
03. Boltzmann Entropy, Gibbs Entropy, Shannon Information. 
I. Entropy in Statistical Mechanics. 
• Goal: To explain the behavior of macroscopic systems in terms of the 

dynamical laws governing their microscopic consituents. 
- In particular: To provide a micro-dynamical explanation of the 2nd Law. 

1. Boltzmann's Approach. 

Ludwig Boltzmann 
(1844-1906) 

• Consider different "macrostates" of a gas: 

• Why does the gas prefer to be in the 
equilibrium macrostate (last one)? 

Thermodynamic equilibrium macrostate = 
constant thermodynamic properties 
(temperature, volume, pressure, etc.) 



Def. 1. A microstate X of a gas is a specification of the position 
(3 values) and momentum (3 values) for each of its N particles. 

• Suppose the gas consists of N identical particles governed by Hamilton's 
equations of motion (the micro-dynamics). 

Let Ω = phase space = 6N-dim space of all possible microstates. 

Let ΩE = region of Ω that consists of all microstates with constant energy E. 

Hamiltonian dynamics 
maps initial microstate 
Xi to final microstate Xf. 
 
Can 2nd Law be 
explained by recourse to 
this dynamics? 
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Def. 2. A macrostate Γ of a gas is a specification of the gas in terms 
of macroscopic properties (pressure, temperature, volume, etc.). 

• Relation between microstates and macrostates: 

Macrostates supervene on microstates! 

- To each microstate there corresponds exactly one macrostate. 
- Many distinct microstates can correspond to the same macrostate. 

• So:  ΩE is partitioned into a finite number of regions corresponding to 
macrostates, with each microstate X belonging to one macrostate Γ(X). 
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Def. 3.  The Boltzmann Entropy is defined by 

  SB(Γ(X)) = k log|Γ(X)| 

 where |Γ(X)| is the volume of Γ(X). 

So: SB(Γ(X)) is a measure 
of the size of Γ(X). 
And: SB(Γ(X)) obtains its 
maximum value for Γeq. 

Boltzmann's Claim: The equilibrium macrostate Γeq is vastly larger than any 
other macrostate (so it contains the vast majority of possible microstates). 
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•  Thus: SB increases over time because, for any initial microstate Xi, the dynamics 
will map Xi into Γeq very quickly, and then keep it there for an extremely long time. 



Two Ways to Explain the Approach to Equilibrium: 

• Why? For large N, ΩE is almost entirely filled up with equilibrium 
microstates. Hence they are "typical". 

(a)  Appeal to Typicality (Goldstein 2001) 

Claim: A system approaches equilibrium because equilibrium 
microstates are typical and nonequilibrium microstates are atypical. 

- But: What is it about the dynamics that evolves atypical states to 
typical states? 
-  "If a system is in an atypical microstate, it does not evolve into an equilibrium 

microstate just because the latter is typical." (Frigg 2009) 

- Need to identify properties of the dynamics that guarantee atypical 
states evolve into typical states. 

- And: Need to show that these properties are typical. 
-  Ex: If the dynamics is chaotic (in an appropriate sense), then (under certain 

conditions), any initial microstate Xi will quickly be mapped into Γeq and 
remain there for long periods of time. (Frigg 2009) 



(b)  Appeal to Probabilities 

Claim: A system approaches equilibrium because it evolves 
from states of lower toward states of higher probability, and 
the equilibrium state is the state of highest probabililty. 

"In most cases, the initial state will be a very unlikely 
state. From this state the system will steadily evolve 
towards more likely states until it has finally reached the 
most likely state, i.e., the state of thermal equilibrium." 

• Associate probabilities with macrostates: the larger the macrostate, the 
greater the probability of finding a microstate in it. 

Task: Make this a bit more precise (Boltzmann's 
combinatorial argument)...



• Start with the 6-dim phase space Ωµ of a single particle. 

Ωµ!

ΩE = N copies of Ωµ 

w1 w2 w3 

• Partition Ωµ into ℓ cells w1, w2, ..., wℓ of size δw. 
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• A state of an N-particle system is given by N points in Ωµ. 

Def. 4. An arrangement is a specification of which points lie in which cells. 

Arrangement #1: 
state of P6 in w1, state of P89 in w3, etc. 

P6 

P89 

point in Ωµ = single-
particle microstate. 



