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05. Turing Machines and Spacetime. 2. Classical Spacetimes

3. Relativistic Spacetimes

I1. Classical and Relativistic Spacetimes.
Motivation: Turing solvable problems require a TM to halt after a finite

number of steps with a given output.

e What if we allow TMs to perform an infinite number of steps?
- Then: Some Turing unsolvable problems may become solvable!

- But: How could puny finite humans access the output of a TM that
performs an infinite number of steps?

Allows the human to access the TM's output in a finite
amount of time.

__________________________________________________________________

o Mathematically: A matter of determining the appropriate curved geometry

for the given spacetime.

e Physically: Are such appropriately curved spacetimes physically possible?




1. Types of Spacetimes

e A spacetime is a 4-dim collection of points with additional structure.
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Typically, one or more metrics = a specification of
. the spatial and temporal distances between points.
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Two ways spacetimes can differ:

(1) Different ways of specifying distances between points yield different types
of spacetimes.

- Classical spacetimes have separate spatial and temporal metrics: only one
way to split time from space (spatial and temporal distances are absolute).

- Relativistic spacetimes have a single spatiotemporal metric, and how it gets
split into spatial and temporal parts depends on one's inertial reference
frame (spatial and temporal distances are relative).
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Classical spacetime: only one Relativistic spacetime: many
way to split time from space. ways to split time from space.




(2) Metrics can be flat or curved: how one specifies the distance between points

encodes the curvature of the spacetime.

- Classical spacetimes can be flat or curved.
- Relativistic spacetimes can be flat (Minkowski spacetime) or curved

(general relativistic spacetimes).

e T'wo ways curvature can manifest itself:
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can be flat or curved.
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The spatial slices can be flat or curved.




2. Classical Spacetimes

Newtonian spacetime is a 4-dim collection of points such that:

(N1) Between any two points p, ¢ with coordinates (¢,z,y,2) and (t+At,
r+ Az, y+ Ay, 2+ Az) there is a definite temporal interval T(p,q) = At.

(N2) Between any two points p, ¢ with coordinates (¢,z,y,2) and (t+ At,
r+ Az, y+ Ay, z+Az) there is a definite Fuclidean distance

R(p,q) = J(Az) + (Ay) + (Az)

(N1) and (N2) entail:

(a) All worldlines have a definite absolute velocity.

| For worldline v, and any two points p, g on 7, the absolute velocity :
\ of v with respect to p, q can be defined by R(p,q)/ T(p,q). :

(b) There is a privileged collection of worldlines defined by R(p,q)/T(p,q) = 0.

(c) All worldlines have a definite absolute acceleration. \I\N .

! For worldline v, and points p, q on v, the absolute acceleration : abs‘)h/bte
! space!
|

! of v with respect to p, q can be defined by d/dt{ R(p,q)/T(p,q)} !

But absolute space and absolute velocity are unobservable!



Neo-Newtonian spacetime is a 4-dim collection of points such that:

(NN1) Between any two points p, ¢ with coordinates (t,x,y,2) and (t+At,
r+ Az, y+ Ay, z+Az) there is a definite temporal interval T(p,q) = At.

(NN2) Between any two simultaneous points p,, ¢, with coordinates (t¢,z,vy,2)
and (t, x+ Az, y+Ay, z+Az) there is a definite Fuclidean distance,

R(pa) = V(D) + (Ay) + (A2)
(NN3) Any worldline v through a point p has a definite curvature S(v,p).

(NN2) entails:

- No absolute spatial distance between points at different times
on any worldline .

- So: No absolute velocity for any worldline: velocity is relative!

- So: No single privileged inertial reference frame. r At

(NN3) entails: acceleration remains absolute! =777 ====-- /

! For worldline v and point p on ~, the absolute

| acceleration of v with respect to p is given by S(~,p).



Newtonian Spacetime Neo-Newtonian Svacetime
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Single, privileged inertial frame. Many inertial frames; none privileged.

Velocity is absolute. Velocity is relative.

Acceleration is absolute. Acceleration is absolute.
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Simultaneity is absolute. Simultaneity is absolute.

e Both Newtonian spacetime and Neo-Newtonian spacetime have absolute
temporal metrics: Fveryone agrees on what time it is.

e Relativistic spacetimes have no absolute temporal metric: What time it is

depends on your inertial reference frame.



3. Relativistic Spacetimes The speed of light c is

e Light Postulate of Special Relativity entails: | the same in all inertial

reference frames.

light signal d

Albert Einstein
(1879-1955)
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e Object O'is moving at constant velocity with respect to object O.

e (O and O’ must measure same speed c for light signal.

e So: The 2’ axis must be inclined by the same amount 6 from the x axis as
the t’ axis is inclined from the ¢ axis.

e Thus: O and O' must disagree on spatial and temporal measurements!



