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1. Turing Machines . ‘

Alan Turing
(1912-1954)
e A Turing machine (TM) consists of (Turing 1936):
1. An unbounded tape. Divided into squares, each square containing a
symbol from a finite alphabet {q,, ¢, ---, q,}
2. A read/write scanner. Programmed with a finite list of states {s,, ..., s,,}-

3. A program. Consists of a finite sequence of transition rules. Each rule
consists of a 4-tuple (initial state, initial symbol, final state, action). For
initial state and initial symbol s, ¢; there are 3 possible actions,
afterwhich the final state s, is entered:

(a) Replace initial symbol with q;. (s; q;, s, q1)-
(b) Move one square left. (s;, g;, s, <).
(b) Move one square right. (s;, g;, 8, >). V

e A TM halts when no unique transition rule is available to it.



Conventions

(i) Represent the number n by a block of n+1 "1"s.
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(ii) Starting configuration:
e TM starts in lowest-numbered state.
e Scanner starts at leftmost "1" of input block, with "0" to left.

e For computing functions with n arguments, input block consists of n
blocks of "1"s separated by a "0", each block encoding an argument.
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Starting configuration for TM that computes

the two-place sum function 3+4.

(iii) Ending configuration: Scanner ends at leftmost "1" of output block, with
"O" to left.
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A Ending configuration for TM that computes
the two-place sum function 3+4.



Fxample 1: TM that computes successor function f(n) = n + 1.
<307 1? 505 >>>7 <507 07 515 1>a <817 17 515 <<>7 <517 Oa 525 >>>

e Stays in state s, and scans right until initial block of "1"s (input) is scanned.
e Replaces "0" at end of input block with "1".

e Inters state s; and scans back left to beginning of block.

e When "0" is reached at beginning, enters state s, and scans right.

e Halts in standard ending configuration (no rule can be followed in state s,).
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Example 2: TM copier.

(s9, 1, 89, A) (s, 1, 8, >) (s5, 1, 8,<) (s, A, s, 1)

(89, A, 81, >) (8,0, 8,>) (80, s5,<) (s,1,s, <)

(50, 0, 85, <) (80, 1, 85, >) (85, 1, 8, <) (85, 0, 85, >)
(85, 0, 83, 1) (84, A, 85 > )

Start. -1 0 1 0 0 0
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Enumerating T Ms

Enumeration Theorem:
All TMs can be listed T}, Ty, ..., T

ny °°°

in such a way that each index

n completely determines the corresponding TM.

e Idea: A TM is completely determined by its set of transition rules.

e So: A TM corresponds to a (perhaps very long) string of symbols drawn from
{qo, Qs -5 q,r and {sy, ..., S, }.

Copier TM = s,15,A5,A48>5,08,<5,18,>>5/08,>>5,15,>>5,08;15515,< 5505, 5,15,
S, A5>5:As: 1515, 5:.08,>

e Now: Encode these symbols as natural numbers...



One way to do this:

symbol code#t for symbol
> 3
< H
8; 7+ 4
q 9 + 44
/4

code#ft for symbol strings
For symbol string w,...u; that represents Turing machine T:

code#(T) — plcode#(ul) X X ijOde#(uj)
where py, py, ..., p; are the first j prime numbers 2, 3, 5, ... .

4

e So: Each TM T, corresponds to exactly one natural number code#(T,).
e And: Any natural number can be decoded (by its unique prime factorization)

to determine if it corresponds to a TM.



2. The Halting Problem

e Is there a TM that can determine whether or not any given TM T, halts?
e Or: Is there a TM that can compute the halting function h(t, n)?

Halting function h(t, n) P\

0 if T, halts on input n.
h(t, n) =

1 if T, does not halt on input n.

Claim: h(t, n) is not Turing-computable (i.e., no TM can compute it). J

e Proof. Suppose there's a TM, H, that computes h(t, n).

This means:

Halting TM, H \N

, H halts with output 0 if 7, halts on input n.
On input n, t,
H halts with output 1 if 7}, does not halt on input n.

Now show that H cannot exist.