Arrangement #2: 
state of P89 in w1, state of P6 in w3, etc. 

P89 

P6 

• Start with the 6-dim phase space Ωµ of a single particle. 

Ωµ

w1 w2 w3 

• Partition Ωµ into ℓ cells w1, w2, ..., wℓ of size δw. 
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• A state of an N-particle system is given by N points in Ωµ. 

Def. 4. An arrangement is a specification of which points lie in which cells. 

Arrangement #1: 
state of P6 in w1, state of P89 in w3, etc. 

Def. 5. A distribution is a specification of how many 
points (regardless of which ones) lie in each cell. 

• Note: More than one arrangement can correspond to the same distribution. 

Distribution: 
(1, 0, 2, 0, 1, 1, ...) 

Takes form (n1, n2, ..., nℓ), 
where nj = # of points in wj. 

point in Ωµ = single-
particle microstate. 

ΩE = N copies of Ωµ 



• How many arrangements G(Di) are compatible with a given distribution 
Di = (n1, n2, ..., nℓ)? 

Check: Let D1 = (N, 0, ..., 0) and D2 = (N − 1, 1, 0, ..., 0). 
- G(D1) = N !/N ! = 1. (Only one way for all N particles to be in w1.) 
- G(D2) = N !/(N − 1)! = N(N − 1)(N − 2)"1/(N − 1)(N − 2)"1 = N.  
(There are N different ways w2 could have one point in it; namely, if P1 
was in it, or if P2 was in it, or if P3 was in it, etc...) 

G(Di )=
N !

n1 !n2 !!nℓ !
• Answer: 

n !  =  n(n − 1)(n − 2)"1 
 =  # of ways to arrange n distinguishable objects 

0!  = 1 

Number of ways to arrange N distinguishable 
objects into ℓ bins with capacities n1, n2, ..., nℓ.

"The probability of this distribution [Di] is then given by the number 
of permutations of which the elements of this distribution are 
capable, that is by the number [G(Di)]. As the most probable 
distribution, i.e., as the one corresponding to thermal equilibrium, we 
again regard that distribution for which this expression is maximal..." 

• Again: The probability of a distribution Di is given by G(Di). 



• And: Each distribution Di corresponds to a macrostate ΓDi
. 

• So: The size of ΓDi
 is |ΓDi

| = 

= G(Di) δwN 

×
number of 
arrangements 
compatible with Di 

volume element 
of ΩE 

In other words: The probability G(Di) of a distribution Di is 
proportional to the size of its corresponding macrostate ΓDi

. 
- The equilibrium macrostate, being the largest, is the most probable; and a 

system evolves from states of low probabilty to states of high probability.  

Why? Because a system's macroscopic properties (volume, pressure, 
temp, etc) only depend on how many particles are in particular 
microstates, and not on which particles are in which microstates. 

• What is the size of this macrostate? 

-  A point in ΩE corresponds to an arrangement of Ωµ. 
-  The size of a macrostate ΓDi

 in ΩE is given by the number of points it 
contains (the number of arrangements compatible with Di) multiplied by a 
volume element of ΩE. 

-  A volume element of ΩE is given by N copies of a volume element δw of Ωµ. 



• And: Each distribution Di corresponds to a macrostate ΓDi
. 

• So: The size of ΓDi
 is |ΓDi

| = 

= G(Di) δwN 

×
number of 
arrangements 
compatible with Di 

volume element 
of ΩE 

• The Boltzmann entropy of ΓDi
 is given by: 

SB(ΓDi
) =  k log(G(Di) δwN) 

 =  k log(G(Di)) + Nk log(δw) 

 =  k log(G(Di)) + const. 

SB is a measure of how 
large a macrostate is, and 
thus how probable the 
corresponding distribution 
of microstates is. 

Why? Because a system's macroscopic properties (volume, pressure, 
temp, etc) only depend on how many particles are in particular 
microstates, and not on which particles are in which microstates. 

• What is the size of this macrostate? 

-  A point in ΩE corresponds to an arrangement of Ωµ. 
-  The size of a macrostate ΓDi

 in ΩE is given by the number of points it 
contains (the number of arrangements compatible with Di) multiplied by a 
volume element of ΩE. 

-  A volume element of ΩE is given by N copies of a volume element δw of Ωµ. 



