
06. Malament-Hogarth Spacetimes and Non-Turing 
Computability 
1. Supertasks 

• Recall: The decision problem for 1st-order arithmetic is Turing unsolvable. 

• Which means: No TM that halts after a finite number of steps can determine 
if a given statement in arithmetic is a theorem. 

• What if we allow the TM to perform an infinite number of steps? 

• Initial question: Should we allow such an infinity TM a finite or an infinite 
amount of time to do this? 

1.  Supertasks 
2.  Malament-Hogarth 

Spacetimes 
3.  Non-Turing Computability 
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• Advantage: Puny finite humans can access the infinity TM's output in a finite 
amount of time. 

• But: Is such a "supertask" conceptually possible? 

Option A: An infinity TM that performs an infinite number of steps in a finite 
amount of time. 

Goldbach's Conjecture: Every even integer greater than 2 can be 
expressed as the sum of two primes. 

• Begin at t = 0. 

• At t = 1/2, check 4. 

• At t = 3/4, check 6. 

• At t = 7/8, check 8. 

• etc.... 

• At t = 1, all even integers greater than 2 will have been checked! 

... 
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Thomson's Lamp: 

• At t = 0, switch lamp on. 

• At t = 1/2, switch lamp off. 

• At t = 3/4, switch lamp on. 

• etc.... 

• At t = 1, is lamp on or off? 

• Thomson (1954): The lamp's operation requires: 

 (i)  For any time t, 0 < t < 1, if the lamp is off at t, then there's another time 
t', t < t' ≤ 1, such that the lamp is on at t'. 

 (ii)  For any time t, 0 < t < 1, if the lamp is on at t, then there's another time 
t', t < t' ≤ 1, such that the lamp is off at t'. 

Contradiction!  So the 
lamp is not possible. 

• (i) implies that the lamp is on at t = 1. 

• (ii) implies that the lamp is off at t = 1. 
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• Thomson (1954): The lamp's operation requires: 

 (i)  For any time t, 0 < t < 1, if the lamp is off at t, then there's another time 
t', t < t' ≤ 1, such that the lamp is on at t'. 

 (ii)  For any time t, 0 < t < 1, if the lamp is on at t, then there's another time 
t', t < t' ≤ 1, such that the lamp is off at t'. 

Benacerraf's (1962) response: 
- The limit of a sequence is not a member of the sequence. 

- So: Any properties of a sequence cannot necessarily be attributed to its limit. 

- Thus: Since 1 is not a member of (0, 1/2, 3/4, 7/8, ...), any properties of the 
latter cannot be attributed to the former. 

- In particular: The "≤" in (i) and (ii) is unjustified. 

Thomson's Lamp: 

• At t = 0, switch lamp on. 

• At t = 1/2, switch lamp off. 

• At t = 3/4, switch lamp on. 

• etc.... 

• At t = 1, is lamp on or off? 
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Goldbach's Conjecture: Every even integer greater than 2 can be 
expressed as the sum of two primes. 

Use an infinity TM to check: 

•  At t = 1, check 4; at t = 2, check 6; etc. 

•  At t = ∞, all integers greater than 2 will have been checked! 

• But: How can puny humans access the data from such an infinity TM? 

• Answer: In a Malament-Hogarth spacetime! 

Option B: An infinity TM that performs an infinite number of steps in an 
infinite amount of time. 
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2. Malament-Hogarth Spacetimes 

A Malament-Hogarth spacetime = a spacetime with a worldline of infinite 
proper length that lies in the past of some point. 

Let's try to make this more precise...

I −(p) 

q • 

Def. 1. The chronological past I−(p) of p 
consists of all points q that can be 
connected to p by a timelike worldline. 

q ∈ I −(p). 
q' ∉ I −(p). 

q' 
• 

• Recall: In a relativistic spacetime, there is a lightcone at every point p. 

p • 

• Idea: We want the infinity TM's worldline to be infinitely long, and to be 
accessible (via a causal signal, say) from the programmer's worldline. 

So: All points in I −(p) 
are accessible from p. 
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Def. 3. A timelike half-worldline is a timelike worldline with a past 
endpoint. 

Def. 2. The proper length of a timelike worldline γ is the sum of 

all infinitesimal intervals ds along it: (proper length of γ) 
    
= ds

γ∫ .

A Malament-Hogarth spacetime = a 4-dim collection of points with a 
metric gµν, a timelike half worldline γ, and a point p such that 

    
ds
γ∫ =∞.(MH1)  the proper length of γ is infinite: 

(MH2)  γ lies completely in the chronological past of p: γ ⊂ I−(p). 

• Idea: We want the infinity TM's worldline γ to have a point, call it q, in its 
past that coincides with a point of the programmer's worldline. (q is the event 
at which the programmer programs the infinity TM.) 
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Claim: Resulting spacetime with metric Ω2ηµν is M-H. 

γ2 

-  γ2 is the programmer worldline. 

- At p, programmer has access 
to output of TM after it has 
performed ∞ steps. 

Example:  Toy M-H spacetime. 

1.  Start with Minkowski spacetime. 

- γ1 is the TM worldline. 

C 
r 

2.  Add scalar field Ω that is the identity outside of a compact region C, and 
goes to ∞ as the point r ∈ C is approached. 

Proof (by construction): 

-  Let γ1 be a timelike worldline with future endpoint 
r and that passes through point q. 

q • 

γ1 

p 

I−(p) 

• 
- Let p be a point whose past lightcone intersects r. 

-  Then γ1 is a timelike half worldline with infinite proper 
length that lies in the chronological past of p. 

3.  Remove r. 
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Are M-H spacetimes physically possible? 

(1) M-H spacetimes are not globally hyperbolic. 

Def. 4. A globally hyperbolic spacetime is a spacetime 
that admits a Cauchy surface. 

A Cauchy surface is a spacelike surface S  such that every non-
spacelike worldline without endpoints intersects S exactly once. 

• Why is this important? Cauchy surfaces serve as initial data surfaces 
and thus provide a basis for predictability in relativistic spacetimes. 

If S is Cauchy then all 
non-spacelike (causal) 
worldlines interacting in 
R must register on S. 

R 

S 
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Claim: M-H spacetimes are not globally hyperbolic. 

Proof 1: Suppose there is an M-H spacetime that is globally hyperbolic. 

- Select a Cauchy surface S that contains the M-H point p. 

-  Extend the M-H worldline γ maximally into the past; call it γ'. 

-  Since γ' now has no endpoints and is timelike, it must intersect S. 

-  Since γ' is in I −(p), all points on it can be connected to p via timelike worldlines. 

- In particular, the point p' where γ' intersects S can be connected to p via a 
timelike worldline. 

- But but both p and p' are in S, and S is spacelike. 

Proof 2: Suppose there is an M-H spacetime that is globally hyperbolic. 

- Lemma: If a spacetime is globally hyperbolic and if p ∈ J+(q) (the causal future of 
q), for any p, q, then there is a non-spacelike worldline from q to p whose length is 
maximal. 

- Let p be a M-H point and γ a M-H worldline with endpoint q. 

-  Let γ' be the maximal worldline from q to p guaranteed by the Lemma. 

-  But a longer route from q to p can always be taken by going far enough along γ 
before heading towards p! 
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Response: 

• Is global hyperbolicity necessary for a spacetime to be physically possible? 

• Some solutions to the Einstein equations are M-H spacetimes, and thus not 
globally hyperbolic: 

-  anti-de Sitter spacetime 

-  Reissner-Nordstrom spacetime (charged black hole) 

-  Kerr spacetime (charged, rotating black hole) 

• Open question: Is the spacetime that describes our universe globally 
hyperbolic? 
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(2) M-H spacetimes may entail infinite blueshifts. 

• TM must send an infinite number of signals to the programmer. 

• Programmer must receive these signals in a finite amount of her proper time. 

• So: She must receive them in ever decreasing intervals = ever increasing 
frequencies. 

• So: She perceives these frequencies to increase without bound. 

p 

γ2 

• 

q • 

γ1 

C 
r 

Infinite blueshift in 
Toy M-H spacetime 

More precisely: 
The frequency ω1 of a signal sent by 
γ1 is related to the frequency ω2 of a 
signal received by γ2 by: 

    
ω1ds

γ1
∫ = ω2 ds

γ2
∫

it must be the case that  
    
ω2 ds

γ2
∫ =∞.

Since 
    

ds
γ1
∫ =∞

    
ds

γ2
∫ <∞and  
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Response: Not all M-H spacetimes face this problem. 

(a) Rolled-up Minkowski spacetime 

space 

time 

q 

p 

• 

• 

γ2 
γ1 

• γ1's proper length is infinite. 

• Chronological past of p is the entire spacetime! 

• No infinite blueshifts: signals from γ1 to γ2 need not increase in frequency. 

• But: Rolled-up Minkowski spacetime has closed timelike curves (time travel!). 
Are such spacetimes physically realistic? 
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(b)  Geroch-Malament (G-M) spacetime 

• But: The frequencies of signals sent from γ1 inside C blow up as r is 
approached. 

• Strategy of G-M spacetime: Guarantee that γ1 has ∞ length by constructing 
scalar fields for spheres centered at an infinite sequence of points τ1, τ2, τ3, ... 
along γ1. Signals sent from points not in this sequence will not blow up! 

r 

q 

• 

• 

• 

• 

• 

..
. 

τ1 

τ2 

τ3 

C1 

C2 

C3 

γ1 

G-M spacetime 

sum of portions of γ1 
inside the Cns is ∞! 

sum of portions of γ1 
outside the Cns is finite! 

• Recall: In Toy M-H spacetime γ1 is guaranteed to have ∞ length due to the 
scalar field Ω in the interior of the sphere C centered at the missing point r. 

• q 

r C 

γ1 

portion of γ1 inside 
C has ∞ length! 

Toy M-H spacetime 

portion of γ1 outside 
C has finite length! 
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Consequences: 

• The total length of the portion of γ1 in all the spheres is ∞. 

• The total length of the portion of γ1 outside the spheres is finite. 

• Signals sent from the points of γ1 where its length is finite will not be 
blueshifted. 

• In particular, signals sent from the sequence of points (1/2, 3/4, 7/8, ...) will 
not be blueshifted. 

• But: How physically realistic is a G-M spacetime?  

Step 1.  Let (τ1, τ2, ....) be an infinite sequence of points on γ1 given by 
τn = 1 − (3/4)(1/2)n. 

Step 2.  At each point τn, construct a sphere Cn of radius rn = (1/2)n + 3. 

Step 3.  In the interior of each sphere Cn, construct a scalar field Ωn such that 

(i)  Ωn goes to 1 as rn is approached, and reaches it maximum value 
as τn is approached; and 

(ii) the length of γ1 inside Cn is equal to 1. 

How to construct G-M spacetime. 
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(3) M-H spacetimes may violate the Cosmic Censureship Hypothesis (CCH). 

CCH (Penrose 1974): "Naked" singularities do not develop in 
physically reasonable solutions to the Einstein equations. 

• Naked singularities entail a breakdown of determinism. 

All points to the future of S that are 
completely determined by data on S. = 

• Let S be a spacelike surface. 

S 

D+(S) 

= The future domain of 
dependence D+(S) of S 

All points p such that every non-
spacelike worldline through p with no 
future endpoint intersects S exactly once 

p ∈ D+(S) 
p' ∉ D+(S) 

• p'

• p
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(3) M-H spacetimes may violate the Cosmic Censureship Hypothesis (CCH). 

CCH (Penrose 1974): "Naked" singularities do not develop in 
physically reasonable solutions to the Einstein equations. 

• Naked singularities entail a breakdown of determinism. 

S 

D+(S) 

• Remove r. 

r 

• p
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(3) M-H spacetimes may violate the Cosmic Censureship Hypothesis (CCH). 

CCH (Penrose 1974): "Naked" singularities do not develop in 
physically reasonable solutions to the Einstein equations. 

