07. Quantum Mechanics Basics.

Stern-Gerlach Experiment (Stern \& Gerlach 1922)

Suggests: Electrons possess 2-valued "spin" properties. (Goudsmit \& Uhenbeck 1925)

- With respect to a given direction (axis), an electron can possess either the value "spin-up" or the value "spin-down".
- There are as many of these spin properties as there are possible axes!
- For simplicity: Call two such spin properties "Color" (with values "white" and "black") and "Hardness" (with values "hard" and "soft").

Experimental Result \#1: There is no correlation between Color and Hardness.

Experimental Result \#2:

Hardness measurements "disrupt" Color measurements, and vice-versa.

- Can we build a Hardness measuring box that doesn't "disrupt" Color values?
- All evidence suggests "No"!
- Can we determine which electrons get their Color values "disrupted" by a Hardness measurement?
- All evidence suggests "No"!
- Thus: All evidence suggests Hardness and Color cannot be simultaneously measured.

Experimental Result \#3: The "2-Path" Experiment.

- Feed white electrons into the device and measure their Color as they exit.
- From previous experiments, we should expect 50% white and 50% black...
- But: Experimentally, 100% are white!

Experimental Result \#3: The "2-Path" Experiment.

- Now insert a barrier along the s path.
- 50% less electrons register at the Exit.
- And: Experimentally, of these 50% are white and 50% are black.

Experimental Result \#3: The "2-Path" Experiment.

What path does an individual electron take without the barrier present?

- Not h. The Color statistics of hard electrons is $50 / 50$.
- Not s. The Color statistics of soft electrons is 50/50.
- Not both. Place detectors along the paths and only one will register.
- Not neither. Block both paths and no electrons register at Exit.

Experimental Result \#3: The "2-Path" Experiment.

What path does an individual electron take without the barrier present?

- Not h.
- Not s.
- Not both.
- Not neither.

Suggests that white electrons have no determinate value of Hardness.
(a) Physical system.

Classical example: baseball - Quantum example: electron !
(b) Property of a physical system. Quantifiable characteristic of a physical system.

Classical examples:	Quantum examples:
- momentum	- Hardness (spin along a given direction)
- position	- Color (spin along another direction)
- energy	- momentum
	- position
	- energy

(c) State of a physical system. Description of system at an instant in time in terms of its properties.

```
Classical example Quantum example
- baseball moving at 95mph, 5 ft from batter. - white electron entering a Hardness box.
```

(d) State space. The collection of all possible states of a system.
(e) Dynamics. A description of how the states of a system evolve in time.

Mathematical Description of Classical Physical System

(Baseball example)
(i) A state of the baseball: Specified by momentum (3 numbers p_{1}, p_{2}, p_{3}) and position (3 numbers q_{1}, q_{2}, q_{3}). (Baseball has 6 "degrees of freedom".)
(ii) The state space of the baseball: Represented by a 6-dim set of points (phase space):

(iii) Properties of the baseball: Represented by functions on the phase space. In-principle always well-defined for any point in phase space.

$$
\underline{E x}: \text { baseball's energy }=E\left(p_{i}, q_{i}\right)=\left(p_{1}^{2}+p_{2}^{2}+p_{3}{ }^{2}\right) / 2 m
$$

(iv) Dynamics of the baseball: Provided by Newton's equations of motion (in their Hamiltonian form).

Will this mathematical description work for electrons?

- No: Experiments suggest the "spin" properties of Hardness and Color are not always well-defined.
- So: We can't represent them mathematically as functions on a set of points.

physical concept	mathematical representation			
state:	$\underline{\text { Classical mechanics }}$	Quantum mechanics state space: property:		set of points (phase space)
:---				
function on points	\quad	vector		
:---				
vector space				
operator on vectors	\quad			
:---				

2-State Quantum Systems

- Restrict attention to quantum properties with only two values (like Hardness and Color).
- Associated state vectors are 2-dimensional:

1. States as vectors

$$
|Q\rangle=a|0\rangle+b|1\rangle
$$

Require state vector $|Q\rangle$ to have unit length:

$$
|a|^{2}+|b|^{2}=1
$$

- Set of all vectors decomposible in basis $\{|0\rangle,|1\rangle\}$ forms a vector space \mathcal{H}.

Why this is supposed to help

- Recall: White electrons appear to have no determinate value of Hardness.
- Let's represent the values of Color and Hardness as basis vectors.
- Let's suppose the Hardness basis $\{\mid$ hard \rangle, \mid soft $\rangle\}$ is rotated by 45° with respect to the Color basis $\{\mid$ white \rangle, \mid black $\rangle\}$:

Then: \mid white $\rangle \left.=\sqrt{\frac{1}{2}} \right\rvert\,$ hard $\rangle \left.+\sqrt{\frac{1}{2}} \right\rvert\,$ soft \rangle

An electron in
a white state...

... is in a "superposition" of hard and soft states.

- Let's assume:
"Eigenvalue-eigenvector Rule"
A quantum system possesses the value of a property if and only if it is in a state associated with that value.
- Upshot: Since an electron in the state \mid white \rangle cannot be in either of the states \mid hard \rangle, \mid soft \rangle, it cannot be said to possess values of Hardness.
- Recall: Experimental Result \#1: There is no correlation between Hardness measurements and Color measurements.
- If the Hardness of a batch of white electrons is measured, 50% will be soft and 50% will be hard.
- Let's assume:

"Born Rule":

The probability that a quantum system in a state $|Q\rangle$ possesses the value b of a property B is given by the square of the expansion coefficient of the basis state $|b\rangle$ in the expansion of $|Q\rangle$ in the basis corresponding to all values of the property.

Max Born 1882-1970

- $\underline{S o}:$ The probability that a white electron has the value hard when measured for Hardness is $1 / 2$!

$$
\left.\left.\mid \text { white }\rangle \left.=\sqrt{\frac{1}{2}} \right\rvert\, \text { hard }\right\rangle \left.+\sqrt{\frac{1}{2}} \right\rvert\, \text { soft }\right\rangle
$$

An electron in a white state...

hard upon measurement for Hardness.

2. Properties as operators

Def. 1. A linear operator O is a map that assigns to any vector $|A\rangle$, another vector $O|A\rangle$, such that $O(n|A\rangle+m|B\rangle)=n(O|A\rangle)+m(O|B\rangle)$, where n, m are numbers.

- Matrix representations

$$
\begin{aligned}
&|Q\rangle=\binom{a}{b} \\
& O=\left(\begin{array}{ll}
O_{11} & O_{12} \\
O_{21} & O_{22}
\end{array}\right) \quad \text { Operator on 2-dim vector vectors as } 2 \times 1 \text { matrix } \\
& O|Q\rangle=\left(\begin{array}{ll}
O_{11} & O_{12} \\
O_{21} & O_{22}
\end{array}\right)\binom{a}{b}=\binom{O_{11} a+O_{12} b}{O_{21} a+O_{22} b} \quad \begin{array}{l}
\text { Matrix } \\
\text { action of } O \text { on }|Q\rangle
\end{array} \\
&
\end{aligned}
$$

Def. 2. An eigenvector of an operator O is a vector $|\lambda\rangle$ that does not change its direction when O acts on it: $O|\lambda\rangle=\lambda|\lambda\rangle$, for some number λ.

Def. 3. An eigenvalue λ of an operator O is the number that results when O acts on one of its eigenvectors.

This allows the following correspondences

- Let an operator O represent a property.
- Let its eigenvectors $|\lambda\rangle$ represent the value states ("eigenstates") associated with the property.
- Let its eigenvalues λ represent the (numerical) values of the property.
- The Eigenvalue-Eigenvector Rule can now be stated as:

"Eigenvalue-eigenvector Rule"

A quantum system possesses the value λ of a property represented by an operator O if and only if it is in an eigenstate $|\lambda\rangle$ of O with eigenvalue λ.

3. The Schrödinger Dynamics

States evolve in time via the Schrödinger equation Plug an initial state $\left|\psi\left(t_{1}\right)\right\rangle$ into the Schrödinger equation, and it produces a unique final state $\left|\psi\left(t_{2}\right)\right\rangle$.

Erwin Schrödinger (1887-1961)

- The Schrödinger equation can be encoded in an operator S (which is a function of the Hamiltonian operator H that encodes the energy of the system).

$$
e^{i t_{2} / h}|A\rangle \equiv S|A\rangle=\left|A^{\prime}\right\rangle
$$

Important property: S is a linear operator.

$$
S(\alpha|A\rangle+\beta|B\rangle)=\alpha S|A\rangle+\beta S|B\rangle, \quad \text { where } \alpha, \beta \text { are numbers. }
$$

4. The Projection Postulate

Projection Postulate (2-state systems)

When a measurement of a property represented by an operator B is made on a system in the state $|Q\rangle=a\left|\lambda_{1}\right\rangle+b\left|\lambda_{2}\right\rangle$ expanded in the eigenvector basis of B, and the result is the value λ_{1}, then $|Q\rangle$ collapses to the state $\left|\lambda_{1}\right\rangle,|Q\rangle \xrightarrow[\text { collapse }]{ }\left|\lambda_{1}\right\rangle$.

Example: Suppose we measure a white electron for Hardness.

- The pre-measurement state is given by:

$$
\left.\mid \text { white }\rangle \left.=\sqrt{\frac{1}{2}}|h a r d\rangle+\sqrt{\frac{1}{2}} \right\rvert\, \text { soft }\right\rangle
$$

- Suppose: The outcome of the measurement is the value hard.
- Then: The post-measurement state is given by |hard \rangle.

[^0]
5. Entangled states

- Consider state spaces $\mathcal{H}_{1}, \mathcal{H}_{2}$ for two quantum 2-state systems (electrons, say). State space for combined system is represented by $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$.
- Suppose: $\left\{|0\rangle_{1},|1\rangle_{1}\right\}$ is a basis for \mathcal{H}_{1} and $\left\{|0\rangle_{2},|1\rangle_{2}\right\}$ is a basis for \mathcal{H}_{2}.
- Then: $\left\{|0\rangle_{1}|0\rangle_{2},|0\rangle_{1}|1\rangle_{2},|1\rangle_{1}|0\rangle_{2},|1\rangle_{1}|1\rangle_{2}\right\}$ is a basis for $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$.
- Any 2-particle state $|Q\rangle$ in $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ can be expanded in this basis:

$$
|Q\rangle=a|0\rangle_{1}|0\rangle_{2}+b|0\rangle_{1}|1\rangle_{2}+c|1\rangle_{1}|0\rangle_{2}+d|1\rangle_{1}|1\rangle_{2}
$$

Examples:

- Entangled: $\quad\left|\Psi^{+}\right\rangle=\sqrt{\frac{1}{2}}\left\{|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}\right\}$
- Nonentangled (Separable):

$$
\begin{aligned}
|A\rangle & =\sqrt{\frac{1}{4}}\left\{|0\rangle_{1}|0\rangle_{2}+|0\rangle_{1}|1\rangle_{2}+|1\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}\right\}=\sqrt{\frac{1}{4}}\left\{|0\rangle_{1}+|1\rangle_{1}\right\}\left\{|0\rangle_{2}+|1\rangle_{2}\right\} \\
|B\rangle & =\sqrt{\frac{1}{2}}\left\{|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|0\rangle_{2}\right\}=\sqrt{\frac{1}{2}}\left\{|0\rangle_{1}+|1\rangle_{1}\right\}|0\rangle_{2} \\
|C\rangle & =|0\rangle_{1}|0\rangle_{2}
\end{aligned}
$$

- Suppose $|0\rangle$ and $|1\rangle$ are eigenstates of Hardness (i.e., $|0\rangle=|h a r d\rangle$ and $|1\rangle=\mid$ soft \rangle).

According to the Eigenvalue-Eigenvector Rule:

- In states $\left|\Psi^{+}\right\rangle$and $|A\rangle$, both electrons have no determinate Hardness value.
- In state $|B\rangle$, electron ${ }_{1}$ has no determinate Hardness value, but electron ${ }_{2}$ does (i.e., hard).
- In state $|C\rangle$, both electrons have determinate Hardness values.

Examples:

- Entangled: $\left|\Psi^{+}\right\rangle=\sqrt{\frac{1}{2}}\left\{|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}\right\}$
- Nonentangled (Separable):

$$
\begin{aligned}
|A\rangle & =\sqrt{\frac{1}{4}}\left\{|0\rangle_{1}|0\rangle_{2}+|0\rangle_{1}|1\rangle_{2}+|1\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|1\rangle_{2}\right\}=\sqrt{\frac{1}{4}}\left\{|0\rangle_{1}+|1\rangle_{1}\right\}\left\{|0\rangle_{2}+|1\rangle_{2}\right\} \\
|B\rangle & =\sqrt{\frac{1}{2}}\left\{|0\rangle_{1}|0\rangle_{2}+|1\rangle_{1}|0\rangle_{2}\right\}=\sqrt{\frac{1}{2}}\left\{|0\rangle_{1}+|1\rangle_{1}\right\}|0\rangle_{2} \\
|C\rangle & =|0\rangle_{1}|0\rangle_{2}
\end{aligned}
$$

- Suppose $|0\rangle$ and $|1\rangle$ are eigenstates of Hardness (i.e., $|0\rangle=|h a r d\rangle$ and $|1\rangle=|s o f t\rangle)$.

According to the Projection Postulate:

- In the entangled state $\left|\Psi^{+}\right\rangle$, when a measurement is performed on electron ${ }_{1}$, its state collapses (to either $|0\rangle_{1}$ or $|1\rangle_{1}$), and this instantaneously affects the state of electron ${ }_{2}$!
- In any of the separable states, a measurement performed on electron ${ }_{1}$ will not affect the state of electron ${ }_{2}$.

[^0]: Motivations:

 - Guarantees that if we obtain the value λ_{1} once, then we should get the same value λ_{1} on a second measurement (provided the system is not interferred with).
 Guarantees that measurements have unique outcomes.

