
07. Quantum Mechanics Basics. 
Stern-Gerlach Experiment   (Stern & Gerlach 1922) 

magnets 

detection 
screen 

sliver atoms 
(47 electrons) 

splotches 

Suggests: Electrons possess 2-valued "spin" properties.  (Goudsmit & Uhlenbeck 1925) 

-  With respect to a given direction (axis), an electron can 
possess either the value "spin-up" or the value "spin-down". 

spin-up 
along n axis 

spin-down 
along n axis 

-  There are as many of these spin properties as there are 
possible axes! 

spin-up 
along m axis 

spin-down 
along m axis 

-  For simplicity: Call two such spin properties "Color" (with 
values "white" and "black") and "Hardness" (with values 
"hard" and "soft"). 
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Experimental Result #1: There is no correlation between Color and Hardness. 

Color 
all hard 

(or all soft) 

half 
black 

half white 
Hardness 

all white 
(or all black) 

half 
hard 

half soft 
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Experimental Result #2: 
Hardness measurements "disrupt" Color measurements, and vice-versa. 

black 
electrons 

Color 
a bunch of 
electrons 

white 
electrons 

half 
black 

Color 
half 
white 

half 
hard 

Hardness 
half 
soft 

• Can we build a Hardness measuring box that doesn't "disrupt" Color values? 

- All evidence suggests "No"! 

• Can we determine which electrons get their Color values "disrupted" by a 
Hardness measurement? 

- All evidence suggests "No"! 

• Thus: All evidence suggests Hardness and Color cannot be simultaneously 
measured. 
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Experimental Result #3: The "2-Path" Experiment. 

• From previous experiments, we should expect 50% white and 50% black...  

100% white 
electrons out 

• But: Experimentally, 100% are white! 

Hardness 
white 

electrons in 

• Feed white electrons into the device and measure their Color as they exit. 

soft 
electrons 

hard 
electrons 

h 

mirror 

mirror 

Exit 

h 

s 

s 
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white 
electrons in 

Experimental Result #3: The "2-Path" Experiment. 

Hardness 
soft 

electrons 

hard 
electrons 

h 

mirror 

mirror 

Exit 

h 

s 

s 

barrier 

• Now insert a barrier along the s path. 

• 50% less electrons register at the Exit.  

50% white 
50% black 

• And: Experimentally, of these 50% are white and 50% are black. 
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Experimental Result #3: The "2-Path" Experiment. 

Hardness 
soft 

electrons 

hard 
electrons 

h 

mirror 

mirror 

Exit 

white 
electrons in 

h 

s 

s 

100% white 
electrons out 

What path does an individual electron take without the barrier present? 
• Not h.  The Color statistics of hard electrons is 50/50. 

• Not s.  The Color statistics of soft electrons is 50/50. 

• Not both.  Place detectors along the paths and only one will register. 

• Not neither.  Block both paths and no electrons register at Exit. 6 



Experimental Result #3: The "2-Path" Experiment. 

Hardness 
soft 

electrons 

hard 
electrons 

h 

mirror 

mirror 

Exit 

white 
electrons in 

h 

s 

s 

100% white 
electrons out 

What path does an individual electron take without the barrier present? 
• Not h. 

• Not s. 

• Not both. 

• Not neither. 

Suggests that white electrons have 
no determinate value of Hardness. 
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How to Describe Physical Phenomena: 5 Basic Notions 

(a)  Physical system. 

(c)  State of a physical system. Description of system at an instant in time in 
terms of its properties. 

(b)  Property of a physical system. Quantifiable characteristic of a physical system. 

(d)  State space. The collection of all possible states of a system. 

(e)  Dynamics. A description of how the states of a system evolve in time. 

Classical examples:  Quantum examples: 
- momentum  - Hardness (spin along a given direction) 
- position  - Color (spin along another direction) 
- energy  - momentum 

 - position 
 - energy 

Classical example  Quantum example 
- baseball moving at 95mph, 5 ft from batter.  - white electron entering a Hardness box. 

Classical example: baseball  Quantum example: electron 
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Mathematical Description of Classical Physical System 
(Baseball example) 

(i)  A state of the baseball: Specified by momentum (3 numbers p1, p2, p3) 

and position (3 numbers q1, q2, q3). (Baseball has 6 "degrees of freedom".) 

(iii) Properties of the baseball: Represented by functions on the phase space. 

 In-principle always well-defined for any point in phase space. 

Ex: baseball's energy = E(pi, qi) = (p1
2 + p2

2 + p3
2)/2m 

(iv) Dynamics of the baseball: Provided by Newton's equations of motion 

(in their Hamiltonian form). 

