
05. Turing Machines and Spacetime.

1. Turing Machines

• A Turing machine (TM) consists of (Turing 1936):

I. Turing Machines & Classical Computability.

Alan Turing
(1912-1954)

1. An unbounded tape. Divided into squares, each square containing a
symbol from a finite alphabet {q0, q1, ..., qn}.

2. A read/write scanner. Programmed with a finite list of states {s0, ..., sm}.

3. A program. Consists of a finite sequence of transition rules. Each rule
consists of a 4-tuple 〈initial state, initial symbol, final state, action〉. For
initial state and initial symbol si, qj there are 3 possible actions,
afterwhich the final state sℓ is entered:

(a) Replace initial symbol with qk. 〈si, qj, sℓ, qk〉.

(b) Move one square left. 〈si, qj, sℓ, ≪〉.

(b) Move one square right. 〈si, qj, sℓ, ≫〉.

• A TM halts when no unique transition rule is available to it.

1. Turing Machines
2. The Halting Problem
3. Classical (Turing)

Computability

1

Conventions

(i) Represent the number n by a block of n+1 "1"s.

1 1 1 1 1 0 0

4 (ii) Starting configuration:

 • TM starts in lowest-numbered state.

 • Scanner starts at leftmost "1" of input block, with "0" to left.

 • For computing functions with n arguments, input block consists of n
blocks of "1"s separated by a "0", each block encoding an argument.

1 1 1 1 1 0 0 1 1 1 1 0

Starting configuration for TM that computes
the two-place sum function 3+4.

s0

(iii) Ending configuration: Scanner ends at leftmost "1" of output block, with
"0" to left.

1 1 1 1 1 0 1 1 1 0

Ending configuration for TM that computes
the two-place sum function 3+4.

sf

2

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s0

Start. 1 1 1 1 0 0 0

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s0

Step 1. 1 1 1 1 0 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s0

Step 2. 1 1 1 1 0 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s0

Step 3. 1 1 1 1 0 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s0

Step 4. 1 1 1 1 0 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s1

Step 5. 1 1 1 1 1 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s1

Step 6. 1 1 1 1 1 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s1

Step 7. 1 1 1 1 1 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s1

Step 8. 1 1 1 1 1 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s1

Step 9. 1 1 1 1 1 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s1

Step 10. 1 1 1 1 1 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

• Stays in state s0 and scans right until initial block of "1"s (input) is scanned.

• Replaces "0" at end of input block with "1".

• Enters state s1 and scans back left to beginning of block.

• When "0" is reached at beginning, enters state s2 and scans right.

• Halts in standard ending configuration (no rule can be followed in state s2).

s2

End. 1 1 1 1 1 0 0

Example 1: TM that computes successor function f(n) = n + 1.

〈s0, 1, s0, ≫〉, 〈s0, 0, s1, 1〉, 〈s1, 1, s1, ≪〉, 〈s1, 0, s2, ≫〉

3

Example 2: TM copier.

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

...

s0

Start. 1 0 0 0 0 ...

4

...

Example 2: TM copier.

s0

Step 1. A 0 0 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

...

Example 2: TM copier.

s1

Step 2. A 0 0 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

...

Example 2: TM copier.

s2

Step 3. A 0 0 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

...

Example 2: TM copier.

s3

Step 4. A 0 1 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

...

Example 2: TM copier.

s3

Step 5. A 0 1 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

...

Example 2: TM copier.

s4

Step 6. A 0 1 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

...

Example 2: TM copier.

s0

Step 7. A 0 1 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

...

Example 2: TM copier.

s5

Step 8. A 0 1 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

...

Example 2: TM copier.

s5

Step 9. 1 0 1 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

...

Example 2: TM copier.

s5

Step 10. 1 0 1 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

...

Example 2: TM copier.

s6

End. 1 0 1 0 0 ...

〈s0, 1, s0, A〉 〈s1, 1, s1, ≫〉 〈s3, 1, s3, ≪〉 〈s5, A, s5, 1〉

〈s0, A, s1, ≫ 〉 〈s1, 0, s2, ≫ 〉 〈s3, 0, s4, ≪〉 〈s5, 1, s5, ≪〉

〈s0, 0, s5, ≪〉 〈s2, 1, s2, ≫ 〉 〈s4, 1, s4, ≪〉 〈s5, 0, s6, ≫ 〉

 〈s2, 0, s3, 1〉 〈s4, A, s0, ≫ 〉

4

Enumerating TMs

Enumeration Theorem:

All TMs can be listed T1, T2, ..., Tn, ... in such a way that each index
n completely determines the corresponding TM.

• Idea: A TM is completely determined by its set of transition rules.

• So: A TM corresponds to a (perhaps very long) string of symbols drawn from
{q0, q1, ..., qn} and {s0, ..., sm}.

Successor function TM = s01s0≫s00s11s11s1≪s10s2≫$

Copier TM = s01s0As0As1≫s00s5≪s11s1≫s10s2≫s21s2≫s20s31s31s3≪s30s4≪s41s4≪

 s4As0≫s5As51s51s5≪s50s6≫$

• Now: Encode these symbols as natural numbers...

