06. Malament-Hogarth Spacetimes and Non-Turing Computability

- 1. Supertasks
- 2. Malament-Hogarth Spacetimes
- 3. Non-Turing Computability

1

1. Supertasks

- <u>Recall</u>: The decision problem for 1st-order arithmetic is *Turing unsolvable*.
- <u>Which means</u>: No TM that halts after a finite number of steps can determine if a given statement in arithmetic is a theorem.
- What if we allow the TM to perform an *infinite* number of steps?
- <u>Initial question</u>: Should we allow such an infinity TM a finite or an infinite amount of time to do this?

<u>Option A</u>: An infinity TM that performs an infinite number of steps in a *finite* amount of time.

- <u>Advantage</u>: Puny finite humans can access the infinity TM's output in a finite amount of time.
- <u>But</u>: Is such a "supertask" conceptually possible?

Thomson's Lamp:

- At t = 0, switch lamp on.
- At t = 1/2, switch lamp off.
- At t = 3/4, switch lamp on.
- *etc....*
- At t = 1, is lamp on or off?

- (i) For any time t, 0 < t < 1, if the lamp is off at t, then there's another time $t', t < t' \leq 1$, such that the lamp is on at t'.
- (ii) For any time t, 0 < t < 1, if the lamp is on at t, then there's another time $t', t < t' \leq 1$, such that the lamp is off at t'.
- (i) implies that the lamp is on at t = 1. \bigcirc Contradiction! So the
- (ii) implies that the lamp is off at t = 1. $\int lamp is not possible.$

Thomson's Lamp:

- At t = 0, switch lamp on.
- At t = 1/2, switch lamp off.
- At t = 3/4, switch lamp on.
- *etc....*
- At t = 1, is lamp on or off?

- (i) For any time t, 0 < t < 1, if the lamp is off at t, then there's another time $t', t < t' \leq 1$, such that the lamp is on at t'.
- (ii) For any time t, 0 < t < 1, if the lamp is on at t, then there's another time $t', t < t' \leq 1$, such that the lamp is off at t'.

Benacerraf's (1962) response:

- The limit of a sequence is not a member of the sequence.
- <u>So</u>: Any properties of a sequence cannot necessarily be attributed to its limit.
- <u>Thus</u>: Since 1 is not a member of (0, 1/2, 3/4, 7/8, ...), any properties of the latter cannot be attributed to the former.
- <u>In particular</u>: The " \leq " in (i) and (ii) is unjustified.

4

<u>Option B</u>: An infinity TM that performs an infinite number of steps in an *infinite* amount of time.

<u>Goldbach's Conjecture</u>: Every even integer greater than 2 can be expressed as the sum of two primes.

Use an infinity TM to check:

- At t = 1, check 4; at t = 2, check 6; *etc*.
- At $t = \infty$, all integers greater than 2 will have been checked!
- <u>But</u>: How can puny humans access the data from such an infinity TM?
- <u>Answer</u>: In a Malament-Hogarth spacetime!

2. Malament-Hogarth Spacetimes

• <u>Idea</u>: We want the infinity TM's worldline to be infinitely long, and to be accessible (via a causal signal, say) from the programmer's worldline.

<u>A Malament-Hogarth spacetime</u> = a spacetime with a worldline of *infinite* proper length that lies in the past of some point.

Let's try to make this more precise ...

• <u>Recall</u>: In a relativistic spacetime, there is a lightcone at every point p.

Def. 1. The chronological past $I^-(p)$ of p consists of all points q that can be connected to p by a timelike worldline.

 $\underline{So:}$ All points in $I^{-}(p)$

are accessible from p.

 $\begin{aligned} q \in I^-(p). \\ q' \not\in I^-(p). \end{aligned}$

Def. 2. The proper length of a timelike worldline γ is the sum of all infinitesimal intervals ds along it: (proper length of γ) = $\int_{\gamma} ds$.

Def. 3. A *timelike half-worldline* is a timelike worldline with a past endpoint.

• <u>Idea</u>: We want the infinity TM's worldline γ to have a point, call it q, in its past that coincides with a point of the programmer's worldline. (q is the event at which the programmer programs the infinity TM.)

<u>A Malament-Hogarth spacetime</u> = a 4-dim collection of points with a metric $g_{\mu\nu}$, a timelike half worldline γ , and a point p such that

(MH1) the proper length of γ is infinite: $\int_{\gamma} ds = \infty$.

(MH2) γ lies completely in the chronological past of $p: \gamma \subset I^{-}(p)$.

Example: Toy M-H spacetime.

