03. Boltzmann Entropy, Gibbs Entropy, Shannon Information.

I. Entropy in Statistical Mechanics.

- <u>Goal</u>: To explain the behavior of macroscopic systems in terms of the dynamical laws governing their microscopic consituents.
 - <u>In particular</u>: To provide a micro-dynamical explanation of the 2nd Law.
- 1. Boltzmann's Approach.
- Consider different "macrostates" of a gas:

• Why does the gas prefer to be in the equilibrium macrostate (last one)?

Ludwig Boltzmann (1844-1906)

• Suppose the gas consists of *N identical* particles governed by Hamilton's equations of motion (the micro-dynamics).

Def. 1. A microstate X of a gas is a specification of the position (3 values) and momentum (3 values) for each of its N particles.

Let $\Omega = phase \ space = 6N$ -dim space of all possible microstates.

Let Ω_E = region of Ω that consists of all microstates with constant energy E.

Hamiltonian dynamics maps initial microstate X_i to final microstate X_f .

Can 2nd Law be explained by recourse to this dynamics?

- **Def. 2.** A macrostate Γ of a gas is a specification of the gas in terms of macroscopic properties (pressure, temperature, volume, *etc.*).
- <u>Relation between microstates and macrostates:</u>

Macrostates supervene on microstates!

- To each microstate there corresponds exactly one macrostate.
- Many distinct microstates can correspond to the same macrostate.
- <u>So</u>: Ω_E is partitioned into a finite number of regions corresponding to macrostates, with each microstate X belonging to one macrostate $\Gamma(X)$.

<u>Boltzmann's Claim</u>: The equilibrium macrostate Γ_{eq} is vastly larger than any other macrostate (so it contains the vast majority of possible microstates).

• <u>Thus</u>: S_B increases over time because, for any initial microstate X_i , the dynamics will map X_i into Γ_{eq} very quickly, and then keep it there for an extremely long time.

Two Ways to Explain the Approach to Equilibrium:

(a) <u>Appeal to Typicality (Goldstein 2001)</u>

<u>*Claim*</u>: A system approaches equilibrium because equilibrium microstates are *typical* and nonequilibrium microstates are *atypical*.

- <u>Why?</u> For large N, Ω_E is almost entirely filled up with equilibrium microstates. Hence they are "typical".
 - <u>But</u>: What is it about the *dynamics* that evolves atypical states to typical states?
 - "If a system is in an atypical microstate, it does not evolve into an equilibrium microstate *just because* the latter is typical." (Frigg 2009)
 - Need to identify properties of the dynamics that guarantee atypical states evolve into typical states.
 - \underline{And} : Need to show that these properties are typical.
 - <u>Ex</u>: If the dynamics is *chaotic* (in an appropriate sense), then (under certain conditions), any initial microstate X_i will quickly be mapped into Γ_{eq} and remain there for long periods of time. (Frigg 2009)

(b) <u>Appeal to Probabilities</u>

<u>*Claim*</u>: A system approaches equilibrium because it evolves from states of lower toward states of higher probability, and the equilibrium state is the state of highest probability. \checkmark

• Associate probabilities with macrostates: the larger the macrostate, the greater the probability of finding a microstate in it.

"In most cases, the initial state will be a very unlikely state. From this state the system will steadily evolve towards more likely states until it has finally reached the most likely state, i.e., the state of thermal equilibrium."

<u>Task</u>: Make this a bit more precise (Boltzmann's combinatorial argument)...

<u>Arrangement #1:</u> state of P_6 in w_1 , state of P_{89} in w_3 , etc.

- Start with the 6-dim phase space Ω_{μ} of a single particle.
- Partition Ω_{μ} into ℓ cells $w_1, w_2, ..., w_{\ell}$ of size δw .
- A state of an N-particle system is given by N points in Ω_{μ} .

Def. 4. An *arrangement* is a specification of *which* points lie in which cells.

Def. 5. A *distribution* is a specification of *how many* points (regardless of *which* ones) lie in each cell.

• <u>Note</u>: More than one arrangement can correspond to the same distribution.

• How many arrangements $G(D_i)$ are compatible with a given distribution $D_i = (n_1, n_2, \dots, n_\ell)?$ $n! = n(n-1)(n-2)\cdots 1$ = # of ways to arrange n distinguishable objects _____ $G(D_i) = \frac{N!}{n_1! n_2! \cdots n_\ell!}$

Number of ways to arrange N distinguishable objects into ℓ bins with capacities $n_1, n_2, ..., n_{\ell}$.

