03. Boltzmann Entropy, Gibbs Entropy, Shannon Information.

I. Entropy in Statistical Mechanics.

- Goal: To explain the behavior of macroscopic systems in terms of the dynamical laws governing their microscopic consituents.
- In particular: To provide a micro-dynamical explanation of the 2nd Law.

1. Boltzmann's Approach.

- Consider different "macrostates" of a gas:

\sim
- Why does the gas prefer to be in the equilibrium macrostate (last one)?

Thermodynamic equilibrium macrostate $=$ constant thermodynamic properties
(temperature, volume, pressure, etc.)

- Suppose the gas consists of N identical particles governed by Hamilton's equations of motion (the micro-dynamics).

Def. 1. A microstate X of a gas is a specification of the position (3 values) and momentum (3 values) for each of its N particles.

Let $\Omega=$ phase space $=6 \mathrm{~N}$-dim space of all possible microstates.
Let $\Omega_{E}=$ region of Ω that consists of all microstates with constant energy E.

Hamiltonian dynamics maps initial microstate X_{i} to final microstate X_{f}.

Can 2nd Law be explained by recourse to this dynamics?

Def. 2. A macrostate Γ of a gas is a specification of the gas in terms of macroscopic properties (pressure, temperature, volume, etc.).

- Relation between microstates and macrostates:

Macrostates supervene on microstates!

- To each microstate there corresponds exactly one macrostate.
- Many distinct microstates can correspond to the same macrostate.
- $\underline{S o}: \Omega_{E}$ is partitioned into a finite number of regions corresponding to macrostates, with each microstate X belonging to one macrostate $\Gamma(X)$.

Boltzmann's Claim: The equilibrium macrostate $\Gamma_{e q}$ is vastly larger than any other macrostate (so it contains the vast majority of possible microstates).

Def. 3. The Boltzmann Entropy is defined by

$$
S_{B}(\Gamma(X))=k \log |\Gamma(X)|
$$

where $|\Gamma(X)|$ is the volume of $\Gamma(X)$.

```
So: SB
of the size of \Gamma(X).
And: S}\mp@subsup{S}{B}{}(\Gamma(X))\mathrm{ obtains its
maximum value for \Gamma }\mp@subsup{\Gamma}{eq}{
```


- Thus: S_{B} increases over time because, for any initial microstate X_{i}, the dynamics will map X_{i} into $\Gamma_{e q}$ very quickly, and then keep it there for an extremely long time.
(a) Appeal to Typicality (Goldstein 2001)

Claim: A system approaches equilibrium because equilibrium microstates are typical and nonequilibrium microstates are atypical.

- Why? For large N, Ω_{E} is almost entirely filled up with equilibrium microstates. Hence they are "typical".

But: What is it about the dynamics that evolves atypical states to
typical states?
- "If a system is in an atypical microstate, it does not evolve into an equilibrium
microstate just because the latter is typical." (Frigg 2009)
- Need to identify properties of the dynamics that guarantee atypical
states evolve into typical states.
- And: Need to show that these properties are typical.
- Ex: If the dynamics is chaotic (in an appropriate sense), then (under certain
$\begin{array}{l}\text { conditions), any initial microstate } X_{i} \text { will quickly be mapped into } \Gamma_{e q} \text { and } \\ \text { remain there for long periods of time. (Frigg 2009) }\end{array}$

(b) Appeal to Probabilities

Claim: A system approaches equilibrium because it evolves from states of lower toward states of higher probability, and the equilibrium state is the state of highest probabililty.

- Associate probabilities with macrostates: the larger the macrostate, the greater the probability of finding a microstate in it.
"In most cases, the initial state will be a very unlikely state. From this state the system will steadily evolve towards more likely states until it has finally reached the most likely state, i.e., the state of thermal equilibrium."

