07. Quantum Mechanics Basics.

Stern-Gerlach Experiment
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Suggests: Electrons possess 2-valued "spin" properties. (Goudsmit & Uhlenbeck 1925)

- With respect to a given direction (axis), an electron can
possess either the value "spin-up" or the value "spin-down'.

- There are as many of these spin properties as there are

possible axes!

- For simplicity: Call two such spin properties "Color" (with
values "white" and "black") and "Hardness" (with values

"hard" and "soft").

Spin-up spin-down
along n axis along n axis
spin-up spin-down
along m axis along m axis
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Experimental Result #1: There is no correlation between Color and Hardness.
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Experimental Result #£2:
Hardness measurements "disrupt" Color measurements, and vice-versa.
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e Can we build a Hardness measuring box that doesn't "disrupt" Color values?

- All evidence suggests "No"!

e Can we determine which electrons get their Color values "disrupted" by a
Hardness measurement?

- All evidence suggests "No"!

o Thus: All evidence suggests Hardness and Color cannot be simultaneously
measured.



Fxperimental Result #3: The "2-Path" Experiment.
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e Feed white electrons into the device and measure their Color as they exit.

e From previous experiments, we should expect 50% white and 50% black...

e But: Experimentally, 100% are white!



Fxperimental Result #3: The "2-Path" Experiment.
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e Now insert a barrier along the s path.

e 50% less electrons register at the Exit.
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o And: Experimentally, of these 50% are white and 50% are black.



Fxperimental Result #3: The "2-Path" Experiment.
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What path does an individual electron take without the barrier present?

e Not A. The Color statistics of hard electrons is 50/50.

e Not s. The Color statistics of soft electrons is 50/50.

e Not both. Place detectors along the paths and only one will register.

e Not netther. Block both paths and no electrons register at Exit.



Fxperimental Result #3: The "2-Path" Experiment.
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What path does an individual electron take without the barrier present?
e Not A. ™

e Not s. . Suggests that white electrons have
e Not both. no determinate value of Hardness.

e Not neither. _



How to Describe Physical Phenomena: 5 Basic Notions

(a) Physical system.

I Classical examples: Quantum examples: :
| - momentum - Hardness (spin along a given direction) |
- position - Color (spin along another direction) ;
I - energy - momentum :
: - position I
: - energy :

(c) State of a physical system. Description of system at an instant in time in
terms of its properties.

! Classical example Quantum example
- baseball moving at 95mph, 5 ft from batter. - white electron entering a Hardness box. ;

(d) State space. The collection of all possible states of a system.

(e) Dynamics. A description of how the states of a system evolve in time.




Mathematical Description of Classical Physical System
(Baseball example)

(i) A state of the baseball: Specified by momentum (3 numbers p,, p,, p;)

and position (3 numbers q;, ¢y, ¢;). (Baseball has 6 "degrees of freedom".)

(ii) The state space of the baseball: Represented by a 6-dim set of points

(phase space):

FEach point has 6 numbers
associated with it and represents
a state of the baseball.

(iii) Properties of the baseball: Represented by functions on the phase space.

In-principle always well-defined for any point in phase space.

Ez: baseball's energy = E(p;, ;) = (p/* + p,* + py°)/2m

(iv) Dynamics of the baseball: Provided by Newton's equations of motion

(in their Hamiltonian form).



Will this mathematical description work for electrons?

No: Experiments suggest the "spin" properties of Hardness and Color are not

always well-defined.

So: We can't represent them mathematically as functions on a set of points.

physical mathematical representation
concept

Classical mechanics Quantum mechanics
state: point vector
state space: set of points (phase space) vector space
property: function on points operator on vectors
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2-State Quantum Systems

e Restrict attention to quantum properties with only two

values (like Hardness and Color).

e Associated state

vectors are 2-dimensional:

1. States as vectors

1. States as vectors

2. Properties as operators
3. Schrodinger dynamics
4. Projection postulate

5. Entangled states

@) = al0) + b[1)

Require state vector | Q)
to have unit length:

la? + b2 = 1
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component of | Q) along |0)

e Set of all vectors decomposible in basis {|0), |1)} forms a vector space H.
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Why this 1s supposed to help

e Recall: White electrons appear to have no determinate value of Hardness.
e Let's represent the values of Color and Hardness as basis vectors.

e Let's suppose the Hardness basis {|hard), |soft)} is rotated by 45° with respect
to the Color basis {|white), |black)}:

A
sof) Then: |white) = \/g|ha'rd> + \/g\sof@
|white) / \
|black)
> An electron in ... 18 in a "superposition”
|hard) a white state... of hard and soft states.

e [et's assume:

"Ergenvalue-ergenvector Rule”

A quantum system possesses the value of a property if
and only if it is in a state associated with that value.

e Upshot: Since an electron in the state |white) cannot be in either of the

states |hard), |soft), it cannot be said to possess values of Hardness. 0



e Recall: Experimental Result #1: There is no correlation between Hardness

measurements and Color measurements.

- If the Hardness of a batch of white electrons is measured, 50% will be soft and

50% will be hard.

e [et's assume:

"Born Rule”:

The probability that a quantum system in a state | Q)

possesses the value b of a property B is given by the square of
the expansion coefficient of the basis state |b) in the expansion

of |@)) in the basis corresponding to all values of the property.