5

One way to do this:

symbol code# for symbol
 ≫ 3

 ≪ 5

 si 7 + 4i

 qi 9 + 4i$

• So: Each TM Tn corresponds to exactly one natural number code#(Tn).

• And: Any natural number can be decoded (by its unique prime factorization)
to determine if it corresponds to a TM.

code# for symbol strings
For symbol string u1...uj that represents Turing machine T:

where p1, p2, ..., pj are the first j prime numbers 2, 3, 5,

code#(T) = p1
code#(u1) × ... × pj

code#(uj)

6

2. The Halting Problem

• Is there a TM that can determine whether or not any given TM Tt halts?

Claim: h(t, n) is not Turing-computable (i.e., no TM can compute it).

 Now show that H cannot exist.

h(t, n) =
0 if Tt halts on input n.

1 if Tt does not halt on input n.

Halting function h(t, n)

• Or: Is there a TM that can compute the halting function h(t, n)?

• Proof: Suppose there's a TM, H, that computes h(t, n).

On input n, t,
H halts with output 0 if Tt halts on input n.

H halts with output 1 if Tt does not halt on input n.

Halting TM, H

 This means:

7

Step 1: Construct another TM, H', that computes h(n, n).
- This can be done by attaching the copier TM to the front of H.

On input n,
H' halts with output 0 if Tn halts on input n.

H' halts with output 1 if Tn does not halt on input n.

H' = H + copier

Step 2: Construct a "loop" TM which does the following:

On input 0, loop does not halt.

On input 1, loop halts.

loop

Step 3: Now attach loop to the end of H' to produce a TM, M.

On input n,
M does not halt if Tn halts on input n.

M halts if Tn does not halt on input n.

M = loop + H + copier

• This says that M halts if and only if Tn does not halt.
8

Now: Suppose M occurs as Tn0
 in the list of all TMs.

• What happens when we feed M its own code number n0 as input?

On input n0,
M does not halt if Tn0

 halts on input n0.

M halts if Tn0
 does not halt on input n0.

M = copier + H + loop, given input n0

Why should this matter?

• Since the copier and loop TMs are possible, this must mean there can be no
Halting TM, H.

• So the Halting function is not Turing-computable.

• This says that M halts if and only if M does not halt!

There can be no such M!

9

2. Classical (Turing) Computability

• What does it mean to say something is computable?

- Suppose the somethings of interest are functions on the natural numbers N.

- To say a function on N is computable is (in some sense) to say that there's
an "algorithm" which, if followed by a computer would calculate the value
of that function, given the appropriate type of input.

- Can this be made more precise?

Turing Thesis:

A (partial) function on N is computable by
algorithm if and only if it is Turing computable.

• In other words: Turing machines provide us with a precise notion of
computability... (for computing functions on N).

10

(a) Why accept Turing's Thesis?

Church's Thesis:

A (partial) function on N is computable by algorithm
if and only if it is a recursive partial function.

Alonzo Church
(1903-1995)

• Idea: The computable functions are those that can be recursively generated
from a small set of axioms (this can be made mathematically precise).

• Key result: A partial function on N is Turing computable if and only if it is a
partial recursive function. (So Turing's Thesis is equivalent to Church's
Thesis.)

• Moreover: Other models of computability (abacus machines, etc.) can be
shown to be equivalent to Turing computability.

logician mathematical physicist

But I want to compute
functions on the real
numbers R, not just N!

Let me work
on it...

11

(b) The Limits of Turing Computability

Def. A problem is Turing solvable if there's a TM that
can solve the problem after a finite number of steps.

Turing unsolvable problems:

(i) The halting problem. Problem of deciding, given an arbitrary TM,
whether or not it will halt.

(ii) The decision problem for 1st-order logic. Problem of deciding the
validity or invalidity of an arbitrary sentence of 1st-order logic.
- There's a TM that will halt after finite steps with output "Yes" for any

valid 1st-order sentence as input; but there's no TM that will halt after
finite steps with output "Yes" for any invalid 1st-order sentence as input.

- A "Yes" TM for validity is not the same as a "Yes" TM for invalidity!!

(iii) The decision problem for 1st-order arithmetic. Problem of deciding the
validity or invalidity of an arbitrary sentence of 1st-order arithmetic.
- There's no "Yes" TM for validity and no "Yes" TM for invalidity for 1st-order

arithmetic (one consequence of Gödel's Incompleteness Theorem).

12

• Is Fermat's Last "Theorem" really a theorem?

• Is the Poincaré Conjecture a theorem?

• Wouldn't it be easier if there were a program that decided which statements
were theorems and which weren't?

• But: No TM (hence classical computer) can in principle tell us!

Proven by Andrew Wiles in
1993 after 3 centuries of work.

Proven by Grigori Perelman
in 2003 after a century and
$1million prize (declined!).

For n ≥ 3, there are no whole numbers
x, y, z such that xn + yn = zn.

Pierre de Fermat
(1607-1665)

Henri Poincaré
(1854-1912)

Every simply connected closed 3-manifold
is homomorphic to the 3-sphere. (Or: the
3-sphere is the only type of bounded 3-
dim space that contains no holes.)

13