Step 1: Construct another TM, H', that computes h(n, n).
- This can be done by attaching the copier TM to the front of H.

H' = H + copier

, H' halts with output 0 if 7, halts on input n.
On input n,
H' halts with output 1 if 7' does not halt on input n.

Step 2: Construct a "loop" TM which does the following:
N

loop
On input 0, loop does not halt.
On input 1, loop halts.

Step 3: Now attach loop to the end of H' to produce a TM, M.

M = loop + H + copier -

M does not halt if T halts on input n.

On input n,
M halts it T’ does not halt on input n.

e This says that M halts if and only if T, does not halt.



Now: Suppose M occurs as T, in the list of all TMs.

e What happens when we feed M its own code number n, as input?
LN

M = copier + H + loop, given input n,

, M does not halt if T, halts on input n,.
On input n,, 0
M halts if T, does not halt on input n.

e This says that M halts if and only if M does not halt!

There can be no such M!

e Since the copier and loop TMs are possible, this must mean there can be no
Halting TM, H.

e So the Halting function is not Turing-computable.

Why should this matter?



2. Classical (Turing) Computability

e What does it mean to say something is computable?

- Suppose the somethings of interest are functions on the natural numbers N.

- To say a function on N is computable is (in some sense) to say that there's
an "algorithm" which, if followed by a computer would calculate the value
of that function, given the appropriate type of input.

- Can this be made more precise?

Turing Thesis:

A (partial) function on N is computable by
algorithm if and only if it is Turing computable.

e [n other words: Turing machines provide us with a precise notion of

computability... (for computing functions on N).
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(a) Why accept Turing's Thesis?

Church's Thesis:

A (partial) function on N is computable by algorithm

of and only if it is a recursive partial function. ‘

Alonzo Church
(1903-1995)

e [dea: The computable functions are those that can be recursively generated
from a small set of axioms (this can be made mathematically precise).

o Key result: A partial function on N is Turing computable if and only if it is a

partial recursive function. (So Turing's Thesis is equivalent to Church's
Thesis. )

e Moreover: Other models of computability (abacus machines, etc.) can be

shown to be equivalent to Turing computability.

Let me work
& - on 1t...
£
- 0

mathematzcal physicist logician

But I want to compute
functions on the real
numbers R, not just N/
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(b) The Limits of Turing Computability

Def. A problem is Turing solvable if there's a TM that
can solve the problem after a finite number of steps.

(i) The halting problem. Problem of deciding, given an arbitrary TM,
whether or not it will halt.

(ii) The decision problem for 1st-order logic. Problem of deciding the
validity or invalidity of an arbitrary sentence of 1st-order logic.

- There's a T'M that will halt after finite steps with output "Yes" for any
valid 1st-order sentence as input; but there's no TM that will halt after
finite steps with output "Yes" for any invalid 1st-order sentence as input.

- A "Yes" TM for validity is not the same as a "Yes" TM for invalidity!

(iii) The decision problem for 1st-order arithmetic. Problem of deciding the
validity or invalidity of an arbitrary sentence of 1st-order arithmetic.

- There's no "Yes" T'M for validity and no "Yes" T'M for invalidity for 1st-order
arithmetic (one consequence of Godel's Incompleteness Theorem,).

Turing unsolvable problems: k
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e Is Fermat's Last "Theorem" really a theorem?

For n > 3, there are no whole numbers
x, Y, zsuch that 2" + y* = 2"

Pierre de Fermat
(1607-1665)

e Is the Poincaré Conjecture a theorem?

-

Every simply connected closed 3-manifold
is homomorphic to the 3-sphere. (Or: the
3-sphere is the only type of bounded 3-
\dim space that contains no holes.)

Henri Poincaré
(1854-1912)

L .' /’ | 9
Proven by Andrew Wiles in
1993 after 3 centuries of work.

Proven by Grigori Perelman
in 2003 after a century and
$1million prize (declined!).

e Wouldn't it be easier if there were a program that decided which statements

were theorems and which weren't?

e But: No TM (hence classical computer) can in principle tell us!
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