SB(ΓDi
) = k log(G(Di)) + const. 

= k log
N !

n1 !n2 !!nℓ !

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
+const.

= k log(N !) − k log(n1!) − ... − k log(nℓ!) + const. 

Stirling's approx: 
logn! ≈ nlogn − n 

≈ (Nk logN − N ) − (n1k logn1 − n1) − ... − (nℓk lognℓ − nℓ) + const. 

n1 + ... + nℓ = N 

Other formulations of SB 

• Then: SB(ΓDi )=−Nk pj log pj
j=1

ℓ

∑ +const.

SB in terms of microstate 
probabilities pj. 

• Let:  pj = nj/N = 
probability of finding 
a randomly chosen 
microstate in cell wj 

Probabilities for microstates, 
not macrostates/distributions! 

−k nj lognj
j=1

ℓ

∑ +const.= 
SB in terms of microstate 
occupation numbers nj. 

The biggest value of SB is for the 
distribution Di for which the pj's 
are all 1/ℓ; i.e., the nj's are all N/ℓ 
(the equilibrium distribution). 



Relation between Boltzmann Entropy SB and Thermodynamic Entropy ST 

• First: Let's derive the Maxwell-Boltzmann equilibrium distribution. 

• Or:  dSB = −k∑
j

lognj dnj  

= −k∑
j

(lognj  + nj /nj  − 1)  

= −k∑
j

lognj  

d
dnj
SB = 0−k

d
dnj
(nj lognj −nj )

j
∑ + 0• So: 

• Recall: SB(nj) = (Nk logN − N ) − k∑
j

(nj lognj  − nj ) + const. 

∑
j

nj  = N nj  = # states in cell wj  
N = total # particles 

∑
j
εj nj  = U εj  = energy of microstate in wj 

U = total internal energy 

• Assume: A system of N weakly interacting particles described by: 

Weakly ineracting 
assumption means total 
internal energy is just sum 
of energies of each particle 



 subject to the constraints on the small changes dnj : 

dN = ∑
j

dnj  = 0 dU = ∑
j
εj dnj  = 0 

• Now: SB takes its maximum value for the values nj
* that solve: 

dSB = −k∑
j

lognj
*dnj  = 0 

• Note: Can add arbitrary multiples of the constraints to our equation 
and still get zero result: 

dSB = ∑
j

 (−k lognj
* + α + βεj )dnj  = 0 

• Or:  −k lognj
* + α + βεj  = 0 

Small changes to SB due 
only to small changes dnj.

• Now solve for nj
*: 

nj
* = e (α + βεj )/k 

Maxwell-Boltzmann equilibrium distribution for 
weakly interacting, distinguishable particles. 
(Independently derived by Maxwell in 1860.)



More importantly: What is β? 

• Consider: Small changes in internal energy of a reversible process: 

dU  = d(∑εj nj ) 

 = ∑εj dnj  + ∑nj dεj  

dU  = δQ − dW 

 = TdST − PdV 

Macroscopic point of view Microscopic point of view 

• So: For the equilibrium distribution nj
*, SB = ST provided β = −1/T. 

What is α? 
- Substitute nj

* into ∑nj  = N and get: N = ∑e (α + βεj )/k = eα/k∑eβεj /k.  

- Or: α = k log (N /∑eβεj /k ) α is a normalization constant that 
enforces correct particle number N 

  = −k∑ [(α + βεj )/k ]dnj ,  since log(e (α+ βεj )/k ) = (α+ βεj )/k  

  = −β∑εj dnj ,  since −kα∑dnj  = 0 

• Recall: dSB(nj
*) = −k∑ lognj

*dnj  

• Note: If PdV = −∑nj dεj , then dST = (1/T)∑εj dnj 
Two ways U can change: 
- εi changes, ni constant 
(work) 

- ni changes, εi constant 
(heat) 



dSB(nj
*) = −β∑εj dnj   

dU  = d(∑εj nj ) 

 = ∑εj dnj  + ∑nj dεj  

dU  = δQ − dW 

 = TdST − PdV 

Macroscopic point of view Microscopic point of view 

• So: For the equilibrium distribution nj
*, SB = ST provided β = −1/T. 

• What this shows: For a reversible process involving a large number of 
distinguishable particles characterized by their positions and velocities, it is 
consistent to identify the Boltzmann entropy SB with the thermodynamic 
entropy ST. 