<u>Check</u>: Let $D_1 = (N, 0, ..., 0)$ and $D_2 = (N - 1, 1, 0, ..., 0)$. - $G(D_1) = N!/N! = 1$. (Only one way for all N particles to be in w_1 .) $-G(D_2) = N!/(N-1)! = N(N-1)(N-2)\cdots 1/(N-1)(N-2)\cdots 1 = N.$ (There are N different ways w_2 could have one point in it; namely, if P_1 was in it, or if P_2 was in it, or if P_3 was in it, etc...)

Answer:

"The probability of this distribution $[D_i]$ is then given by the number of permutations of which the elements of this distribution are capable, that is by the number $[G(D_i)]$. As the most probable distribution, i.e., as the one corresponding to thermal equilibrium, we again regard that distribution for which this expression is maximal..."

<u>Again</u>: The probability of a distribution D_i is given by $G(D_i)$.

• <u>And</u>: Each distribution D_i corresponds to a macrostate Γ_{D_i} .

<u>Why</u>? Because a system's macroscopic properties (volume, pressure, temp, *etc*) only depend on *how many* particles are in particular microstates, and not on *which* particles are in which microstates.

- What is the size of this macrostate?
 - A point in Ω_E corresponds to an arrangement of Ω_{μ} .
 - The size of a macrostate Γ_{D_i} in Ω_E is given by the number of points it contains (the number of arrangements compatible with D_i) multiplied by a *volume element* of Ω_E .
 - A volume element of Ω_E is given by N copies of a volume element δw of Ω_{μ} .

• So: The size of
$$\Gamma_{D_i}$$
 is $|\Gamma_{D_i}| = \begin{pmatrix} number \ of \\ arrangements \\ compatible \ with \ D_i \end{pmatrix} \times \begin{bmatrix} volume \ element \\ of \ \Omega_E \end{bmatrix}$
$$= G(D_i) \ \delta w^N$$

<u>In other words</u>: The probability $G(D_i)$ of a distribution D_i is proportional to the size of its corresponding macrostate Γ_{D_i} .

- The equilibrium macrostate, being the largest, is the most probable; and a system evolves from states of low probability to states of high probability.

• <u>And</u>: Each distribution D_i corresponds to a macrostate Γ_{D_i} .

<u>Why</u>? Because a system's macroscopic properties (volume, pressure, temp, *etc*) only depend on *how many* particles are in particular microstates, and not on *which* particles are in which microstates.

- What is the size of this macrostate?
 - A point in Ω_E corresponds to an arrangement of Ω_{μ} .
 - The size of a macrostate Γ_{D_i} in Ω_E is given by the number of points it contains (the number of arrangements compatible with D_i) multiplied by a *volume element* of Ω_E .
 - A volume element of Ω_E is given by N copies of a volume element δw of Ω_{μ} .

• So: The size of
$$\Gamma_{D_i}$$
 is $|\Gamma_{D_i}| = \begin{pmatrix} number \ of \\ arrangements \\ compatible \ with \ D_i \end{pmatrix} \times \begin{pmatrix} volume \ elemen \\ of \ \Omega_E \end{pmatrix}$
$$= G(D_i) \ \delta w^N$$

• The Boltzmann entropy of Γ_{D_i} is given by:

$$S_B(\Gamma_{D_i}) = k \log(G(D_i) \,\delta w^N)$$

= $k \log(G(D_i)) + Nk \log(\delta w)$
= $k \log(G(D_i)) + const.$

 S_B is a measure of how large a macrostate is, and thus how probable the corresponding distribution of microstates is.

<u>Other formulations of S_B </u>

$$\begin{split} S_{B}(\Gamma_{D_{l}}) &= k \log(G(D_{l})) + const. \\ &= k \log \left(\frac{N!}{n_{1}!n_{2}!\cdots n_{\ell}!} \right) + const. \\ &= k \log \left(N! \right) - k \log (n_{1}!) - \ldots - k \log (n_{\ell}!) + const. \\ &= k \log (N!) - k \log (n_{1}!) - \ldots - k \log (n_{\ell}!) + const. \\ &\approx (Nk \log N - N) - (n_{1}k \log n_{1} - n_{1}) - \ldots - (n_{\ell}k \log n_{\ell} - n_{\ell}) + const. \\ &= \left[-k \sum_{j=1}^{\ell} n_{j} \log n_{j} + const. \right] \\ \bullet \underline{Let}: \quad p_{j} = n_{j}/N = \left(\begin{array}{c} probability of finding \\ a randomly chosen \\ microstate in cell w_{j} \end{array} \right) \\ \bullet \underline{Then}: \quad S_{B}(\Gamma_{D_{l}}) = -Nk \sum_{j=1}^{\ell} p_{j} \log p_{j} + const. \\ \bullet \underline{Then}: \end{array} \\ \end{split}$$