Task: Make this a bit more precise (Boltzmann's combinatorial argument)...


```
Arrangement #1:
state of }\mp@subsup{\textrm{P}}{6}{}\mathrm{ in }\mp@subsup{w}{1}{}\mathrm{ , state of }\mp@subsup{\textrm{P}}{89}{}\mathrm{ in }\mp@subsup{w}{3}{}\mathrm{ , etc.
```

- Start with the 6 -dim phase space Ω_{μ} of a single particle.
- Partition Ω_{μ} into ℓ cells $w_{1}, w_{2}, \ldots, w_{\ell}$ of size δw.
- A state of an N-particle system is given by N points in Ω_{μ}.

Def. 4. An arrangement is a specification of which points lie in which cells.

Arrangement \#1:
state of P_{6} in w_{1}, state of P_{89} in w_{3}, etc.
Arrangement \#2:
state of P_{89} in w_{1}, state of P_{6} in w_{3}, etc.
Distribution:
$(1,0,2,0,1,1, \ldots)$

- Start with the 6 -dim phase space Ω_{μ} of a single particle. $\Omega_{E}=N$ copies of Ω_{μ}
- Partition Ω_{μ} into ℓ cells $w_{1}, w_{2}, \ldots, w_{\ell}$ of size δw.
- A state of an N-particle system is given by N points in Ω_{μ}.

Def. 4. An arrangement is a specification of which points lie in which cells.
Def. 5. A distribution is a specification of how many points (regardless of which ones) lie in each cell.

- Note: More than one arrangement can correspond to the same distribution.
- How many arrangements $G\left(D_{i}\right)$ are compatible with a given distribution $D_{i}=\left(n_{1}, n_{2}, \ldots, n_{\ell}\right)$?

$$
n!=n(n-1)(n-2) \cdots 1
$$

- Answer:

$$
G\left(D_{i}\right)=\frac{N!}{n_{1}!n_{2}!\cdots n_{\ell}!}
$$

$$
=\# \text { of ways to arrange } n \text { distinguishable objects }
$$

$$
0!=1
$$

Number of ways to arrange N distinguishable objects into ℓ bins with capacities $n_{1}, n_{2}, \ldots, n_{\ell}$.

Check: Let $D_{1}=(N, 0, \ldots, 0)$ and $D_{2}=(N-1,1,0, \ldots, 0)$.

- $G\left(D_{1}\right)=N!/ N!=1$. (Only one way for all N particles to be in w_{1}.)
- $G\left(D_{2}\right)=N!/(N-1)!=N(N-1)(N-2) \cdots 1 /(N-1)(N-2) \cdots 1=N$.
(There are N different ways w_{2} could have one point in it; namely, if P_{1}
was in it, or if P_{2} was in it, or if P_{3} was in it, etc...)
"The probability of this distribution $\left[D_{i}\right]$ is then given by the number of permutations of which the elements of this distribution are capable, that is by the number $\left[G\left(D_{i}\right)\right]$. As the most probable distribution, i.e., as the one corresponding to thermal equilibrium, we again regard that distribution for which this expression is maximal..."

- Again: The probability of a distribution D_{i} is given by $G\left(D_{i}\right)$.
- $\underline{A n d}$: Each distribution D_{i} corresponds to a macrostate $\Gamma_{D_{i}}$.

Why? Because a system's macroscopic properties (volume, pressure, I temp, etc) only depend on how many particles are in particular
microstates, and not on which particles are in which microstates.

- What is the size of this macrostate?
- A point in Ω_{E} corresponds to an arrangement of Ω_{μ}.
- The size of a macrostate $\Gamma_{D_{i}}$ in Ω_{E} is given by the number of points it contains (the number of arrangements compatible with D_{i}) multiplied by a volume element of Ω_{E}.
- A volume element of Ω_{E} is given by N copies of a volume element δw of Ω_{μ}.
- ㄴo: The size of $\Gamma_{D_{i}}$ is $\left|\Gamma_{D_{i}}\right|=\left(\begin{array}{l}\text { number of } \\ \text { arrangements } \\ \text { compatible with } D_{i}\end{array}\right) \times\left[\begin{array}{l}\text { volume element } \\ \text { of } \Omega_{E}\end{array}\right]$ $=G\left(D_{i}\right) \delta w^{N}$

In other words: The probability $G\left(D_{i}\right)$ of a distribution D_{i} is proportional to the size of its corresponding macrostate $\Gamma_{D_{i}}$.