3. Relativistic Spacetimes The speed of light c is

e Light Postulate of Special Relativity entails: | the same in all inertial
reference frames.

e O and O’ make different judgements of simultaneity (relativity of

simultaneity).
e p and ¢ are simultaneous according to O'.

e p happens before ¢ according to O.



Svacetime of Svecial Relativity = Minkowsk: spacetime

W
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Minkowski spacetime = 4-dim collection of points such that between | =",
any two points p, ¢ with coordinates (t,z,y,2) and (t+At, 2+ Az, Mindons

(1864-1909)

y+ Ay, 2+ Az) there is a definite spacetime interval given by
As = \—(cAL? + (Az) + (Ay)® + (Az).

e Similar to Euclidean spatial interval \/(Aaz)2 + (Ay)* + (Az).

e But: Includes the time coordinate difference, too! And it's negative!

- Idea: All inertial frames will agree on the spatiotemporal distance As
between any points p and g.

- But they will disagree on how As gets split into a temporal part and a
spatial part: they will disagree on measurements of time and
measurements of space.
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As = \—(cAl) + (Az)

= J(cAtY + (ALY

T

e All inertial frames agree on the spacetime distance between any two points
p and q.

e They will disagree on the temporal distance between p and ¢ (time dilation)
and on the spatial distance (length contraction).

- They will disagree on how they split the spacetime distance into temporal and

spatial parts.
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The Minkowski spacetime interval is encoded in the Minkowski metric n,,

(As)? = =(cAt)* + (Az)* + (Ay)* + (A2)?

- i nwa“AxV

p,r=0

e Infinitesimally: ds* =, dz/dz”

————————————————————

Az =cAt, Azl= Az,
Ax?=Ay, Az3=Az,

Three forms of (As)?

(a) Timelike. (As)? < 0, or: \/(Ax)2 + (Ay)’ + (Az)’

At

(b) Lightlike. (As)? = 0, or: V(A2 +(Ay) + (A2

At

(¢) Spacelike: (As)? > 0, or: \/(Ax)Q + (Ay)2 + (AZ)Q

At

<c

=C

> C

Three different
types of worldline
in Minkowski
spacetime!

o Absolute distinction: All inertial frames agree on As, so all inertial frames agree on

which worldlines are timelike, lightlike, and spacelike!



Hence: The Minkowski metric defines a lightcone at any point p:

tI
i lightlike worldline
(j (objects with speeds = c)

timelike worldline
(objects with speeds < c)

spacelike worldline
(objects with speeds > c)
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Neo-Newtonian Spacetime
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Many inertial frames; none privileged.

Velocity is relative.

Acceleration is absolute.

Simultaneity is absolute.
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Minkowski Spacetime
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Many inertial frames; none privileged.
Velocity is relative.

Acceleration is absolute.

Simultaneity is relative.

Invariant light-cone structure at each
point.
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Problem: Special relativity does not account for the gravitational force.

Geometricize it! Make it a
feature of spacetime geometry.

e To include gravity... [

Two requirements:

(1) New theory ("general relativity") must reduce to special relativity in
sufficiently flat regions of spacetime:

e Replace ds* = 1, dztdz” with ds* = g, dxtdz”.

4 \

flat Minkowski metric non-flat metric

e Require g, to reduce to 1, in small regions of spacetime.

Any sufficiently
j small piece looks flat

arbitrarily curved surface



Problem: Special relativity does not account for the gravitational force.

e To include gravity...

Geometricize it! Make it a
feature of spacetime geometry.

Two requirements:

(2) Curvature of spacetime must be related to matter density:

e The Einstein equations (1916):

G, =rT,
Einstein tensor = encodes Stress-enerqgy tensor =
curvature of spacetime as encodes matter density

a function of g,

o Consequence: The Minkowski metric is the solution for zero curvature

G,, = 0 (i.e., spatiotemporal flatness).



A general relativistic spacetime = 4-dim collection of points such that

between any two (infinitesimally close) points, there is a definite

spacetime interval given by ds* = g,,dztdx’, where g, is a Lorentzian

metric that satisfies the Einstein equations. [

[

"reduces to the Minkowsk:
metric at any point”
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Minkowsk: Spacetime Arbitrary General Relativistic Spacetime
X & X % 2 &
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Invariant light-cone structure at each Light-cone structure at each point is not
point: light-cones all have same size invariant: light-cones may not have same
and orientation. size and orientation due to curvature.

e [dea: The light-cone structure constrains the motion of physical objects
(traveling on timelike worldlines).

e And: In an arbitrary general relativistic spacetime, the matter density
determines the metric, which determines the light-cone structure.
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