• <u>Now</u>: S_B takes its maximum value for the values n_j^* that solve: $dS_B = -k \sum_{i} \log n_j^* dn_j = 0 \quad \longleftarrow \quad \begin{array}{c} Small \ changes \ to \ S_B \ due \ only \ to \ small \ changes \ dn_j. \end{array}$

subject to the constraints on the small changes dn_i :

$$dN = \sum_{j} dn_{j} = 0$$
 $dU = \sum_{j} \varepsilon_{j} dn_{j} = 0$

• <u>Note</u>: Can add arbitrary multiples of the constraints to our equation and still get zero result:

$$dS_B = \sum_j \left(-k \log n_j^* + \alpha + \beta \varepsilon_j\right) dn_j = 0$$

• Or:
$$-k \log n_j^* + \alpha + \beta \varepsilon_j = 0$$

• <u>Now solve for n_i^* :</u>

$$n_j^* = e^{(\alpha + \beta \varepsilon_j)/k}$$

Maxwell-Boltzmann equilibrium distribution for weakly interacting, distinguishable particles. (Independently derived by Maxwell in 1860.)

<u>More importantly: What is β ?</u>

• <u>Consider</u>: Small changes in internal energy of a reversible process:

<u>Macroscopic point of view</u>	Microscopic point of view
$dU = \delta Q - dW$	$dU=d(\sum arepsilon_j n_j)$
$= TdS_T - PdV$	$=\sum arepsilon_j dn_j + \sum n_j darepsilon_j$

• Note: If
$$PdV = -\sum n_j d\varepsilon_j$$
, then $dS_T = (1/T)\sum \varepsilon_j dn_j$

$$\begin{array}{l} \underline{Two\ ways\ U\ can\ change:}\\ - \varepsilon_i\ changes,\ n_i\ constant\\ (work)\\ - \ n_i\ changes,\ \varepsilon_i\ constant\\ (heat) \end{array}$$

• <u>Recall</u>: $dS_B(n_j^*) = -k \sum \log n_j^* dn_j$ $= -k \sum [(\alpha + \beta \varepsilon_j)/k] dn_j, \quad since \log(e^{(\alpha + \beta \varepsilon_j)/k}) = (\alpha + \beta \varepsilon_j)/k$ $= -\beta \sum \varepsilon_j dn_j, \quad since -k\alpha \sum dn_j = 0$

• <u>So</u>: For the equilibrium distribution n_j^* , $S_B = S_T$ provided $\beta = -1/T$.

<u>Macroscopic point of view</u>	<u>Microscopic point of view</u>
$dU = \delta Q - dW$	$dU=d(\sum arepsilon_j n_j)$
$= TdS_T - PdV$	$=\sum arepsilon_j dn_j + \sum n_j darepsilon_j$

• <u>Recap</u>: $dS_B(n_j^*) = -\beta \sum \varepsilon_j dn_j$

• <u>So</u>: For the equilibrium distribution n_j^* , $S_B = S_T$ provided $\beta = -1/T$.

- <u>What this shows</u>: For a reversible process involving a large number of distinguishable particles characterized by their positions and velocities, it is consistent to identify the Boltzmann entropy S_B with the thermodynamic entropy S_T .
- <u>But</u>: Are we forced to?

- S_T measures absolute changes in heat per temperature of a reverisble process.	- S_B measures how likely a given distribution of states occurs.
- For thermally isolated processes, S_T	- No absolute law that requires S_B
absolutely increases or remains constant.	to increase or remain constant. \checkmark

2. Gibbs' Approach.

<u>Boltzmann</u>: Analysis of a *single* multiparticle system.

- Point x in Ω = possible microstate of system.
 - Thermodynamic property = function f on Ω .
- Boltzmann equilibrium macrostate = largest macrostate in Ω .

Willard Gibbs (1839-1903)

 $Thermodynamic \ equilibrium \ state =$ constant thermodynamic properties (temperature, volume, pressure, etc.)

