposedly) only contains one classical bit's worth of
information!

e So0: How can we send 2 classical bits using just one qubit?

o Answer: Use entangled states!

15



Set-Up
e Prepare two qubits Q1, Q2 in an entangled state |¥") = \/g(|0>1|0>2 + |1>1|1>2>.
o Alice gets Q1, Bob gets Q2.

e Alice manipulates her Q1 so that it steers Bob's Q2 into a state from which
he can read off the 2 classical bits Alice desires to send. All he needs to do
this is the post-manipulated Q1 that Alice sends to him.

2 classical T2 Encoder

bits encoded —|1,X,Y,Z

________________________________ > Decode/p —> 2 Cl&SS?:CG;l
— bits decoded

) = 3 ([0,0), + 1)), ). y



Protocol
1. Alice has a pair of classical bits: either 00, 01, 10, or 11. She first encodes it in Q1

by acting on Q1 with one of {I, X, Y, Z} according to:

DALT: transform: new Sstate: k

00 (I, @ L)|+) ﬁ (IO) 0), + [1),1),)

- Let Q1 and Q2 be electrons in

X, ® L)[Wt) \/7(|1> ‘0> + |0> |1> ) Hardness states.
- Let |0) be |softy and |1) be |hard).

01 (
10 (4o L)w)  E(-1)0), + [0),1),)
(7 ® L)) L(0),00), — m,m,)

2. Alice now sends Q1 to Bob.

3. After reception of Q1, Bob first applies a C),); transformation to both Q1 and Q2:
L\N

11

pair:  transform: new state: Apply Cyor:

00 (LoLw) A0, +mm,) (o), + 1),
00 (e L)e)  JH(Do, ) (I, 10,
10 (oL Lm0, +oLm,) D+ o)),
1 (e Rw)  JH(on0), -mm,) (o)),

e Note: According to the EE Rule, Q1 still has no definite value, but Q2 now does!

17



Protocol

4. Bob now applies a Hadamard transformation to Q1:

11 (4, ® LT+

DaIr: transform: new state:

Apply Cyoy:

Now Apply H;:

00 (L® L)Y 000, + mym,) (0, + 1my,)o),
01 (e L)) A0, +onm,) R+ o),
10 (e Ry D0, o m,) (W, 10w,

(0,00, — 1) (o), [, )0y,

10),0)5
10)111),
[1)11),
[1):10),

e Note: According to the EE Rule, Q1 and Q2 now both have definite values.

5. Bob now measures Q1 and Q2 to determine the number Alice sent!

(a) (Ql=0,Q2=0)= 00
(b) (Ql=0,Q2=1)= 01

(¢) (Ql=1,Q2=0)= 10
d) (Ql=1,Q2=1) = 11

18



Question: How are the 2 classical bits transferred from Alice to Bob?

e Not transferred via the single qubit.
e Transferred by the correlations present in the 2-qubit entangled state [W+).

e In order to convey information between Alice and Bob, it need not be
physically transported from Alice to Bob across the intervening spatial

distance.
e The only thing required to convey information is to set up a correlation
between the sender's data and the receiver's data.

2 classical
— bits decoded

2 classical >| Lncoder s | Decoder

bits encoded —|1,X,Y,Z

) = 2 (109,03, + 1)1, ).

19



IV. Quantum Teleportation

e (Goal: To transmit an unknown quantum state using classical bits and to
reconstruct the exact quantum state at the receiver.

e But: How can this avoid the No-Cloning Theorem?

o Answer: Use entangled states!

20



Set-Up

e Alice has an unknown QO, | @), = a|0), + b|1),, and wants to send it to Bob.

e Q1 and Q2 are prepared in an entangled state [¥") = \/%<|O>1|0>2 + \1)1|1>2).
Alice gets Q1, Bob gets Q2.

e Alice manipulates Q0 and Q1 so that they steer Bob's Q2 into the unknown
state of Q0. Bob then reconstructs it using the 2 classical bits sent by Alice.

_y, unknown QO

unkown QO ---> | Encoder > | Decoder
reconstructed

2 classical bits sent

) = 2 (109,03, + 1)1, ). "



Protocol

1. Alice starts with a 3-qubit system (QO0, Q1, Q2) in the state:
1Q),10) = (a0, 10,10), + al0), 13,10, + DL, 10,10, + blL),[L),1),)

Alice now applies Cy,pon Q0 & Q1, and then a Hadamard transformation on QO:
First Cyoron Q0 & Q1:
Coor ® LN = 2 (a0}, 00, + al0) 1)1}, + B0}, + BL)J0), 1),
Then H on QO:
(H,® IL® L)" ")=10),00), (a|0>2 + b|1>2) + £10), 1), <0L|1>2 + b|0>2) +
L1),0), (al0), — BiL),) + 40,1, (alt), — B0),)

2. Alice now measures Q0 and Q1: BE Rule: Each of the terms

If measurement outcome is: ...Q2 is now in state: represents a Stat? m which QO
and Q1 have definite values,

|0>0‘O>1 al0), + b[1), but Q2 does not.

0)o/1), a|1)y + 0|0),

1)6/0), al0)y = 1),

[1)o11), al1), = b]0),

22



Protocol

If measurement outcome is: ...QQ2 is now in state:
|0>0|0>1 al0), + b]),
|0>0|1>1 al1), + 0|0),
|1>o|0>1 a,|0>2 - b|1>2
|1>0|1>1 a|1>2 - b|0>2
74

3. Alice sends the result of her measurement to Bob in the form of 2 classical bits: 00,
01, 10, or 11.

4. Depending on what he receives, Bob performs one of {I, X, Y, Z} on Q2. This allows
him to turn it into (reconstruct) the unknown QO.

If bits received are: ...then Q2 is now in state: ...80 to reconstruct Q0. use:
00 al0), + b|1), I
01 all), + b]0), X,
10 al0), = b|1), Zs
11 all), = |0), Y,
/4

23



Question 1: Does Bob violate the No-Cloning Theorem? Doesn't he construct

a copy of the unknown Q07

No violation occurs.

Bob does construct a copy: Q2 has become an exact duplicate of QO.

But: After Alice is through transforming QO and Q1, the original Q0 has now
collapsed to either |0), or [1),! Alice destroys QO in the process of conveying

the information contained in it to Bob!

unkown QO ---> | Encoder

s | Decoder

2 classical bits sent

) = 2 (109,03, + 1)1, ).

_y, unknown QO
reconstructed

24



e Question 2: How does Bob reconstruct the unknown QO (that encodes an
arbitrarily large amount of information) from just 2 classical bits?

e Information to reconstruct QO is transferred by the correlations present in the
entangled state |U+), in addition to the 2 classical bits.

e The 2 classical bits are used simply to determine the appropriate
transformation on Q2, after it has been "steered" into the appropriate state by
Alice.

> | Decoder | unknown QO

reconstructed

unkown QO ---> | Encoder

2 classical bits sent

) = 2 (109,03, + 1)1, ). ’:



