
05. Turing Machines and Spacetime. 

1. Turing Machines 

• A Turing machine (TM) consists of (Turing 1936): 

I. Turing Machines & Classical Computability. 

Alan Turing 
(1912-1954) 

1.  An unbounded tape. Divided into squares, each square containing a 
symbol from a finite alphabet {q0, q1, ..., qn}. 

2.  A read/write scanner. Programmed with a finite list of states {s0, ..., sm}. 

3.  A program. Consists of a finite sequence of transition rules. Each rule 
consists of a 4-tuple 〈initial state, initial symbol, final state, action〉. For 
initial state and initial symbol si, qj there are 3 possible actions, 
afterwhich the final state sℓ is entered: 

(a)  Replace initial symbol with qk. 〈si, qj, sℓ, qk〉. 

(b)  Move one square left. 〈si, qj, sℓ, ≪〉. 

(b)  Move one square right. 〈si, qj, sℓ, ≫〉. 

• A TM halts when no unique transition rule is available to it. 

1.  Turing Machines 
2.  The Halting Problem 
3.  Classical (Turing) 

Computability 
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Conventions 

(i)  Represent the number n by a block of n+1 "1"s. 

1 1 1 1 1 0 0 ... ... 

4 (ii)  Starting configuration: 

 • TM starts in lowest-numbered state. 

 • Scanner starts at leftmost "1" of input block, with "0" to left. 

 • For computing functions with n arguments, input block consists of n 
blocks of "1"s separated by a "0", each block encoding an argument. 

1 1 1 1 1 0 0 ... ... 1 1 1 1 0 

Starting configuration for TM that computes 
the two-place sum function 3+4. 

s0 

(iii) Ending configuration: Scanner ends at leftmost "1" of output block, with 
"0" to left. 

1 1 1 1 1 0 ... ... 1 1 1 0 

Ending configuration for TM that computes 
the two-place sum function 3+4. 

sf 
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Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s0 

Start. 1 1 1 1 0 0 ... ... 0 
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• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s0 

Step 1. 1 1 1 1 0 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 
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• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s0 

Step 2. 1 1 1 1 0 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 
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• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s0 

Step 3. 1 1 1 1 0 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 
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• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s0 

Step 4. 1 1 1 1 0 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 
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• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s1 

Step 5. 1 1 1 1 1 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 
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• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s1 

Step 6. 1 1 1 1 1 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 
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• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s1 

Step 7. 1 1 1 1 1 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 
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• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s1 

Step 8. 1 1 1 1 1 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 
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• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s1 

Step 9. 1 1 1 1 1 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 
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• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s1 

Step 10. 1 1 1 1 1 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 

3 



• Stays in state s0 and scans right until initial block of "1"s (input) is scanned. 

• Replaces "0" at end of input block with "1". 

• Enters state s1 and scans back left to beginning of block. 

• When "0" is reached at beginning, enters state s2 and scans right. 

• Halts in standard ending configuration (no rule can be followed in state s2). 

s2 

End. 1 1 1 1 1 0 ... ... 0 

Example 1: TM that computes successor function f(n) = n + 1. 

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉 
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Example 2: TM copier. 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 

... 

s0 

Start. 1 0 0 0 0 ... 
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... 

Example 2: TM copier. 

s0 

Step 1. A 0 0 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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... 

Example 2: TM copier. 

s1 

Step 2. A 0 0 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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... 

Example 2: TM copier. 

s2 

Step 3. A 0 0 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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... 

Example 2: TM copier. 

s3 

Step 4. A 0 1 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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... 

Example 2: TM copier. 

s3 

Step 5. A 0 1 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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... 

Example 2: TM copier. 

s4 

Step 6. A 0 1 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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... 

Example 2: TM copier. 

s0 

Step 7. A 0 1 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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... 

Example 2: TM copier. 

s5 

Step 8. A 0 1 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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... 

Example 2: TM copier. 

s5 

Step 9. 1 0 1 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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... 

Example 2: TM copier. 

s5 

Step 10. 1 0 1 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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... 

Example 2: TM copier. 

s6 

End. 1 0 1 0 0 ... 

〈s0, 1, s0, A〉  〈s1, 1, s1, ≫〉  〈s3, 1, s3, ≪〉  〈s5, A, s5, 1〉 

〈s0, A, s1, ≫ 〉  〈s1, 0, s2, ≫ 〉  〈s3, 0, s4, ≪〉  〈s5, 1, s5, ≪〉 

〈s0, 0, s5, ≪〉  〈s2, 1, s2, ≫ 〉  〈s4, 1, s4, ≪〉  〈s5, 0, s6, ≫ 〉 

  〈s2, 0, s3, 1〉  〈s4, A, s0, ≫ 〉 
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Enumerating TMs 

Enumeration Theorem: 

All TMs can be listed T1, T2, ..., Tn, ... in such a way that each index 
n completely determines the corresponding TM. 

• Idea: A TM is completely determined by its set of transition rules. 

• So: A TM corresponds to a (perhaps very long) string of symbols drawn from 
{q0, q1, ..., qn} and {s0, ..., sm}. 

Successor function TM = s01s0≫s00s11s11s1≪s10s2≫$

Copier TM =  s01s0As0As1≫s00s5≪s11s1≫s10s2≫s21s2≫s20s31s31s3≪s30s4≪s41s4≪ 

 s4As0≫s5As51s51s5≪s50s6≫$

• Now: Encode these symbols as natural numbers... 
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One way to do this: 

symbol  code# for symbol 
 ≫  3 

 ≪  5 

 si  7 + 4i 

 qi  9 + 4i$

• So: Each TM Tn corresponds to exactly one natural number code#(Tn). 

• And: Any natural number can be decoded (by its unique prime factorization) 
to determine if it corresponds to a TM. 

code# for symbol strings 
For symbol string u1...uj that represents Turing machine T: 
 
 
where p1, p2, ..., pj  are the first j prime numbers 2, 3, 5, ... . 

code#(T) = p1
code#(u1) × ... × pj

code#(uj) 
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2. The Halting Problem 

• Is there a TM that can determine whether or not any given TM Tt halts? 

Claim: h(t, n) is not Turing-computable (i.e., no TM can compute it). 

 Now show that H cannot exist.  

h(t, n) = 
0 if Tt halts on input n. 

1 if Tt does not halt on input n. 

Halting function h(t, n) 

• Or: Is there a TM that can compute the halting function h(t, n)? 

• Proof: Suppose there's a TM, H, that computes h(t, n). 

On input n, t, 
H halts with output 0 if Tt halts on input n. 

H halts with output 1 if Tt does not halt on input n. 

Halting TM, H 

 This means:  

7 



Step 1: Construct another TM, H', that computes h(n, n). 
- This can be done by attaching the copier TM to the front of H. 

On input n, 
H' halts with output 0 if Tn halts on input n. 

H' halts with output 1 if Tn does not halt on input n. 

H' = H + copier 

Step 2: Construct a "loop" TM which does the following: 

On input 0, loop does not halt. 

On input 1, loop halts. 

loop 

Step 3: Now attach loop to the end of H' to produce a TM, M. 

On input n, 
M does not halt if Tn halts on input n. 

M halts if Tn does not halt on input n. 

M = loop + H + copier 

• This says that M halts if and only if Tn does not halt. 
8 



Now: Suppose M occurs as Tn0
 in the list of all TMs. 

• What happens when we feed M its own code number n0 as input? 

On input n0, 
M does not halt if Tn0

 halts on input n0. 

M halts if Tn0
 does not halt on input n0. 

M = copier + H + loop, given input n0 

Why should this matter?

• Since the copier and loop TMs are possible, this must mean there can be no 
Halting TM, H. 

• So the Halting function is not Turing-computable. 

• This says that M halts if and only if M does not halt! 

There can be no such M!
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2. Classical (Turing) Computability 

• What does it mean to say something is computable? 

- Suppose the somethings of interest are functions on the natural numbers N. 

- To say a function on N is computable is (in some sense) to say that there's 
an "algorithm" which, if followed by a computer would calculate the value 
of that function, given the appropriate type of input. 

- Can this be made more precise? 

Turing Thesis: 

A (partial) function on N is computable by 
algorithm if and only if it is Turing computable. 

• In other words: Turing machines provide us with a precise notion of 
computability... (for computing functions on N). 

10 



(a) Why accept Turing's Thesis? 

Church's Thesis: 

A (partial) function on N is computable by algorithm 
if and only if it is a recursive partial function. 

Alonzo Church 
(1903-1995) 

• Idea: The computable functions are those that can be recursively generated 
from a small set of axioms (this can be made mathematically precise). 

• Key result: A partial function on N is Turing computable if and only if it is a 
partial recursive function. (So Turing's Thesis is equivalent to Church's 
Thesis.) 

• Moreover: Other models of computability (abacus machines, etc.) can be 
shown to be equivalent to Turing computability. 

logician mathematical physicist 

But I want to compute 
functions on the real 
numbers R, not just N! 

Let me work 
on it... 
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(b) The Limits of Turing Computability 

Def. A problem is Turing solvable if there's a TM that 
can solve the problem after a finite number of steps.  

Turing unsolvable problems: 

(i)  The halting problem. Problem of deciding, given an arbitrary TM, 
whether or not it will halt. 

(ii)  The decision problem for 1st-order logic. Problem of deciding the 
validity or invalidity of an arbitrary sentence of 1st-order logic. 
- There's a TM that will halt after finite steps with output "Yes" for any 

valid 1st-order sentence as input; but there's no TM that will halt after 
finite steps with output "Yes" for any invalid 1st-order sentence as input. 

-  A "Yes" TM for validity is not the same as a "Yes" TM for invalidity!!

(iii) The decision problem for 1st-order arithmetic. Problem of deciding the 
validity or invalidity of an arbitrary sentence of 1st-order arithmetic. 
- There's no "Yes" TM for validity and no "Yes" TM for invalidity for 1st-order 

arithmetic (one consequence of Gödel's Incompleteness Theorem). 
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• Is Fermat's Last "Theorem" really a theorem? 

• Is the Poincaré Conjecture a theorem? 

• Wouldn't it be easier if there were a program that decided which statements 
were theorems and which weren't? 

• But: No TM (hence classical computer) can in principle tell us! 

Proven by Andrew Wiles in 
1993 after 3 centuries of work. 

Proven by Grigori Perelman 
in 2003 after a century and 
$1million prize (declined!). 

For n ≥ 3, there are no whole numbers 
x, y, z such that xn + yn = zn. 

Pierre de Fermat 
(1607-1665) 

Henri Poincaré 
(1854-1912) 

Every simply connected closed 3-manifold 
is homomorphic to the 3-sphere. (Or: the 
3-sphere is the only type of bounded 3-
dim space that contains no holes.) 
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