<u>Gibbs</u>: Analysis of an *ensemble* of infinitely many copies of same system.

- Point x in Ω = actual state of one member of ensemble.
- State of entire ensemble = distribution $\rho(x, t)$ on Ω . \leftarrow <u>Not Boltzmann's D!</u>
 - $\int_{S} \rho(x,t) dx$ = probability of finding the state of a system in region S.
 - Ensemble average of $f = \langle f \rangle = \int_{\Omega} f(x) \rho(x,t) dx$
- Statistical equilibrium distribution = stationary ρ (constant in time).
 - $\langle f \rangle$ is constant just when ρ is stationary.

<u>So:</u> If thermodynamic properties are represented by ensemble averages, then they don't change in time for an ensemble in statistical equilibrium.

<u>Averaging Principle</u>: The measured value of a thermodynamic property f of a system in thermodynamic equilibrium is the ensemble average $\langle f \rangle$ of an ensemble in statistical equilibrium.

 $\begin{array}{l} \underline{Justification} : \mbox{A measurement of a property } f \mbox{ takes some amount of time,} \\ \mbox{which is "infinite" compared to molecular processes.} \\ - \underline{So} : \mbox{What gets measured in the lab is the infinite time average } f^*(x_0) : \\ f^*(x_0) = \lim_{\tau \to \infty} \frac{1}{\tau} \int_{t_0}^{t_0 + \tau} f(\phi_t(x_0)) \, dt \\ - \underline{And} : \mbox{For "ergodic" systems, } \langle f \rangle = f^*(x_0). \end{array}$

• The **Gibbs Entropy**: $S_G(\rho) = -k \int_{\Omega} \rho(x,t) \log(\rho(x,t)) dx$

- How to choose an appropriate distribution ρ :
 - Require it be stationary (statistical equilibrium).
 - Require that $S_G(\rho)$ be maximal.

Interpretive Issues:

- (1) Why do low-probability states evolve into high-probability states? (What justifies a given stationary, S_G -maximizing distribution $\rho(x, t)$?)
 - Characterizations of the dynamics are, again, required to justify this.
- (2) How are the probabilities to be interpreted?
 - (a) $Ontic \ probabilities =$ properties of physical systems
 - Long run frequencies?
 - Single-case propensities?
 - (b) $Epistemic \ probabilities =$ measures of degrees of belief
 - Objective (rational) degrees of belief?
 - Subjective degrees of belief?

II. Entropy in Classical Information Theory.

• <u>Goal</u>: To construct a measure for the amount of information associated with a message.

The amount of info gained from the reception of a message depends on how *likely* it is.

Claude Shannon (1916-2001)

- The less likely a message is, the more info gained upon its reception!
- Let $X = \{x_1, x_2, ..., x_\ell\} = \text{set of } \ell \text{ messages.}$

Def. 1. A probability distribution $P = (p_1, p_2, ..., p_\ell)$ on X is an assignment of a probability $p_j = p(x_j)$ to each message x_j .

• <u>Recall</u>: This means $p_j \ge 0$ and $p_1 + p_2 + \dots + p_\ell = 1$.

Def. 2. A measure of information for X is a real-valued function H(X): {prob. distributions on X} $\rightarrow \mathbb{R}$, that satisfies:

- Continuity. $H(p_1, ..., p_\ell)$ is continuous.
- Additivity. $H(p_1q_1, ..., p_\ell q_\ell) = H(P) + H(Q)$, for probability distributions P, Q.
- Monoticity. Info increases with ℓ for uniform distributions: If $m > \ell$, then H(Q) > H(P), for any $P = (1/\ell, ..., 1/\ell)$ and Q = (1/m, ..., 1/m).
- Branching. $H(p_1, ..., p_\ell)$ is independent of how the process is divided into parts.
- Bit normalization. The average info gained for two equally likely messages is one bit: $H(\frac{1}{2}, \frac{1}{2}) = 1$.