Max Born
1882-1970

e So: The probability that a white electron has the value hard when measured

for Hardness is 1/2!

|white) = @\hard) + \/g|soﬁ>

SO N

An electron in a white state...

... has a probability of 1/2 of being

hard upon measurement for Hardness.
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2. Properties as operators

Def. 1. A linear operator O is a map that assigns to any vector |A), another
vector O|A), such that O(n|A) + m|B)) = n(OJA)) + m(O|B)), where n, m are

numbers.

e Matrix representations

|Q> — [ Z ] 2-dim vector as 2 X 1 matrix
0O, O
O = [ H . Operator on 2-dim vectors as 2 X 2 matriz
Oy Oy
0| Q> _ O, Oy a | _ Ona + Opb Matriz multiplication encodes
0, O, b O,,a + Oyb action of O on |Q)
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Def. 2. An eigenvector of an operator O is a vector |\) that does not
change its direction when O acts on it: O|\) = A|\), for some number .

Def. 3. An eigenvalue A of an operator O is the number
that results when O acts on one of its eigenvectors.

This allows the following correspondences

- Let an operator O represent a property.

- Let its eigenvectors |\) represent the value states ("eigenstates'") associated
with the property.

e The Eigenvalue-Eigenvector Rule can now be stated as:

- Let its eigenvalues A represent the (numerical) values of the property. 7

"Ergenvalue-ergenvector Rule”

A quantum system possesses the value A of a property represented by an
operator O if and only if it is in an eigenstate |A) of O with eigenvalue A.
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3. The Schrédinger Dynamics

States evolve in time via the Schrodinger equation

Plug an initial state |¢(¢,)) into the Schrodinger
equation, and it produces a unique final state |1)(%,)).

P(t)) - (L))
Schrédinger ‘X }
. Erwin Schrédinger
state at time ¢, evotution state at later time t, (1887-1961)

e The Schrodinger equation can be encoded in an operator S (which is a
function of the Hamiltonian operator H that encodes the energy of the
system).

iHt, /h _ -
e |A) = S|A) = |A")

\

state at time t, state at later time t,

Important property: S is a linear operator.

S(alA) + [|B)) = aS|A) + BS|B), where a, 0 are numbers.
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4. The Projection Postulate

Projection Postulate (2-state systems) A—

When a measurement of a property represented by an operator B
is made on a system in the state |Q) = a|\;) + b|)\,) expanded in

the eigenvector basis of B, and the result is the value A, then |Q) ' ‘
collapses to the state |\;), |@) [A). Jﬂw}lzveumm

collapse (1903-1957)

Example: Suppose we measure a white electron for Hardness.

- The pre-measurement state is given by:
|white) = \/g| hard) + \/g| soft)

- Suppose: The outcome of the measurement is the value hard.

- Then: The post-measurement state is given by |hard).

- Guarantees that if we obtain the value A, once, then we should get the same
value \; on a second measurement (provided the system is not interferred with).



5. Entangled states

e Consider state spaces H;, H, for two quantum 2-state systems (electrons,
say). State space for combined system is represented by H; ® H.,.

e Suppose: {|0),, |1),} is a basis for H, and {|0),, |1),} is a basis for H,.

o Then: {|0);]0)5, [0)1]1)5, [1)1]0), [1)1]1)5} is a basis for H; ® H,.

e Any 2-particle state |Q) in H; ® H, can be expanded in this basis:
|Q) = a|0),|0); + 8]0)1]1), + ¢[1);]0), + d[1);]1),

 An entangled state in 'H; ® H, is a vector that cannot be

1
i written as a product of two terms, one from H,; and the |
\ other from H,. |
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Framples:
- Entangled: |V")= \/g{\ 0), | 0),+ 1), | 1}2}
- Nonentangled (Separable):

Ay = {0y J0), + o)L, + ),10), + [W,1,} = {0}, + ), Hio), + m,)
By = \/+{0),0), + ),10),} = /£ {|o), + [, }10),
C> — |0>1|0>2

e Suppose |0) and |1) are eigenstates of Hardness (i.e., |0) = |hard) and
1) = [soft)).

According to the Figenvalue-Eigenvector Rule:

e In states |U) and |A), both electrons have no determinate Hardness value.

e In state | B), electron; has no determinate Hardness value, but electron, does
(i.e., hard).

e In state |C), both electrons have determinate Hardness values.
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Framples:
- Entangled: |V")= \/g{\ 0), | 0),+ 1), | 1}2}
- Nonentangled (Separable):

Ay = {0y J0), + o)L, + ),10), + [W,1,} = {0}, + ), Hio), + m,)
By = \/+{0),0), + ),10),} = /£ {|o), + [, }10),
C> — |0>1|0>2

e Suppose |0) and |1) are eigenstates of Hardness (i.e., |0) = |hard) and
1) = [soft)).

According to the Projection Postulate:

e In the entangled state |¥*), when a measurement is performed on electron,,
its state collapses (to either |0); or |1),), and this instantaneously affects the
state of electron,!

e In any of the separable states, a measurement performed on electron, will not

affect the state of electron,,.
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