05. Turing Machines and Spacetime.

I. Turing Machines \& Classical Computability.

1. Turing Machines

- A Turing machine (TM) consists of (Turing 1936):

1. An unbounded tape. Divided into squares, each square containing a symbol from a finite alphabet $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$.
2. A read/write scanner. Programmed with a finite list of states $\left\{s_{0}, \ldots, s_{m}\right\}$.
3. A program. Consists of a finite sequence of transition rules. Each rule consists of a 4-tuple 〈initial state, initial symbol, final state, action \rangle. For initial state and initial symbol s_{i}, q_{j} there are 3 possible actions, afterwhich the final state s_{ℓ} is entered:
(a) Replace initial symbol with $q_{k} \cdot\left\langle s_{i}, q_{j}, s_{\ell}, q_{k}\right\rangle$.
(b) Move one square left. $\left\langle s_{i}, q_{j}, s_{\ell}, \ll\right\rangle$.
(b) Move one square right. $\left\langle s_{i}, q_{j}, s_{\ell}, \gg\right\rangle$.

- A TM halts when no unique transition rule is available to it.
(i) Represent the number n by a block of $n+1$ "1"s.

\cdots	0	1	1	1	1	1	0	\ldots

(ii) Starting configuration:

4

- TM starts in lowest-numbered state.
- Scanner starts at leftmost "1" of input block, with "0" to left.
- For computing functions with n arguments, input block consists of n blocks of "1"s separated by a "0", each block encoding an argument.

0	1	1	1	1	0	1	1	1	1	1	0		
	s												

(iii) Ending configuration: Scanner ends at leftmost "1" of output block, with "0" to left.
 the two-place sum function $3+4$.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Start.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Step 1.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Step 2.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Step 3.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Step 4.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Step 5.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Step 6.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Step 7.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Step 8.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Step 9.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

Step 10.

Example 1: TM that computes successor function $f(n)=n+1$.

$$
\left\langle s_{0}, 1, s_{0}, \gg\right\rangle,\left\langle s_{0}, 0, s_{1}, 1\right\rangle,\left\langle s_{1}, 1, s_{1}, \ll\right\rangle,\left\langle s_{1}, 0, s_{2}, \gg\right\rangle
$$

- Stays in state s_{0} and scans right until initial block of "1"s (input) is scanned.
- Replaces "0" at end of input block with " 1 ".
- Enters state s_{1} and scans back left to beginning of block.
- When " 0 " is reached at beginning, enters state s_{2} and scans right.
- Halts in standard ending configuration (no rule can be followed in state s_{2}).

End.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Start.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Step 1.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Step 2.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Step 3.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Step 4.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Step 5.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Step 6.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Step 7.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Step 8.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Step 9.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

Step 10.

Example 2: TM copier.

$$
\begin{array}{llll}
\left\langle s_{0}, 1, s_{0}, A\right\rangle & \left\langle s_{1}, 1, s_{1}, \gg\right\rangle & \left\langle s_{3}, 1, s_{3}, \ll\right\rangle & \left\langle s_{5}, A, s_{5}, 1\right\rangle \\
\left\langle s_{0}, A, s_{1}, \gg\right\rangle & \left\langle s_{1}, 0, s_{2}, \gg\right\rangle & \left\langle s_{3}, 0, s_{4}, \ll\right\rangle & \left\langle s_{5}, 1, s_{5}, \ll\right\rangle \\
\left\langle s_{0}, 0, s_{5}, \ll\right\rangle & \left\langle s_{2}, 1, s_{2}, \gg\right\rangle & \left\langle s_{4}, 1, s_{4}, \ll\right\rangle & \left\langle s_{5}, 0, s_{6}, \gg\right\rangle \\
& \left\langle s_{2}, 0, s_{3}, 1\right\rangle & \left\langle s_{4}, A, s_{0}, \gg\right\rangle &
\end{array}
$$

End.

Enumerating TMs

Enumeration Theorem:

All TMs can be listed $T_{1}, T_{2}, \ldots, T_{n}, \ldots$ in such a way that each index n completely determines the corresponding TM.

- Idea: A TM is completely determined by its set of transition rules.
- $\underline{S_{o}}:$ A TM corresponds to a (perhaps very long) string of symbols drawn from $\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$ and $\left\{s_{0}, \ldots, s_{m}\right\}$.

- Now: Encode these symbols as natural numbers...

One way to do this:

symbol	code\# for symbol
\gg	3
\ll	5
s_{i}	$7+4 i$
q_{i}	$9+4 i$

code\# for symbol strings

For symbol string $u_{1} \ldots u_{j}$ that represents Turing machine T :

$$
\operatorname{code} \#(T)=p_{1}^{\operatorname{code} \#\left(u_{1}\right)} \times \ldots \times p_{j}^{\operatorname{code} \#\left(u_{j}\right)}
$$

where $p_{1}, p_{2}, \ldots, p_{j}$ are the first j prime numbers $2,3,5, \ldots$.

- $\underline{S o}$: Each TM T_{n} corresponds to exactly one natural number $\left.\operatorname{code\# (} T_{n}\right)$.
- And: Any natural number can be decoded (by its unique prime factorization) to determine if it corresponds to a TM.