<u>Claim (Shannon 1949)</u>: There is exactly one function that satisfies these criteria; namely, the Shannon Entropy (or Shannon Information):

$$H(X) = -\sum_{j=1}^{\ell} p_j \log_2 p_j \qquad \begin{array}{l} -H(X) \text{ is maximal for } p_1 = p_2 = \dots = p_\ell = 1/\ell. \\ -H(X) = 0 \text{ just when one } p_j \text{ is 1 and the rest are 0.} \\ -\text{Logarithm is to base 2: } \log_2 x = y \Rightarrow x = 2^y. \end{array}$$

$$\frac{Bit \text{ normalization requires:}}{1 \text{ If } X = \{x_1, x_2\}, \text{ and } P = (\frac{1}{2}, \frac{1}{2}), \text{ then } H(X) = 1. \\ -Note: H(X) = -(\frac{1}{2}\log\frac{1}{2} + \frac{1}{2}\log\frac{1}{2}) = \log 2. \\ -And: \log 2 = 1 \text{ if and only if log is to base 2.} \end{array}$$

1. H(X) as Maximum Amount of Message Compression

- Let $X = \{x_1, ..., x_\ell\}$ be a set of letters from which we construct the messages.
- Suppose the messages have N letters a piece.
- The probability distribution $P = (p_1, ..., p_\ell)$ is now over the letter set.

• <u>Thus</u>:

Let's simplify the RHS...

$$\begin{split} \log_2 & \left(\frac{N!}{(p_1 N)! (p_2 N)! \cdots (p_\ell N)!} \right) = \log_2(N!) - \left\{ \log_2((p_1 N)!) + \dots + \log_2((p_\ell N)!) \right\} \\ &\approx (N \log_2 N - N) - \left\{ (p_1 N \log_2 p_1 N - p_1 N) + \dots + (p_\ell N \log_2 p_\ell N - p_\ell N) \right\} \\ &= N \{ \log_2 N - 1 - p_1 \log_2 p_1 - p_1 \log_2 N + p_1 - \dots - p_\ell \log_2 p_\ell - p_\ell \log_2 N + p_\ell \} \\ &= -N \sum_{j=1}^\ell p_j \log_2 p_j \\ &= N H(X) \end{split}$$

• <u>Thus</u>: $\log_2 \left(\begin{array}{c} \text{The number of distinct} \\ \text{typical messages} \end{array} \right) = NH(X)$ • <u>So</u>:

 $\left(\begin{array}{c} \text{The number of distinct} \\ \text{typical messages} \end{array}\right) = 2^{\text{NH}(X)}$

- <u>So</u>: There are only $2^{NH(X)}$ typical messages with N letters.
- This means, at the message level, we can encode them using only NH(X) bits.

• <u>Now</u>: At the letter level, how many bits are needed to encode a message of N letters drawn from an ℓ -letter alphabet?

<u>First</u> :	How many bits are needed to encode each letter in an ℓ -letter alphabet?		
	$\underline{\ell = \#letters}$	x = #bits	s per letter
	2 letters	1 bit:	0, 1
	4 letters	2 bits:	00,01,10,11
	8 letters	3 bits:	000, 001, 010, 011, 100, 101, 110, 111
<u>50</u> :	$\ell = 2^x$, or $x = \log_2$	ε	

- <u>Note</u>: $\log_2 \ell$ bits per letter entails $N \log_2 \ell$ bits for a sequence of N letters.
- <u>Thus</u>: If we know how probable each letter is, instead of requiring $N\log_2 \ell$ bits to encode our messages, we can get by with only NH(X) bits.
- <u>So</u>: H(X) represents the maximum amount that (typical) messages drawn from a given set of letters can be compressed.

<u>Ex</u>: Let $X = \{A, B, C, D\}$ $(\ell = 4)$

- <u>Then</u>: We need $\log_2 4 = 2$ bits per letter.
- $\frac{For \ instance}{A = 00, \ B = 01, \ C = 10, \ D = 11.}$
- <u>So</u>: We need 2N bits to encode a message with N letters.
- <u>Now</u>: Suppose the probabilities for each letter to occur in a typical *N*-letter message are the following:

$$p_A = 1/2, \quad p_B = 1/4, \quad p_C = p_D = 1/8$$

- <u>Then</u>: The minimum number of bits needed to encode all possible Nletter messages is: $NH(X) = -N\left(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{4}\log_2\frac{1}{4} + \frac{1}{8}\log_2\frac{1}{8} + \frac{1}{8}\log_2\frac{1}{8}\right) = 1.75N$
- <u>Thus</u>: If we know how probable each letter is, instead of requiring 2N bits to encode all possible messages, we can get by with only 1.75N.
- <u>Note</u>: If all letters are equally likely (the equilibrium distribution), then $p_A = p_B = p_C = p_D = 1/4$.
- <u>And</u>: $NH(X) = -N\left(\frac{1}{4}\log_2\frac{1}{4} + \frac{1}{4}\log_2\frac{1}{4} + \frac{1}{4}\log_2\frac{1}{4} + \frac{1}{4}\log_2\frac{1}{4} + \frac{1}{4}\log_2\frac{1}{4}\right) = 2N.$

How the message compression interpretation of H relates to S_B

<u>Shannon</u>

- N = # of letters in message.
- *N*-letter message.
- $\{x_1, ..., x_\ell\} = \ell$ -letter alphabet.
- $(p_1, ..., p_\ell) =$ probability distribution over letters.
- p_j = probability that x_j occurs in a given message.
- $Np_j = \#$ of x_j 's in typical message.