• Naked singularities entail a breakdown of determinism. 

S 

D+(S) 

• Remove r. 
• p is no longer in D+(S)! 

• Causal influences that do not register on S can now affect p. 

r 

• p

naked singularity? 

Response: 
What exactly is a naked singularity? 
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The Big Difference between a regular TM and a TM∞: 

3. Non-Turing Computability 

• A simple infinity TM is a TM that is allowed to complete an infinite number 
of steps. Call it TM∞. 

• A TM following a M-H worldline is a TM∞. 

- All TMs either halt or fail to halt. 

- If a regular TM fails to halt, this could mean either that it may 
or may not halt. 

- If a TM∞ fails to halt, this definitely means it will never halt. 

Toy M-H spacetime 

r 

γ1 

• 

• 

γ2 

p 

q 

At M-H point p, programmer knows whether 
TM has halted or failed to halt. If the latter, 
this definitely means the TM will never halt. 
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What can be solved by a TM∞ 

(i)  The halting problem. 

• Does arbitrary TM Tt halt on input n? 

• Run Tt on a TM∞: 

 -  If the TM∞ halts, Tt halts. 

 -  If the TM∞ fails to halt, Tt does not halt. 

(ii) The decision problem for purely existential and purely universal statements 
in arithmetic. 

Ex: Fermat's Last Theorem. 

-  "For n ≥ 3, there are no x, y, z, such that xn + yn = zn." 

-  Or: ∀x∀y∀z∀n¬F(x, y, z, n), where F(x, y, z, n) means "x, y, z, n 
are natural numbers, and n ≥ 3, and xn + yn = zn". 

- Note: Any statement (in prenex form) with two adjacent 
quantifiers of the same type is equivalent to a statement with 
a single quantifer of that type in place of these two. 

- Thus: Any purely existential/universal statement can be 
rewritten as a statement with a single quantifier. 

20 



(i)  For each number x, determine if F holds. 

(ii)  If F holds, then go to x + 1. 

(iii) If F does not hold, halt. 

Consequence: 

- If TM∞ halts, then statement is false. 

- If TM∞ fails to halt, then statement is true. 

(i)  For each number x, determine if F holds. 

(ii)  If F holds, then halt. 

(iii) If F does not hold, then go to x + 1. 

Consequence: 

- If TM∞ halts, then statement is true. 

- If TM∞ fails to halt, then statement is false. 

For purely universal statements ∀xF(x): 

For purely existential statements ∃xF(x): 
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(i)  For each x, check to see if there's an y for which R doesn't hold. 

(ii)  If so, then go to x + 1 and start checking y's again. 

• But: What about mixed quantifier statements? 

Consequence: 

• The TM∞ will fail to halt, but what does this mean? 

- Either the x currently being checked against all numbers is the ultimate (so 
the statement is true). 

- Or the TM∞ is still checking candidates for x (so the statement may be 
false). 

• Thus: The truth of the statement cannot be determined. 

• Ex: ∃x∀yR(x, y), which we can take to mean "There's an ultimate number x 
which stands in the relation R to all numbers." 

• So: A single TM∞ cannot solve the decision problem for arbitrary statements 
in arithmetic. 

What about using an infinite number of TM∞'s?
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• Idea: To decide the truth of ∃x∀yR(x, y), 

- TM1
∞ checks ∀yR(1, y), TM2

∞ checks ∀yR(2, y), ... . 

- Collect results using another TM∞. 

• Can we devise a spacetime that can support such a computation (Hogarth 
1994)? 
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- Each γi is a TM∞ that 
determines ∀yR(i, y). 

- γa is another TM∞ that 
collects these results to 
determine ∃x∀yR(x, y). 

- γb is the programmer. 

- Decides doubly-mixed 
quantifier statements 
∃x∀yR(x, y), ∀x∃yR(x, y). 

- Call this a SAD2 (2nd-order 
arithmetical sentence 
deciding) spacetime. 

- M-H spacetime. 

- γ1 is a single TM∞. 

-  γ2 is the programmer. 