- 1. Start with Minkowski spacetime.
- 2. Add scalar field Ω that is the identity outside of a compact region C, and goes to ∞ as the point $r \in C$ is approached.
- 3. Remove r.

Are M-H spacetimes physically possible?

(1) M-H spacetimes are not globally hyperbolic.

• <u>Why is this important?</u> Cauchy surfaces serve as initial data surfaces and thus provide a basis for *predictability* in relativistic spacetimes.

<u>Claim</u>: M-H spacetimes are not globally hyperbolic.

- <u>*Proof* 1</u>: Suppose there is an M-H spacetime that is globally hyperbolic.
- Select a Cauchy surface S that contains the M-H point p.
- Extend the M-H worldline γ maximally into the past; call it γ' .
- Since γ' now has no endpoints and is timelike, it must intersect S.
- Since γ' is in $I^{-}(p)$, all points on it can be connected to p via timelike worldlines.
- In particular, the point p' where γ' intersects S can be connected to p~via a timelike worldline.
- But but both p and p' are in S, and S is spacelike.

<u>Proof 2</u>: Suppose there is an M-H spacetime that is globally hyperbolic.

- <u>Lemma</u>: If a spacetime is globally hyperbolic and if $p \in J^+(q)$ (the causal future of q), for any p, q, then there is a non-spacelike worldline from q to p whose length is maximal.
- Let p be a M-H point and γ a M-H worldline with endpoint q.
- Let γ' be the maximal worldline from q to p guaranteed by the Lemma.
- But a longer route from q to p can always be taken by going far enough along γ before heading towards p!

<u>Response</u>:

- Is global hyperbolicity necessary for a spacetime to be physically possible?
- Some solutions to the Einstein equations are M-H spacetimes, and thus not globally hyperbolic:
 - anti-de Sitter spacetime
 - Reissner-Nordstrom spacetime (charged black hole)
 - Kerr spacetime (charged, rotating black hole)
- <u>Open question</u>: Is the spacetime that describes our universe globally hyperbolic?

(2) M-H spacetimes may entail infinite blueshifts.

- TM must send an infinite number of signals to the programmer.
- Programmer must receive these signals in a finite amount of her proper time.
- <u>So</u>: She must receive them in ever decreasing intervals = ever increasing frequencies.
- <u>So</u>: She perceives these frequencies to increase without bound.

<u>More precisely:</u> The frequency woof a signal sent by
γ_1 is related to the frequency ω_2 of a
signal received by γ_2 by:
$\int_{\gamma_1} \omega_1 ds = \int_{\gamma_2} \omega_2 ds$
Since $\int_{\gamma_1} ds = \infty$ and $\int_{\gamma_2} ds < \infty$
it must be the case that $\int_{\gamma_2} \omega_2 ds = \infty$.

<u>Response</u>: Not all M-H spacetimes face this problem. (a) Rolled-up Minkowski spacetime

- γ_1 's proper length is infinite.
- Chronological past of p is the entire spacetime!
- No infinite blueshifts: signals from γ_1 to γ_2 need not increase in frequency.
- <u>But</u>: Rolled-up Minkowski spacetime has closed timelike curves (time travel!). Are such spacetimes physically realistic?

(b) Geroch-Malament (G-M) spacetime

- <u>Recall</u>: In Toy M-H spacetime γ_1 is guaranteed to have ∞ length due to the scalar field Ω in the interior of the sphere C centered at the missing point r.
- <u>But</u>: The frequencies of signals sent from γ_1 inside C blow up as r is approached.
- Strategy of G-M spacetime: Guarantee that γ₁ has ∞ length by constructing scalar fields for spheres centered at an infinite sequence of points τ₁, τ₂, τ₃, ... along γ₁. Signals sent from points not in this sequence will not blow up!

How to construct G-M spacetime.

Step 1. Let $(\tau_1, \tau_2, ...)$ be an infinite sequence of points on γ_1 given by $\tau_n = 1 - (3/4)(1/2)^n$.

Step 2. At each point τ_n , construct a sphere C_n of radius $r_n = (1/2)^{n+3}$.

Step 3. In the interior of each sphere C_n , construct a scalar field Ω_n such that

(i) Ω_n goes to 1 as r_n is approached, and reaches it maximum value as τ_n is approached; and

(ii) the length of γ_1 inside C_n is equal to 1.

Consequences:

- The total length of the portion of γ_1 in all the spheres is ∞ .
- The total length of the portion of γ_1 outside the spheres is finite.
- Signals sent from the points of γ_1 where its length is finite will *not* be blueshifted.
- In particular, signals sent from the sequence of points (1/2, 3/4, 7/8, ...) will not be blueshifted.
- <u>But</u>: How physically realistic is a G-M spacetime?

(3) M-H spacetimes may violate the Cosmic Censureship Hypothesis (CCH).

<u>CCH (Penrose 1974)</u>: "Naked" singularities do not develop in physically reasonable solutions to the Einstein equations.

- Naked singularities entail a breakdown of *determinism*.
- Let S be a spacelike surface.

All points p such that every non-The future domain of dependence $D^+(S)$ of Sspacelike worldline through p with no future endpoint intersects S exactly once All points to the future of S that are completely determined by data on S. p $p \in D^+(S)$ $p' \not\in D^+(S)$ $-D^+(S)$ S16

(3) M-H spacetimes may violate the Cosmic Censureship Hypothesis (CCH).

<u>CCH (Penrose 1974)</u>: "Naked" singularities do not develop in physically reasonable solutions to the Einstein equations.

- Naked singularities entail a breakdown of *determinism*.
- Remove *r*.

(3) M-H spacetimes may violate the Cosmic Censureship Hypothesis (CCH).

<u>CCH (Penrose 1974)</u>: "Naked" singularities do not develop in physically reasonable solutions to the Einstein equations.

- Naked singularities entail a breakdown of *determinism*.
- Remove *r*.
- p is no longer in $D^+(S)$!
- Causal influences that do not register on S can now affect p.

3. Non-Turing Computability

- A simple infinity TM is a TM that is allowed to complete an infinite number of steps. Call it TM_{∞} .
- A TM following a M-H worldline is a TM_{∞} .

The Big Difference between a regular TM and a TM_{∞} :

- All TMs either halt or fail to halt.

- If a regular TM fails to halt, this could mean either that it may or may not halt.

- If a TM_∞ fails to halt, this definitely means it will never halt.

At M-H point p, programmer knows whether TM has halted or failed to halt. If the latter, this definitely means the TM will never halt.

Toy M-H spacetime

What can be solved by a TM_{∞}

- (i) The halting problem.
 - Does arbitrary TM T_t halt on input n?
 - Run T_t on a TM_{∞} :
 - If the TM_{∞} halts, T_t halts.
 - If the TM_∞ fails to halt, T_t does not halt.

(*ii*) The decision problem for purely existential and purely universal statements in arithmetic.

<u>Ex</u>: Fermat's Last Theorem.

- "For $n \ge 3$, there are no x, y, z, such that $x^n + y^n = z^n$."
- <u>Or</u>: $\forall x \forall y \forall z \forall n \neg F(x, y, z, n)$, where F(x, y, z, n) means "x, y, z, n are natural numbers, and $n \ge 3$, and $x^n + y^n = z^n$ ".

- <u>Note</u>: Any statement (in prenex form) with two adjacent quantifiers of the same type is equivalent to a statement with a single quantifer of that type in place of these two.

- <u>Thus</u>: Any purely existential/universal statement can be rewritten as a statement with a *single* quantifier.

For purely universal statements $\forall x F(x)$:

(i) For each number x, determine if F holds.

(ii) If F holds, then go to x + 1.

(iii) If F does not hold, halt.

<u>Consequence</u>:

- If TM_∞ halts, then statement is false.

- If TM_{∞} fails to halt, then statement is true.

For purely existential statements $\exists x F(x)$:

(i) For each number x, determine if F holds.

(ii) If F holds, then halt.

(iii) If F does not hold, then go to x + 1.

<u>Consequence</u>:

- If TM_∞ halts, then statement is true.
- If TM_∞ fails to halt, then statement is false.

- <u>But</u>: What about *mixed* quantifier statements?
- <u>Ex</u>: $\exists x \forall y R(x, y)$, which we can take to mean "There's an ultimate number x which stands in the relation R to all numbers."
 - (i) For each x, check to see if there's an y for which R doesn't hold.
 - (ii) If so, then go to x + 1 and start checking y's again.

<u>Consequence</u>:

- The TM_{∞} will fail to halt, but what does this mean?
 - *Either* the *x* currently being checked against all numbers is the ultimate (so the statement is true).
 - Or the TM_∞ is still checking candidates for x (so the statement may be false).
- <u>Thus</u>: The truth of the statement cannot be determined.
- <u>So</u>: A single TM_{∞} cannot solve the decision problem for arbitrary statements in arithmetic.

What about using an infinite number of TM_{∞} 's?