 $H(X) = -\sum_{j=1}^{\ell} p_j \log_2 p_j$

NH = minimum number of base
 2 numerals ("bits") needed to
 encode a message composed of
 N letters drawn from set X.

<u>Boltzmann</u>

- N = # of single-particle microstates.
- *N*-microstate arrangement.
- $(n_1, ..., n_\ell) = \ell$ -cell distribution.
- $(p_1, ..., p_\ell)$ = probability distribution over microstates.
- $p_j = n_j/N = \text{prob that a } w_j$ -microstate occurs in a given arrangement.
- $Np_j = \#$ of w_j -microstates in arrangement.

$$S_{\scriptscriptstyle B}(\Gamma_{\scriptscriptstyle D_i}) = -Nk \sum_{j=1}^\ell p_j \ln p_j + const.$$

• $S_B \sim NH =$ minimum number of base *e* numerals ("*e*-bits?") needed to encode an arrangement of *N* singleparticle microstates.

2. H(X) as a Measure of Uncertainty

• Suppose $P = (p_1, ..., p_\ell)$ is a probability distribution over a set of values $\{x_1, ..., x_\ell\}$ of a random variable X.

Def. 1. The expected value E(X) of X is given by $E(X) = \sum_{j=1}^{n} p_j x_j$.

Def. 2. The *information gained* if X is measured to have the value x_j is given by $-\log_2 p_j$.

- <u>Motivation</u>: The greater p_j is, the more certain x_j is, and the less information should be associated with it.
- Then the expected value of $-\log_2 p_j$ is just the Shannon information: $E(-\log_2 p_j) = -\sum_{j=1}^{\ell} p_j \log_2 p_j = H(X)$
- <u>What this means</u>:

H(X) tells us our expected information gain upon measuring X.

<u>Shannon</u>

- X = random variable.
- $\{x_1, ..., x_\ell\} = \ell$ values.
- $(p_1, ..., p_\ell) = \text{probability}$ distribution over values.
- $p_j =$ probability that X has value x_j upon measurement.
- $-\log_2 p_j = information$ gained upon measurement of X with outcome x_j .

 $H(X) = -\sum_{j=1}^{\ell} p_j \log_2 p_j$

• H(X) = expected information gain upon measurement of X.

<u>Boltzmann</u>

- X =single-particle microstate.
- $(n_1, ..., n_\ell) = \ell$ -cell distribution.
- $(p_1, ..., p_\ell)$ = probability distribution over microstates.
- $p_j = n_j/N =$ probability that a microstate occurs in cell w_j .
- $-\ln p_j = information$ gained upon measurement of particle to be in microstate in cell w_j .

$$S_{\scriptscriptstyle B}(\Gamma_{\scriptscriptstyle D_i}) = -Nk {\displaystyle \sum_{j=1}^\ell p_j \ln p_j + const.}$$

• S_B/N = expected information gain upon determining the microstate of a particle.

Interpretive Issues:

(1) How should the probabilities $p(x_i)$ be interpreted?

- <u>Emphasis is on uncertainty</u>: The information content of a message x_i is a function of how uncertain it is, with respect to the receiver.
 - <u>So</u>: Perhaps the probabilities are *epistemic*.
 - <u>In particular</u>: $p(x_i)$ is a measure of the receiver's degree of belief in the accuracy of message x_i .
- <u>But</u>: The probabilities are set by the nature of the source.
 - If the source is not probabilistic, then $p(x_i)$ can be interpreted epistemically.
 - If the source is inherently probabilistic, then $p(x_i)$ can be interpreted as the *ontic* probability that the source produces message x_i .

2. How is Shannon Information/Entropy related to other notions of entropy?

- Can statistical mechanics be given an information-theoretic foundation?
- Can the 2nd Law be given an information-theoretic foundation?