2. The Halting Problem

- Is there a TM that can determine whether or not any given TM T_{t} halts?
- Or: Is there a TM that can compute the halting function $h(t, n)$?

$$
\begin{aligned}
& \text { Halting function } h(t, n) \\
& \qquad h(t, n)=\left\{\begin{array}{l}
0 \text { if } T_{t} \text { halts on input } n \\
1 \text { if } T_{t} \text { does not halt on input } n
\end{array}\right.
\end{aligned}
$$

Claim: $h(t, n)$ is not Turing-computable (i.e., no TM can compute it).

- Proof: Suppose there's a TM, H, that computes $h(t, n)$.

This means:

> Halting TM, H
> On input $n, t,\left\{\begin{array}{l}H \text { halts with output } 0 \text { if } T_{t} \text { halts on input } n . \\ H \text { halts with output } 1 \text { if } T_{t} \text { does not halt on input } n .\end{array}\right.$

Now show that H cannot exist.

Step 1: Construct another TM, H^{\prime}, that computes $h(n, n)$.

- This can be done by attaching the copier TM to the front of H.

$$
\begin{aligned}
& H^{\prime}=H+\text { copier } \\
& \text { On input } n,\left\{\begin{array}{l}
H^{\prime} \text { halts with output } 0 \text { if } T_{n} \text { halts on input } n . \\
H^{\prime} \text { halts with output } 1 \text { if } T_{n} \text { does not halt on input } n .
\end{array}\right.
\end{aligned}
$$

Step 2: Construct a "loop" TM which does the following:

$$
\left\{\begin{array}{l}
\text { On input } 0, \text { loop does not halt. } \\
\text { On input } 1, \text { loop halts. }
\end{array}\right.
$$

Step 3: Now attach loop to the end of H^{\prime} to produce a TM, M.

$$
\begin{aligned}
& M=\text { loop }+H+\text { copier } \\
& \text { On input } n,\left\{\begin{array}{l}
M \text { does not halt if } T_{n} \text { halts on input } n . \\
M \text { halts if } T_{n} \text { does not halt on input } n .
\end{array}\right.
\end{aligned}
$$

- This says that M halts if and only if T_{n} does not halt.

Now: Suppose M occurs as $T_{n_{0}}$ in the list of all TMs.

- What happens when we feed M its own code number n_{0} as input?

$$
\begin{aligned}
& M=\text { copier }+H+\text { loop, given input } n_{0} \\
& \text { On input } n_{0},\left\{\begin{array}{l}
M \text { does not halt if } T_{n_{0}} \text { halts on input } n_{0} . \\
M \text { halts if } T_{n_{0}} \text { does not halt on input } n_{0} .
\end{array}\right.
\end{aligned}
$$

- This says that M halts if and only if M does not halt!

There can be no such M!

- Since the copier and loop TMs are possible, this must mean there can be no Halting TM, H.
- So the Halting function is not Turing-computable.

Why should this matter?

2. Classical (Turing) Computability

- What does it mean to say something is computable?
- Suppose the somethings of interest are functions on the natural numbers \mathbb{N}.
- To say a function on \mathbb{N} is computable is (in some sense) to say that there's an "algorithm" which, if followed by a computer would calculate the value of that function, given the appropriate type of input.
- Can this be made more precise?

Turing Thesis:
A (partial) function on \mathbb{N} is computable by algorithm if and only if it is Turing computable.

- In other words: Turing machines provide us with a precise notion of computability... (for computing functions on \mathbb{N}).
(a) Why accept Turing's Thesis?

Church's Thesis:

A (partial) function on \mathbb{N} is computable by algorithm if and only if it is a recursive partial function.

- Idea: The computable functions are those that can be recursively generated from a small set of axioms (this can be made mathematically precise).
- Key result: A partial function on \mathbb{N} is Turing computable if and only if it is a partial recursive function. (So Turing's Thesis is equivalent to Church's Thesis.)
- Moreover: Other models of computability (abacus machines, etc.) can be shown to be equivalent to Turing computability.

(b) The Limits of Turing Computability

Def. A problem is Turing solvable if there's a TM that can solve the problem after a finite number of steps.

Turing unsolvable problems:

(i) The halting problem. Problem of deciding, given an arbitrary TM, whether or not it will halt.
(ii) The decision problem for 1 st-order logic. Problem of deciding the validity or invalidity of an arbitrary sentence of 1st-order logic.

- There's a TM that will halt after finite steps with output "Yes" for any valid 1st-order sentence as input; but there's no TM that will halt after finite steps with output "Yes" for any invalid 1st-order sentence as input.
- A "Yes" TM for validity is not the same as a "Yes" TM for invalidity!
(iii) The decision problem for 1 st-order arithmetic. Problem of deciding the validity or invalidity of an arbitrary sentence of 1st-order arithmetic.
- There's no "Yes" TM for validity and no "Yes" TM for invalidity for 1st-order arithmetic (one consequence of Gödel's Incompleteness Theorem).
- Is Fermat's Last "Theorem" really a theorem?

Proven by Andrew Wiles in 1993 after 3 centuries of work.
- Is the Poincaré Conjecture a theorem?

- Wouldn't it be easier if there were a program that decided which statements were theorems and which weren't?
- But: No TM (hence classical computer) can in principle tell us!