• But: Are we forced to? 

- ST measures absolute changes in heat per 
temperature of a reverisble process. 

-  For thermally isolated processes, ST 
absolutely increases or remains constant. 

- SB measures how likely a given 
distribution of states occurs. 

- No absolute law that requires SB 
to increase or remain constant. 

• Recap: 



2. Gibbs' Approach. 

Willard Gibbs 
(1839-1903) 

Boltzmann: Analysis of a single multiparticle system. 
• Point x in Ω = possible microstate of system. 

- Thermodynamic property = function f on Ω. 
Thermodynamic equilibrium state = 
constant thermodynamic properties 
(temperature, volume, pressure, etc.) 

• Boltzmann equilibrium macrostate = 
largest macrostate in Ω. 

Gibbs: Analysis of an ensemble of infinitely many copies of same system. 

• Point x in Ω = actual state of one member of ensemble. 

• Statistical equilibrium distribution = stationary ρ (constant in time). 
- 〈f 〉 is constant just when ρ is stationary. 

So: If thermodynamic properties are represented by ensemble averages, 
then they don't change in time for an ensemble in statistical equilibrium.

- Ensemble average of f = 〈f 〉 = f (x)ρ(x,t)dx
Ω∫

ρ(x,t)dx
S∫-                      = probability of finding the state of a system in region S. 

• State of entire ensemble = distribution ρ(x, t) on Ω. Not Boltzmann's D! 



Averaging Principle: The measured value of a thermodynamic 
property f of a system in thermodynamic equilibrium is the 
ensemble average 〈f 〉 of an ensemble in statistical equilibrium. 

SG(ρ)=−k ρ(x,t)log(ρ(x,t))dx
Ω∫• The Gibbs Entropy: 

The ensemble average 
of the function 
−k log(ρ(x, t)).   

• How to choose an appropriate distribution ρ: 

- Require it be stationary (statistical equilibrium). 

- Require that SG(ρ) be maximal. 

- And: For "ergodic" systems, 〈f 〉 = f *(x0). 

Justification: A measurement of a property f takes some amount of time, 
which is "infinite" compared to molecular processes. 
- So: What gets measured in the lab is the infinite time average f *(x0): 

f *(x0)= lim
τ→∞

1
τ

f (φt(x0))dt
t0

t0+τ

∫



Interpretive Issues: 

(1) Why do low-probability states evolve into high-probability states? 
(What justifies a given stationary, SG-maximizing distribution ρ(x, t)?) 

• Characterizations of the dynamics are, again, required to justify this. 

(2) How are the probabilities to be interpreted? 

(a)  Ontic probabilities = properties of physical systems 

• Long run frequencies? 

• Single-case propensities? 

(b)  Epistemic probabilities = measures of degrees of belief 

• Objective (rational) degrees of belief? 

• Subjective degrees of belief? 



II. Entropy in Classical Information Theory. 
• Goal: To construct a measure for the amount of information associated 

with a message. 

The amount of info gained from the reception 
of a message depends on how likely it is. 

Claude Shannon 
(1916-2001) 

• The less likely a message is, the more info gained upon its reception! 

• Let X = {x1, x2, ..., xℓ} = set of ℓ messages. 

• Recall: This means pj ≥ 0 and p1 + p2 + ... + pℓ = 1. 

Def. 1. A probability distribution P = (p1, p2, ..., pℓ) on X is 
an assignment of a probability pj = p(xj) to each message xj. 



-  Continuity. H(p1, ..., pℓ) is continuous. 

-  Additivity. H(p1q1, ..., pℓqℓ) = H(P) + H(Q), for probability distributions P, Q. 

-  Monoticity. Info increases with ℓ for uniform distributions: If m > ℓ, then 
H(Q) > H(P), for any P = (1/ℓ, ..., 1/ℓ) and Q = (1/m, ..., 1/m). 

-  Branching. H(p1, ..., pℓ) is independent of how the process is divided into parts. 

-  Bit normalization. The average info gained for two equally likely messages is one 
bit: H(½, ½) = 1. 