- The equilibrium macrostate, being the largest, is the most probable; and a system evolves from states of low probabilty to states of high probability.
- $\underline{\text { And: }}$: Each distribution D_{i} corresponds to a macrostate $\Gamma_{D_{i}}$.
Why? Because a system's macroscopic properties (volume, pressure,
temp, etc) only depend on how many particles are in particular
microstates, and not on which particles are in which microstates.
- What is the size of this macrostate?
- A point in Ω_{E} corresponds to an arrangement of Ω_{μ}.
- The size of a macrostate $\Gamma_{D_{i}}$ in Ω_{E} is given by the number of points it contains (the number of arrangements compatible with D_{i}) multiplied by a volume element of Ω_{E}.
- A volume element of Ω_{E} is given by N copies of a volume element δw of Ω_{μ}.
- L्So: The size of $\Gamma_{D_{i}}$ is $\left|\Gamma_{D_{i}}\right|=\left(\begin{array}{l}\text { number of } \\ \text { arrangements } \\ \text { compatible with } D_{i}\end{array}\right) \times\left[\begin{array}{l}\text { volume element } \\ \text { of } \Omega_{E}\end{array}\right]$

$$
=G\left(D_{i}\right) \delta w^{N}
$$

- The Boltzmann entropy of $\Gamma_{D_{i}}$ is given by:

$$
\begin{aligned}
S_{B}\left(\Gamma_{D_{i}}\right) & =k \log \left(G\left(D_{i}\right) \delta w^{N}\right) \\
& =k \log \left(G\left(D_{i}\right)\right)+N k \log (\delta w) \\
& =k \log \left(G\left(D_{i}\right)\right)+\text { const }
\end{aligned}
$$

S_{B} is a measure of how large a macrostate is, and thus how probable the corresponding distribution of microstates is.

$$
\begin{aligned}
& S_{B}\left(\Gamma_{D_{i}}\right)=k \log \left(G\left(D_{i}\right)\right)+\text { const } . \\
& =k \log \left(\frac{N!}{n_{1}!n_{2}!\cdots n_{\ell}!}\right)+\text { const } \text {. } \\
& =k \log (N!)-k \log \left(n_{1}!\right)-\ldots-k \log \left(n_{\ell}!\right)+\text { const } . \\
& \approx(N k \log N-N)-\left(n_{1} k \log n_{1}-n_{1}\right)-\ldots-\left(n_{\ell} k \log n_{\ell}-n_{\ell}\right)+\text { const. } \\
& =-k \sum_{j=1}^{\ell} n_{j} \log n_{j}+\text { const. }
\end{aligned}
$$

- Let: $\quad p_{j}=n_{j} / N=\left(\begin{array}{l}\text { probability of finding } \\ \text { a randomly chosen } \\ \text { microstate in cell } w_{j}\end{array}\right)$
- Then:

$$
S_{B}\left(\Gamma_{D_{i}}\right)=-N k \sum_{j=1}^{\ell} p_{j} \log p_{j}+\text { const } .
$$

(the equilibrium distribution).

Relation between Boltzmann Entropy S_{B} and Thermodynamic Entropy S_{T}

- First: Let's derive the Maxwell-Boltzmann equilibrium distribution.
- Assume: A system of N weakly interacting particles described by:

- Recall: $S_{B}\left(n_{j}\right)=(N k \log N-N)-k \sum_{j}\left(n_{j} \log n_{j}-n_{j}\right)+$ const.
- $\underline{S O}: \quad \frac{d}{d n_{j}} S_{B}=0-k \sum_{j} \frac{d}{d n_{j}}\left(n_{j} \log n_{j}-n_{j}\right)+0$

$$
=-k \sum_{j}\left(\log n_{j}+n_{j} / n_{j}-1\right)
$$

$$
=-k \sum_{j} \log n_{j}
$$

- $\underline{O r}: \quad d S_{B}=-k \sum_{j} \log n_{j} d n_{j}$
- Now: S_{B} takes its maximum value for the values n_{j}^{*} that solve:

$$
d S_{B}=-k \sum_{j} \log n_{j}^{*} d n_{j}=0 \longleftarrow<\begin{aligned}
& \text { Small changes to } S_{B} \text { due } \\
& \text { only to small changes } d n_{j}
\end{aligned}
$$

subject to the constraints on the small changes $d n_{j}$:

$$
d N=\sum_{j} d n_{j}=0 \quad d U=\sum_{j} \varepsilon_{j} d n_{j}=0
$$

- Note: Can add arbitrary multiples of the constraints to our equation and still get zero result:

$$
d S_{B}=\sum_{j}\left(-k \log n_{j}^{*}+\alpha+\beta \varepsilon_{j}\right) d n_{j}=0
$$

- Or: $\quad-k \log n_{j}^{*}+\alpha+\beta \varepsilon_{j}=0$
- Now solve for $n_{j}{ }^{*}$:

$$
n_{j}^{*}=e^{\left(\alpha+\beta \varepsilon_{j}\right) / k}
$$

What is α ?

- Substitute n_{j}^{*} into $\sum n_{j}=N$ and get: $N=\sum e^{(\alpha+\beta \varepsilon j) / k}=e^{\alpha / k} \sum e^{\beta \varepsilon j / k}$.
$\underline{\text { Or: }} \alpha=k \log \left(N / \sum e^{\beta \varepsilon j / k}\right) \quad \begin{aligned} & \alpha \text { is a normalization constant that } \\ & \text { enforces correct particle number } N\end{aligned}$
More importantly: What is β ?
- Consider: Small changes in internal energy of a reversible process:

$$
\begin{array}{lr}
\text { Macroscopic point of view } & \\
\begin{aligned}
d U & =\delta Q-d W \\
& =T d S_{T}-P d V
\end{aligned} & \begin{aligned}
d U & =d\left(\sum \varepsilon_{j} n_{j}\right)
\end{aligned} \\
& =\sum \varepsilon_{j} d n_{j}+\sum n_{j} d \varepsilon_{j}
\end{array}
$$

- Note. If $P d V=-\sum n_{j} d \varepsilon_{j}$, then $d S_{T}=(1 / T) \sum \varepsilon_{j} d n_{j} \quad-\varepsilon_{i}$ changes, n_{i} constant
- Note: If $P d V=-\sum n_{j} d \varepsilon_{j}$, then $d S_{T}=(1 / T) \sum \varepsilon_{j} d n_{j}$
- Recall: $d S_{B}\left(n_{j}^{*}\right)=-k \sum \log n_{j}^{*} d n_{j}$

$$
\begin{array}{ll}
=-k \sum\left[\left(\alpha+\beta \varepsilon_{j}\right) / k\right] d n_{j}, & \text { since } \log \left(e^{\left(\alpha+\beta \varepsilon_{j}\right) / k}\right)=\left(\alpha+\beta \varepsilon_{j}\right) / k \\
=-\beta \sum \varepsilon_{j} d n_{j}, & \text { since }-k \alpha \sum d n_{j}=0
\end{array}
$$

- So: For the equilibrium distribution $n_{j}^{*}, S_{B}=S_{T}$ provided $\beta=-1 / T$.

$$
\begin{array}{lrl}
\text { Macroscopic point of view } & & \text { Microscopic point of view } \\
\hline d U=\delta Q-d W & & \begin{aligned}
d U & =d\left(\sum \varepsilon_{j} n_{j}\right)
\end{aligned} \\
=T d S_{T}-P d V & & =\sum \varepsilon_{j} d n_{j}+\sum n_{j} d \varepsilon_{j}
\end{array}
$$

- Recap: $d S_{B}\left(n_{j}^{*}\right)=-\beta \sum \varepsilon_{j} d n_{j}$
- So: For the equilibrium distribution $n_{j}^{*}, S_{B}=S_{T}$ provided $\beta=-1 / T$.
- What this shows: For a reversible process involving a large number of distinguishable particles characterized by their positions and velocities, it is consistent to identify the Boltzmann entropy S_{B} with the thermodynamic entropy S_{T}.
- But: Are we forced to?
- S_{T} measures absolute changes in heat per temperature of a reverisble process.
- For thermally isolated processes, S_{T} absolutely increases or remains constant.
- S_{B} measures how likely a given distribution of states occurs.
- No absolute law that requires S_{B} to increase or remain constant.

2. Gibbs' Approach.

Boltzmann: Analysis of a single multiparticle system.

- Point x in $\Omega=$ possible microstate of system.
- Thermodynamic property $=$ function f on Ω.
- Boltzmann equilibrium macrostate $=$ largest macrostate in Ω.

Gibbs: Analysis of an ensemble of infinitely many copies of same system.

- Point x in $\Omega=$ actual state of one member of ensemble.
- State of entire ensemble $=$ distribution $\rho(x, t)$ on Ω.

- $\int_{S} \rho(x, t) d x=$ probability of finding the state of a system in region S.
- Ensemble average of $f=\langle f\rangle=\int_{\Omega} f(x) \rho(x, t) d x$
- Statistical equilibrium distribution $=$ stationary ρ (constant in time).
- $\langle f\rangle$ is constant just when ρ is stationary.

So: If thermodynamic properties are represented by ensemble averages, then they don't change in time for an ensemble in statistical equilibrium.

Averaging Principle: The measured value of a thermodynamic property f of a system in thermodynamic equilibrium is the ensemble average $\langle f\rangle$ of an ensemble in statistical equilibrium.

Justification: A measurement of a property f takes some amount of time, which is "infinite" compared to molecular processes.
$\underline{S_{0}}$: What gets measured in the lab is the infinite time average $f^{*}\left(x_{0}\right)$:

$$
f^{*}\left(x_{0}\right)=\lim _{\tau \rightarrow \infty} \frac{1}{\tau} \int_{t_{0}}^{t_{0}+\tau} f\left(\phi_{t}\left(x_{0}\right)\right) d t
$$

- The Gibbs Entropy: $S_{G}(\rho)=-k \int_{\Omega} \rho(x, t) \log (\rho(x, t)) d x$ The ensemble average
of the function
1-klog $(\rho(x, t))$.
- How to choose an appropriate distribution ρ :
- Require it be stationary (statistical equilibrium).
- Require that $S_{G}(\rho)$ be maximal.
(1) Why do low-probability states evolve into high-probability states? (What justifies a given stationary, S_{G}-maximizing distribution $\rho(x, t)$?)
- Characterizations of the dynamics are, again, required to justify this.
(2) How are the probabilities to be interpreted?
(a) Ontic probabilities $=$ properties of physical systems
- Long run frequencies?
- Single-case propensities?
(b) Epistemic probabilities $=$ measures of degrees of belief
- Objective (rational) degrees of belief?
- Subjective degrees of belief?

II. Entropy in Classical Information Theory.

- Goal: To construct a measure for the amount of information associated with a message.

The amount of info gained from the reception of a message depends on how likely it is.

Claude Shannon (1916-2001)

- The less likely a message is, the more info gained upon its reception!
- Let $X=\left\{x_{1}, x_{2}, \ldots, x_{\ell}\right\}=$ set of ℓ messages.

Def. 1. A probability distribution $P=\left(p_{1}, p_{2}, \ldots, p_{\ell}\right)$ on X is an assignment of a probability $p_{j}=p\left(x_{j}\right)$ to each message x_{j}.

- Recall: This means $p_{j} \geq 0$ and $p_{1}+p_{2}+\ldots+p_{\ell}=1$.

Def. 2. A measure of information for X is a real-valued function $H(X)$: $\{$ prob. distributions on $X\} \rightarrow \mathbb{R}$, that satisfies:

- Continuity. $H\left(p_{1}, \ldots, p_{\ell}\right)$ is continuous.
- Additivity. $H\left(p_{1} q_{1}, \ldots, p_{\ell} q_{\ell}\right)=H(P)+H(Q)$, for probability distributions P, Q.
- Monoticity. Info increases with ℓ for uniform distributions: If $m>\ell$, then $H(Q)>H(P)$, for any $P=(1 / \ell, \ldots, 1 / \ell)$ and $Q=(1 / m, \ldots, 1 / m)$.
- Branching. $H\left(p_{1}, \ldots, p_{\ell}\right)$ is independent of how the process is divided into parts.
- Bit normalization. The average info gained for two equally likely messages is one bit: $H(1 / 2,1 / 2)=1$.

Claim (Shannon 1949): There is exactly one function that satisfies these criteria; namely, the Shannon Entropy (or Shannon Information):

$$
\begin{array}{ll}
H(X)=-\sum_{j=1}^{\ell} p_{j} \log _{2} p_{j} & -H(X) \text { is maximal for } p_{1}=p_{2}=\ldots=p_{\ell}=1 / \ell \\
& -H(X)=0 \text { just when one } p_{j} \text { is } 1 \text { and the rest are } 0 . \\
& - \text { Logarithm is to base 2: } \log _{2} x=y \Rightarrow x=2^{y} .
\end{array}
$$

1. $H(X)$ as Maximum Amount of Message Compression

- Let $X=\left\{x_{1}, \ldots, x_{\ell}\right\}$ be a set of letters from which we construct the messages.
- Suppose the messages have N letters a piece.
- The probability distribution $P=\left(p_{1}, \ldots, p_{\ell}\right)$ is now over the letter set.

What this means:

- Each letter x_{i} has a probability of p_{i} of occuring in a message.
- In other words: A typical message will contain $p_{1} N$ occurrences of $x_{1}, p_{2} N$ occurrences of x_{2}, etc.
- Thus:

$$
\binom{\text { The number of distinct }}{\text { typical messages }}=\frac{N!}{\left(p_{1} N\right)!\left(p_{2} N\right)!\cdots\left(p_{\ell} N\right)!} \leftrightarrows \begin{aligned}
& \text { Number of ways to } \\
& \text { arrange } N \text { distinct } \\
& \text { letters into } \ell \text { bins } \\
& \text { with capacities } \\
& p_{1} N, p_{2} N, \ldots, p_{\ell} N .
\end{aligned}
$$

- $\underline{S o}$:

$$
\log _{2}\binom{\text { The number of distinct }}{\text { typical messages }}=\log _{2}\left(\frac{N!}{\left(p_{1} N\right)!\left(p_{2} N\right)!\cdots\left(p_{\ell} N\right)!}\right)
$$

Let's simplify the RHS...