- <u>Idea</u>: To decide the truth of $\exists x \forall y R(x, y)$,
 - TM^1_{∞} checks $\forall y R(1, y), \mathrm{TM}^2_{\infty}$ checks $\forall y R(2, y), \dots$.
 - Collect results using another $\mathrm{TM}_\infty.$
- Can we devise a spacetime that can support such a computation (Hogarth 1994)?

γ_2 γ_2 γ_1 γ_1

- M-H spacetime.
- γ_1 is a single TM_{∞} .
- γ_2 is the programmer.
- Decides singlyquantified statements $\exists x R(x), \forall x R(x).$

- Each region O_i is a M-H spacetime such that, for all i
 - (a) $O_i \subset I^-(O_{i+1}).$
 - ${\rm (b)} \ \ O_i \subset I^-(p).$
- Each γ_i is a TM_{∞} that determines $\forall y R(i, y)$.
- γ_a is another TM_{∞} that collects these results to determine $\exists x \forall y R(x, y)$.
- γ_b is the programmer.
- Decides doubly-mixed quantifier statements $\exists x \forall y R(x, y), \forall x \exists y R(x, y).$
- Call this a SAD₂ (2nd-order arithmetical sentence deciding) spacetime.

- Each region O_i is a SAD_2 spacetime such that, for all i
 - $\text{(a)} \quad O_i \subset I^-(O_{i+1}).$
 - ${\rm (b)} \ \ O_i \subset I^-(p).$
- Decides triply-mixed quantifier statements $\forall x \exists y \forall z R(x, y, z),$ $\exists x \forall y \exists z R(x, y, z)).$
- Call this a SAD_3 spacetime.

<u>A SAD_n (nth-order arithmetical sentence deciding) spacetime</u> = a 4-dim collection of points such that:

- (1) If n = 1, the spacetime is M-H.
- (2) If n > 1, the spacetime admits a string of SAD_{n-1} spacetimes: a collection of non-intersecting open regions O_i , i = 1, 2, ..., such that
 - (a) Each O_i is in the chronological past of the next O_{i+1} .
 - (b) There is a point p such that all regions are in the chronological past of p.
 - (c) Each region O_i is a SAD_{n-1} spacetime.

<u>An AD (arithmetical sentence deciding) spacetime</u> = a 4-dim collection of points that admits a string of open regions O_i , i = 1, 2, ..., such that:

- (a) Each O_i is in the chronological past of the next O_{i+1} .
- (b) There is a point p such that all regions are in the chronological past of p.
- (c) For each $n \ge 1$, O_n is a SAD_n spacetime.

- Each region O_i is a SAD_i spacetime such that, for all i
 - (a) $O_i \subset I^-(O_{i+1}).$
 - (b) $O_i \subset I^-(p)$.
- Decides mixed quantifier statements of all orders.
- <u>So</u>: Decides truth of arbitrary statements in arithmetic!

<u>Recap</u>:

- A TM operating in a classical spacetime cannot decide (any) quantifier statements in arithmetic.
- A TM_{∞} operating in a M-H spacetime can decide purely existential/universal statements in arithmetic.
- A configuration of TM_{∞} 's operating in a SAD_n spacetime, n > 1, can decide *n*th-order mixed quantifier statements in arithmetic.
- A configuration of TM_{∞} 's operating in an AD spacetime can decide all types of quantifier statements (of arbitrary mixed order) in arithmetic.
- <u>Thus</u>: The decision problem for arithmetic is solvable in an AD spacetime.

<u>Consequences for the Concept of Computability</u>:

<u>The Church-Turing Thesis</u>: Turing computability = effective computability.

Question 1: What is "Turing computability"?

- Are these *distinct* types of computing devices?
- Or are they all simply regular TMs operating in different types of spacetimes?

<u>Question 2: How do physical constraints affect the concept of computability?</u>

• Do physical constraints rule in favor of TM computability?

<u>Possible claim</u>: TM_{∞} -, SAD_n -, and AD-computability are only possible in highly idealized relativistic spacetimes.

• <u>But</u>: Ordinary TMs are themselves ideal concepts: they assume an infinite amount of memory!

<u>The Physical Church-Turing Thesis</u>:

Turing computability = an $upper \ bound$ on effective computability.

- Should this idealized upper bound be replaced by one associated with relativistic spacetimes?
- <u>Practical response</u>: The spacetime arena in which real computers (designed by computer engineers) operate is, for all intents and purposes, a classical spacetime.
- <u>But</u>: If the issue involves formulating a *theoretical* notion of "computability"; *i.e.*, what in-principle can and cannot be computed, then practical issues hold lesser sway.