Def. 2. A measure of information for X is a real-valued function H(X) : 
{prob. distributions on X} → R, that satisfies: 

Claim (Shannon 1949): There is exactly one function that satisfies 
these criteria; namely, the Shannon Entropy (or Shannon Information): 

H(X)=− p
j
log2 pj

j=1

ℓ

∑
- H(X) is maximal for p1 = p2 = ... = pℓ = 1/ℓ. 

- H(X) = 0 just when one pj is 1 and the rest are 0. 

- Logarithm is to base 2:  log2x = y ⇒ x = 2y. 

In what sense is this a 
measure of information?

Bit normalization requires: 
- If X = {x1, x2}, and P = (½, ½), then H(X) = 1. 
- Note: H(X) = −(½log½ + ½log½) = log2. 
- And: log2 = 1 if and only if log is to base 2. 



• Let X = {x1, ..., xℓ} be a set of letters from which we construct the messages. 

• Suppose the messages have N letters a piece. 

• The probability distribution P = (p1, ..., pℓ) is now over the letter set. 

• So: 

    
= log2

N !
(p1N )!(p2N )!!(pℓN )!

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

The number of distinct 
typical messages 

log2 

Let's simplify the RHS...

1. H(X) as Maximum Amount of Message Compression 

What this means: 

- Each letter xi has a probability of pi of occuring in a message. 

- In other words: A typical message will contain p1N occurrences 
of x1, p2N occurrences of x2, etc. 

• Thus: 

=
N !

(p1N )!(p2N )!!(pℓN )!
The number of distinct 
typical messages 

Number of ways to 
arrange N distinct 
letters into ℓ bins 
with capacities 
p1N, p2N, ..., pℓN.



    
log2

N !
(p1N )!(p2N )!!(pℓN )!

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

= log2(N !)−{log2((p1N )!)+ ...+ log2((pℓN )!)}

    ≈ (N log2 N −N )−{(p1N log2 p1N − p1N )+ ...+ (pℓN log2 pℓN − pℓN )}

    = N{log2 N −1− p1 log2 p1− p1 log2 N + p1− ...− pℓ log2 pℓ − pℓ log2 N + pℓ}

    
=−N pj log2 pj

j=1

ℓ

∑

= NH(X) 

• Thus: 
The number of distinct 
typical messages 

log2 = NH(X) 

• So: 
The number of distinct 
typical messages 

= 2NH(X) 



• So: There are only 2NH(X) typical messages with N letters. 

• Now: At the letter level, how many bits are needed to encode a 
message of N letters drawn from an ℓ-letter alphabet? 

First:  How many bits are needed to encode each letter in an ℓ-letter alphabet? 
ℓ = #letters  x = #bits per letter$
2 letters  1 bit:  0, 1 
4 letters  2 bits:  00, 01, 10, 11 
8 letters  3 bits:  000, 001, 010, 011, 100, 101, 110, 111 

So:  ℓ = 2x,   or   x = log2ℓ 

Check:  2 possible messages require 1 bit: 0, 1. 
 4 possible messages require 2 bits: 00, 01, 10, 11. 
 etc. 

• This means, at the message level, we can encode them using only NH(X) bits. 

• Note:  log2ℓ bits per letter entails N log2ℓ bits for a sequence of N letters. 

• Thus:  If we know how probable each letter is, instead of requiring N log2ℓ 
bits to encode our messages, we can get by with only NH(X) bits. 

• So:  H(X) represents the maximum amount that (typical) messages drawn 
from a given set of letters can be compressed. 



Ex: Let X = {A, B, C, D}   (ℓ = 4) 

• So: We need 2N bits to encode a message with N letters. 

• Now: Suppose the probabilities for each letter to occur in a typical 
N-letter message are the following: 

  pA = 1/2,   pB = 1/4,   pC = pD = 1/8 

• Then: The minimum number of bits needed to encode all possible N-
letter messages is: 

NH(X)=−N 1
2
log2 12 +

1
4
log2 14 +

1
8
log2 18 +

1
8
log2 18( )= 1.75N

• Thus: If we know how probable each letter is, instead of requiring 2N 
bits to encode all possible messages, we can get by with only 1.75N. 

• Then: We need log2 4 = 2 bits per letter. 
For instance: 
A = 00, B = 01, C = 10, D = 11. 

• Note: If all letters are equally likely (the equilibrium distribution), 
then pA = pB = pC = pD = 1/4. 