$$
\begin{aligned}
& \log _{2}\left(\frac{N!}{\left(p_{1} N\right)!\left(p_{2} N\right)!\cdots\left(p_{\ell} N\right)!}\right)=\log _{2}(N!)-\left\{\log _{2}\left(\left(p_{1} N\right)!\right)+\ldots+\log _{2}\left(\left(p_{\ell} N\right)!\right)\right\} \\
& \quad \approx\left(N \log _{2} N-N\right)-\left\{\left(p_{1} N \log _{2} p_{1} N-p_{1} N\right)+\ldots+\left(p_{\ell} N \log _{2} p_{\ell} N-p_{\ell} N\right)\right\} \\
& \quad=N\left\{\log _{2} N-1-p_{1} \log _{2} p_{1}-p_{1} \log _{2} N+p_{1}-\ldots-p_{\ell} \log _{2} p_{\ell}-p_{\ell} \log _{2} N+p_{\ell}\right\} \\
& \quad=-N \sum_{j=1}^{\ell} p_{j} \log _{2} p_{j} \\
& \quad=N H(X)
\end{aligned}
$$

- Thus:

$$
\log _{2}\binom{\text { The number of distinct }}{\text { typical messages }}=N H(X)
$$

- $\underline{S o}$:

$$
\binom{\text { The number of distinct }}{\text { typical messages }}=2^{N H(X)}
$$

- \underline{S} : There are only $2^{N H(X)}$ typical messages with N letters.
- This means, at the message level, we can encode them using only $N H(X)$ bits.

```
Check: 2 possible messages require 1 bit: \(0,1\).
    4 possible messages require 2 bits: \(00,01,10,11\).
    etc.
```

- Now: At the letter level, how many bits are needed to encode a message of N letters drawn from an ℓ-letter alphabet?

- Note: $\log _{2} \ell$ bits per letter entails $N \log _{2} \ell$ bits for a sequence of N letters.
- Thus: If we know how probable each letter is, instead of requiring $N \log _{2} \ell$ bits to encode our messages, we can get by with only $N H(X)$ bits.
- So: $\quad H(X)$ represents the maximum amount that (typical) messages drawn from a given set of letters can be compressed.

$$
\underline{E x}: \text { Let } X=\{A, B, C, D\} \quad(\ell=4)
$$

$$
\begin{aligned}
& \text { For instance: } \\
& A=00, B=01, C=10, D=11 .
\end{aligned}
$$

- $\underline{S o}$: We need $2 N$ bits to encode a message with N letters.
- Now: Suppose the probabilities for each letter to occur in a typical N-letter message are the following:

$$
p_{A}=1 / 2, \quad p_{B}=1 / 4, \quad p_{C}=p_{D}=1 / 8
$$

- Then: The minimum number of bits needed to encode all possible N letter messages is:

$$
N H(X)=-N\left(\frac{1}{2} \log _{2} \frac{1}{2}+\frac{1}{4} \log _{2} \frac{1}{4}+\frac{1}{8} \log _{2} \frac{1}{8}+\frac{1}{8} \log _{2} \frac{1}{8}\right)=1.75 N
$$

- Thus: If we know how probable each letter is, instead of requiring $2 N$ bits to encode all possible messages, we can get by with only 1.75 N .
- Note: If all letters are equally likely (the equilibrium distribution), then $p_{A}=p_{B}=p_{C}=p_{D}=1 / 4$.
- And: $N H(X)=-N\left(\frac{1}{4} \log _{2} \frac{1}{4}+\frac{1}{4} \log _{2} \frac{1}{4}+\frac{1}{4} \log _{2} \frac{1}{4}+\frac{1}{4} \log _{2} \frac{1}{4}\right)=2 N$.

Shannon

- $N=\#$ of letters in message.
- N-letter message.
- $\left\{x_{1}, \ldots, x_{\ell}\right\}=\ell$-letter alphabet.
- $\left(p_{1}, \ldots, p_{\ell}\right)=$ probability distribution over letters.
- $p_{j}=$ probability that x_{j} occurs in a given message.
- $N p_{j}=\#$ of x_{j}^{\prime} 's in typical message.

$$
H(X)=-\sum_{j=1}^{\ell} p_{j} \log _{2} p_{j}
$$

- $N H=$ minimum number of base 2 numerals ("bits") needed to encode a message composed of N letters drawn from set X.