Each point has 6 numbers 
associated with it and represents 
a state of the baseball. 

• 
• 

• 

• 
• 

• 

• 
• • 

(ii)  The state space of the baseball: Represented by a 6-dim set of points 

(phase space): 
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Will this mathematical description work for electrons? 

• No: Experiments suggest the "spin" properties of Hardness and Color are not 
always well-defined. 

• So: We can't represent them mathematically as functions on a set of points. 

 Classical mechanics  Quantum mechanics 
state:  point  vector 
state space:  set of points (phase space)  vector space 
property:  function on points  operator on vectors 

physical 
concept mathematical representation 
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component of |Q〉 along |0〉 

component of 
|Q〉 along |1〉 

|0〉 

|1〉 

2-State Quantum Systems 
• Restrict attention to quantum properties with only two 

values (like Hardness and Color). 

• Associated state vectors are 2-dimensional: 

|Q〉 
|Q〉 = a|0〉 + b|1〉 

Require state vector |Q〉 
to have unit length: 

|a|2 + |b|2 = 1 

• Set of all vectors decomposible in basis {|0〉, |1〉} forms a vector space H. 

1. States as vectors 

1. States as vectors 
2. Properties as operators 
3. Schrodinger dynamics 
4. Projection postulate 
5. Entangled states 
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Why this is supposed to help 

• Recall: White electrons appear to have no determinate value of Hardness. 

• Let's represent the values of Color and Hardness as basis vectors. 

• Upshot: Since an electron in the state |white〉 cannot be in either of the 
states |hard〉, |soft〉, it cannot be said to possess values of Hardness. 

• Let's assume: 

"Eigenvalue-eigenvector Rule" 
A quantum system possesses the value of a property if 
and only if it is in a state associated with that value. 

An electron in 
a white state... 

... is in a "superposition" 
of hard and soft states. 

Then:    |white〉= 1
2
|hard〉 +  1

2
|soft〉

|hard〉 

|soft〉 

|white〉 
|black〉 

• Let's suppose the Hardness basis {|hard〉, |soft〉} is rotated by 45° with respect 
to the Color basis {|white〉, |black〉}: 
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• Recall: Experimental Result #1: There is no correlation between Hardness 
measurements and Color measurements. 
- If the Hardness of a batch of white electrons is measured, 50% will be soft and 

50% will be hard. 

• Let's assume: 

"Born Rule": 
The probability that a quantum system in a state |Q〉 
possesses the value b of a property B is given by the square of 
the expansion coefficient of the basis state |b〉 in the expansion 
of |Q〉 in the basis corresponding to all values of the property. Max Born 

1882-1970 

• So: The probability that a white electron has the value hard when measured 
for Hardness is 1/2! 

An electron in a white state... ... has a probability of 1/2 of being 
hard upon measurement for Hardness. 

   |white〉= 1
2
|hard〉 +  1

2
|soft〉
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2. Properties as operators 

Def. 1. A linear operator O is a map that assigns to any vector |A〉, another 
vector O|A〉, such that O(n|A〉 + m|B〉) = n(O|A〉) + m(O|B〉), where n, m are 
numbers. 

• Matrix representations 

2-dim vector as 2 × 1 matrix 

   
|Q〉= a

b

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

Operator on 2-dim vectors as 2 × 2 matrix 

   
O =

O11 O12

O21 O22

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

   
O|Q〉=

O11 O12

O21 O22

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
a

b

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

=
O11a +O12b

O21a +O22b

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
Matrix multiplication encodes 
action of O on |Q〉 
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Def. 2. An eigenvector of an operator O is a vector |λ〉 that does not 
change its direction when O acts on it:  O|λ〉 = λ|λ〉, for some number λ.

Def. 3. An eigenvalue λ of an operator O is the number 
that results when O acts on one of its eigenvectors. 

This allows the following correspondences 

- Let an operator O represent a property. 

- Let its eigenvectors |λ〉 represent the value states ("eigenstates") associated 
with the property. 

- Let its eigenvalues λ represent the (numerical) values of the property. 

• The Eigenvalue-Eigenvector Rule can now be stated as: 

"Eigenvalue-eigenvector Rule" 
A quantum system possesses the value λ of a property represented by an 
operator O if and only if it is in an eigenstate |λ〉 of O with eigenvalue λ. 
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3. The Schrödinger Dynamics 

States evolve in time via the Schrödinger equation 
Plug an initial state |ψ(t1)〉 into the Schrödinger 
equation, and it produces a unique final state |ψ(t2)〉. 