- Decides singly-
quantified statements 
∃xR(x), ∀xR(x). 

r 

γ1 

• 

• 

γ2 

p 

q 

-  Each region Oi is a M-H 
spacetime such that, for all i 
(a)  Oi ⊂ I −(Oi+1). 

(b)  Oi ⊂ I −(p). 

• p 

...
 

O1 

O2 

O3 

• q 

γ1 

γ2 

γ3 

γa 

γb 

γa 

γa 
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- Decides triply-mixed 
quantifier statements 
∀x∃y∀zR(x, y, z),  
∃x∀y∃zR(x, y, z)). 

- Call this a SAD3 spacetime. 

- Each region Oi is a SAD2 
spacetime such that, for all i 
(a)  Oi ⊂ I −(Oi+1). 

(b)  Oi ⊂ I −(p). 

• p 

...
 

O1 

O2 

O3 

• q 

...
 

...
 

...
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A SADn (nth-order arithmetical sentence deciding) spacetime = a 4-dim 
collection of points such that: 

(1)  If n = 1, the spacetime is M-H. 

(2)  If n > 1, the spacetime admits a string of SADn−1 spacetimes: a 
collection of non-intersecting open regions Oi, i = 1, 2, ..., such that 

(a)  Each Oi is in the chronological past of the next Oi+1. 

(b)  There is a point p such that all regions are in the 
chronological past of p. 

(c)  Each region Oi is a SADn−1 spacetime. 

An AD (arithmetical sentence deciding) spacetime = a 4-dim collection 
of points that admits a string of open regions Oi, i = 1, 2, ..., such that: 

(a)  Each Oi is in the chronological past of the next Oi+1. 

(b)  There is a point p such that all regions are in the 
chronological past of p. 

(c)  For each n ≥ 1, On is a SADn spacetime. 
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- Decides mixed quantifier 
statements of all orders. 

- So: Decides truth of arbitrary 
statements in arithmetic! 

- Each region Oi is a SADi 
spacetime such that, for all i 
(a)  Oi ⊂ I −(Oi+1). 

(b)  Oi ⊂ I −(p). 

p 

...
 

O1 = SAD1 

O2 = 
SAD2 

O3 = 
SAD3 

• q 

...
 

...
 

...
 

...
 

...
 

An AD spacetime 

• 
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Recap: 

- A TM operating in a classical spacetime cannot decide (any) quantifier 
statements in arithmetic. 

- A TM∞ operating in a M-H spacetime can decide purely existential/
universal statements in arithmetic. 

- A configuration of TM∞'s operating in a SADn spacetime, n > 1, can 
decide nth-order mixed quantifier statements in arithmetic. 

- A configuration of TM∞'s operating in an AD spacetime can decide all 
types of quantifier statements (of arbitrary mixed order) in arithmetic. 

• Thus: The decision problem for arithmetic is solvable in an AD spacetime. 
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Consequences for the Concept of Computability: 

The Church-Turing Thesis: 
Turing computability = effective computability. 

Question 1: What is "Turing computability"? 

• Are these distinct types of computing devices? 

• Or are they all simply regular TMs operating in different types of spacetimes? 

- TM∞ computable 

- SADn computable 

- AD computable 

three types of computability 
in relativistic spacetimes 

- TM computable  (computability in classical spacetimes) 
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Question 2: How do physical constraints affect the concept of computability? 

The Physical Church-Turing Thesis: 

Turing computability = an upper bound on effective computability. 

• Do physical constraints rule in favor of TM computability? 

• Should this idealized upper bound be replaced by one associated with 
relativistic spacetimes? 

• Practical response: The spacetime arena in which real computers (designed 
by computer engineers) operate is, for all intents and purposes, a classical 
spacetime. 

• But: If the issue involves formulating a theoretical notion of 
"computability"; i.e., what in-principle can and cannot be computed, then 
practical issues hold lesser sway. 

Possible claim: TM∞-, SADn-, and AD-computability are 
only possible in highly idealized relativistic spacetimes. 

• But: Ordinary TMs are themselves ideal concepts: they assume an infinite 
amount of memory! 
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