Boltzmann

- $N=\#$ of single-particle microstates.
- N-microstate arrangement.
- $\left(n_{1}, \ldots, n_{\ell}\right)=\ell$-cell distribution.
- $\left(p_{1}, \ldots, p_{\ell}\right)=$ probabilty distribution over microstates.
- $p_{j}=n_{j} / N=$ prob that a w_{j}-microstate occurs in a given arrangement.
- $N p_{j}=\#$ of w_{j}-microstates in arrangement.

$$
S_{B}\left(\Gamma_{D_{i}}\right)=-N k \sum_{j=1}^{\ell} p_{j} \ln p_{j}+\text { const }
$$

- $S_{B} \sim N H=$ minimum number of base e numerals ("e-bits?") needed to encode an arrangement of N singleparticle microstates.

2. $H(X)$ as a Measure of Uncertainty

- Suppose $P=\left(p_{1}, \ldots, p_{\ell}\right)$ is a probability distribution over a set of values $\left\{x_{1}, \ldots, x_{\ell}\right\}$ of a random variable X.

Def. 1. The expected value $E(X)$ of X is given by $E(X)=\sum_{j=1}^{\ell} p_{j} x_{j}$.
Def. 2. The information gained if X is measured to have the value x_{j} is given by $-\log _{2} p_{j}$.

- Motivation: The greater p_{j} is, the more certain x_{j} is, and the less information should be associated with it.
- Then the expected value of $-\log _{2} p_{j}$ is just the Shannon information:
$E\left(-\log _{2} p_{j}\right)=-\sum_{j=1}^{\ell} p_{j} \log _{2} p_{j}=H(X)$
- What this means:
$H(X)$ tells us our expected information gain upon measuring X.

Shannon

- $X=$ random variable.
- $\left\{x_{1}, \ldots, x_{\ell}\right\}=\ell$ values.
- $\left(p_{1}, \ldots, p_{\ell}\right)=$ probabilty distribution over values.
- $p_{j}=$ probability that X has value x_{j} upon measurement.
- $-\log _{2} p_{j}=$ information gained upon measurement of X with outcome x_{j}.

$$
H(X)=-\sum_{j=1}^{\ell} p_{j} \log _{2} p_{j}
$$

- $H(X)=$ expected information gain upon measurement of X.

Boltzmann

- $X=$ single-particle microstate.
- $\left(n_{1}, \ldots, n_{\ell}\right)=\ell$-cell distribution.
- $\left(p_{1}, \ldots, p_{\ell}\right)=$ probabilty distribution over microstates.
- $p_{j}=n_{j} / N=$ probability that a microstate occurs in cell w_{j}.
- $-\ln p_{j}=$ information gained upon measurement of particle to be in microstate in cell w_{j}.

$$
S_{B}\left(\Gamma_{D_{i}}\right)=-N k \sum_{j=1}^{\ell} p_{j} \ln p_{j}+\text { const } .
$$

- $S_{B} / N=$ expected information gain upon determining the microstate of a particle.
(1) How should the probabilities $p\left(x_{i}\right)$ be interpreted?
- Emphasis is on uncertainty: The information content of a message x_{i} is a function of how uncertain it is, with respect to the receiver.
- $\underline{S o}$: Perhaps the probabilities are epistemic.
- In particular: $p\left(x_{i}\right)$ is a measure of the receiver's degree of belief in the accuracy of message x_{i}.
- But: The probabilities are set by the nature of the source.
- If the source is not probabilistic, then $p\left(x_{i}\right)$ can be interpreted epistemically.
- If the source is inherently probabilistic, then $p\left(x_{i}\right)$ can be interpreted as the ontic probability that the source produces message x_{i}.

2. How is Shannon Information/Entropy related to other notions of entropy?

- Can statistical mechanics be given an information-theoretic foundation?
- Can the 2nd Law be given an information-theoretic foundation?