Schrödinger 
evolution 

|ψ(t1)〉  ⎯⎯⎯→  |ψ(t2)〉 

state at later time t2 state at time t1 
Erwin Schrödinger 

(1887-1961) 

Important property: S is a linear operator. 

   S(α|A〉 + β|B〉) = αS|A〉 + βS|B〉,  where α, β are numbers. 

• The Schrödinger equation can be encoded in an operator S (which is a 
function of the Hamiltonian operator H that encodes the energy of the 
system). 

    e
iHt2/!|A〉 ≡  S|A〉 = |A'〉

state at time t1 state at later time t2 
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Example: Suppose we measure a white electron for Hardness. 

4. The Projection Postulate 

Motivations: 
- Guarantees that if we obtain the value λ1 once, then we should get the same 

value λ1 on a second measurement (provided the system is not interferred with). 
- Guarantees that measurements have unique outcomes. 

Projection Postulate (2-state systems) 

When a measurement of a property represented by an operator B 
is made on a system in the state |Q〉 = a|λ1〉 + b|λ2〉 expanded in 
the eigenvector basis of B, and the result is the value λ1, then |Q〉 
collapses to the state |λ1〉,  |Q〉  ⎯⎯⎯→  |λ1〉. 

collapse 
John von Neumann 

(1903-1957) 

- Suppose: The outcome of the measurement is the value hard. 

- Then: The post-measurement state is given by |hard〉. 

   |white〉 = 1
2
|hard 〉 + 1

2
|soft 〉

- The pre-measurement state is given by: 
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5. Entangled states 

• Consider state spaces H1, H2 for two quantum 2-state systems (electrons, 
say). State space for combined system is represented by H1 ⊗ H2. 

• Suppose: {|0〉1, |1〉1} is a basis for H1 and {|0〉2, |1〉2} is a basis for H2. 

• Then: {|0〉1|0〉2, |0〉1|1〉2, |1〉1|0〉2, |1〉1|1〉2} is a basis for H1 ⊗ H2. 

An entangled state in H1 ⊗ H2 is a vector that cannot be 
written as a product of two terms, one from H1 and the 
other from H2. 

• Any 2-particle state |Q〉 in H1 ⊗ H2 can be expanded in this basis: 

|Q〉 = a|0〉1|0〉2 + b|0〉1|1〉2 + c|1〉1|0〉2 + d|1〉1|1〉2 
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According to the Eigenvalue-Eigenvector Rule: 

• In states |Ψ+〉 and |A〉, both electrons have no determinate Hardness value. 

• In state |B〉, electron1 has no determinate Hardness value, but electron2 does 

(i.e., hard). 

• In state |C〉, both electrons have determinate Hardness values. 

• Suppose |0〉 and |1〉 are eigenstates of Hardness (i.e., |0〉 = |hard〉 and 
|1〉 = |soft〉). 

Examples: 

|A〉 = 1
4
|0〉
1
|0〉

2
 + |0〉

1
|1〉

2
 + |1〉

1
|0〉

2
 + |1〉

1
|1〉
2{ }= 1

4
|0〉

1
 + |1〉

1{ } |0〉2  + |1〉
2{ }

|B〉 = 1
2

|0〉
1
|0〉

2
 + |1〉

1
|0〉

2{ }= 1
2

|0〉
1
 + |1〉

1{ }|0〉2
|C 〉 = |0〉1|0〉2 

  
| Ψ+〉= 1

2
| 0〉

1
| 0〉

2
+ | 1〉

1
| 1〉

2{ }- Entangled:  

- Nonentangled (Separable): 
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According to the Projection Postulate: 

• Suppose |0〉 and |1〉 are eigenstates of Hardness (i.e., |0〉 = |hard〉 and 
|1〉 = |soft〉). 

Examples: 

|A〉 = 1
4
|0〉
1
|0〉

2
 + |0〉

1
|1〉

2
 + |1〉

1
|0〉

2
 + |1〉

1
|1〉
2{ }= 1

4
|0〉

1
 + |1〉

1{ } |0〉2  + |1〉
2{ }

|B〉 = 1
2

|0〉
1
|0〉

2
 + |1〉

1
|0〉

2{ }= 1
2

|0〉
1
 + |1〉

1{ }|0〉2
|C 〉 = |0〉1|0〉2 

- Nonentangled (Separable): 

• In the entangled state |Ψ+〉, when a measurement is performed on electron1, 

its state collapses (to either |0〉1 or |1〉1), and this instantaneously affects the 

state of electron2! 

• In any of the separable states, a measurement performed on electron1 will not 

affect the state of electron2. 

  
| Ψ+〉= 1

2
| 0〉

1
| 0〉

2
+ | 1〉

1
| 1〉

2{ }- Entangled:  
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