   
NH(X) =−N 1

4
log2

1
4

+ 1
4
log2

1
4

+ 1
4
log2

1
4

+ 1
4
log2

1
4( ) = 2N .• And: 



How the message compression interpretation of H relates to SB 

    
SB(ΓDi

) =−Nk pj ln pj
j=1

ℓ

∑ +const.

Boltzmann 
• N = # of single-particle microstates. 
• N-microstate arrangement. 
• (n1, ..., nℓ) = ℓ-cell distribution. 

• (p1, ..., pℓ) = probabilty distribution 
over microstates. 

• pj = nj/N = prob that a wj-micro-
state occurs in a given arrangement. 

• Npj = # of wj-microstates in 
arrangement. 

• SB ∼ NH = minimum number of 
base e numerals ("e-bits?") needed to 
encode an arrangement of N single-
particle microstates. 

    
H(X) =− p

j
log2 p

j

j=1

ℓ

∑

Shannon 
• N = # of letters in message. 
• N-letter message. 
• {x1, ..., xℓ} = ℓ-letter alphabet. 

• (p1, ..., pℓ) = probability 
distribution over letters. 

• pj = probability that xj occurs in 
a given message. 

• Npj = # of xj's in typical 
message. 

• NH = minimum number of base 
2 numerals ("bits") needed to 
encode a message composed of 
N letters drawn from set X. 



2. H(X) as a Measure of Uncertainty 

• Suppose P = (p1, ..., pℓ) is a probability distribution over a set of values 
{x1, ..., xℓ} of a random variable X. 

• Then the expected value of −log2 pj is just the Shannon information: 

    
E(− log2 p

j
) =− p

j
log2 p

j

j=1

ℓ

∑ = H(X)

• What this means: 

 H(X) tells us our expected information gain upon measuring X. 

Def. 1. The expected value E(X) of X is given by E(X)= pjx j
j=1

ℓ

∑ .

Def. 2. The information gained if X is measured to have the 
value xj is given by −log2 pj. 

-  Motivation: The greater pj is, the more certain xj is, and the less 
information should be associated with it. 



How does the uncertainty interpretation of H relates to SB 

Boltzmann 
• X = single-particle microstate. 
• (n1, ..., nℓ) = ℓ-cell distribution. 
• (p1, ..., pℓ) = probabilty distribution 

over microstates. 
• pj = nj/N = probability that a 

microstate occurs in cell wj. 
• −lnpj = information gained upon 

measurement of particle to be in 
microstate in cell wj. 

SB(ΓDi )=−Nk pj ln pj
j=1

ℓ

∑ +const.

• SB/N = expected information gain 
upon determining the microstate of 
a particle. 

Shannon 
• X = random variable. 
• {x1, ..., xℓ} = ℓ values. 
• (p1, ..., pℓ) = probabilty 

distribution over values. 
• pj = probability that X has 

value xj upon measurement. 
• −log2 pj = information gained 

upon measurement of X with 
outcome xj. 

    
H(X) =− p

j
log2 p

j

j=1

ℓ

∑

• H(X) = expected information 
gain upon measurement of X. 



Interpretive Issues: 

(1) How should the probabilities p(xi) be interpreted? 

• Emphasis is on uncertainty: The information content of a message xi is a 
function of how uncertain it is, with respect to the receiver. 

- So: Perhaps the probabilities are epistemic. 

- In particular: p(xi) is a measure of the receiver's degree of belief in the 
accuracy of message xi. 

• But: The probabilities are set by the nature of the source. 

- If the source is not probabilistic, then p(xi) can be interpreted epistemically. 

- If the source is inherently probabilistic, then p(xi) can be interpreted as the 
ontic probability that the source produces message xi. 



2. How is Shannon Information/Entropy related to other notions of entropy? 

• Can statistical mechanics be given an information-theoretic foundation? 

• Can the 2nd Law be given an information-theoretic foundation? 

   
ΔS = Sf −Si =

R

δQR

Ti

f

∫Thermodynamic entropy: 

    
SB(ΓDi

) =−Nk pj ln pj
j=1

ℓ

∑ +const.Boltzmann entropy: 

H(X)=− p
j
log2 pj

j=1

ℓ

∑

SG(ρ)=−k ρ(x,t)ln(ρ(x,t))dx
Ω
∫Gibbs entropy: 

Shannon entropy: 


