
02.  Entropy and Maxwell's Demon 

• Clausius' "Fundamental Principle" (1854): 

"Heat can never pass from a colder to a warmer body without some 
other change, connected therewith, occuring at the same time." 

δQ/T = infinitesimal transformation consisting of an element of 
heat, δQ, absorbed by the system at temperature T (Kelvin scale).      

δQ
T!∫ ≤ 0.

•  Formulated in terms of an inequality (Clausius' Inequality): 

I. Clausius' Inequality and Thermodynamic Entropy. 

• Restate as (1865): 

"The algebraic sum of all the transformations which occur in a cyclical 
process must always be positive, or in the limit equal to zero."  

!  Note: Clausius distinguishes between heat elements absorbed by system, δQ, and 
heat elements emitted by system, −δQ. 

!  And: His positive algebraic sum is meant to apply to emitted heat elements. 

! 1854.  "On a modified form of the second fundamental theorem in the mechanical theory of heat". 
! 1865.  The Mechanical Theory of Heat. 



• For reversible processes, let dS = δQR/T. Call S "entropy": 

• For a thermally isolated (closed) system, can show that 2nd Law entails: 

  Sfinal − Sinitial ≥ 0. 

• What this means: For a closed system undergoing an energy transformation, 
the entropy of the final state cannot be less than the entropy of the initial 
state. 

 "... I propose to call the magnitude S the entropy of the 
body... I have intentionally formed the word entropy so 
as to be as similar as possible to the word energy; for the 
two magnitudes to be denoted by these words are so 
nearly allied in their physical meanings, that a certain 
similarity in designation appears to be desirable." 

"... [W]e may express in the following manner the 
fundamental laws of the universe which correspond to the 
two fundamental theorems of the mechanical theory of heat: 

1. The energy of the universe is constant. 

2. The entropy of the universe tends to a maximum." 



1. Derivation of Clausius' inequality 

• Recall (Carnot's Claim #2): The efficiency of a reversible heat engine 
is a function only of the temperatures of the hot and cold places. 
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• First: Let's derive the important relation for reversible heat engines 
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• Consider a multi-stage reversible heat engine: 
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• Note:   

• Now choose:  f(TC) = TC,   f(TH) = TH 

Thomson's (1848) 
"absolute" temp scale. 

• For this "Kelvin" temp scale, and for reversible heat engines: 
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• Use reservoir at T1 to inject 
heat δQ1 to initial state 1. 
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• Now: Consider the following engine working in a cycle 
in which the initial and final states are identical. 
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• Resupply T1 using reversible 
heat engine C1, which takes 
heat δQ1(  /T1) from reservoir 
at   , and performs work δW1. 
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After complete cycle: 

• ΔU = Uf − Ui = 0 (for a 
cycle) 

• So: Q = W 

But! This is a violation of the 
2nd Law (Thomson version)! 

W 

• Total work output is 
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• Total heat supplied is 

Q 

Principle reservoir at   T

• Now: Consider the following engine working in a cycle 
in which the initial and final states are identical. 



• So: 
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∑ ≤ 0.• Thus:  W = Q ≤ 0,   or                         or       

! Either W and Q must be negative: work is done to the system and heat is 
extracted from it. 

! Or W and Q must be zero. 

• What if the cycle is reversible? 

! Then: 
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! Hence: In order to be consistent with the first result,  
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T!∫ ≤ 0.• Hence: Clausius' Inequality 



2. Thermodynamic Entropy dS = δQR/T. 
• Consider a reversible cycle: 
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!  Start in initial state i. 

!  Take reversible path R1 to final state f. 

!  Return to initial state via reversible path R2. 

     R
δQR

T!∫ =
R1

δQR

Ti

f

∫ +
R2

δQR

Tf

i

∫ = 0.• Clausius' inequality is    

• Thus: 
    R1

δQR

Ti

f

∫ =−
R2

δQR

Tf

i

∫ =
R2

δQR

Ti

f

∫

• So:               is path-independent! 
   R

δQR

Ti

f

∫

• Which means: It can be represented by a function, call it S ("entropy"): 
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(1)  Only defined for reversible processes; i.e., processes that are "quasi-static". 
• Quasi-static process = succession of equilibrium states. 

• Equilibrium state = state of system in which macroscopic properties (i.e., 
temperature, volume, pressure, etc) are (approximately) constant. 

(2)  Only defined for equilibrium states. 

The thermodynamic entropy S(f ) of a 
state f is the ratio of the change in heat 
to temperature of a reversible process 
that connects an initial state i to f. 

Characteristics of thermodynamic entropy: 

• No reference to "disorder" or "chaos". 
• No reference to molecules or particles (gas or otherwise). 
• No reference to "information". 
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Example:  Heating a beaker of water. 

• ΔS = Sf − Si is defined in terms of a reversible process that connects i to f. 

• For an irreversible process, ΔS can still be calculated if there is, in principle a 
reversible process that connects i and f. 



• Thus: ΔS =
R

δQR
Ti

f

∫  >
I

δQ
Ti

f

∫

3. Principle of Increasing Thermodynamic Entropy 

• In words:  The entropy of a thermally isolated irreversibe process increases, 
and is unalterted in a thermally isolated reversible process. 

• Now:  Suppose the path from i to f is thermally isolated; i.e., δQ = 0. 

• Clausius' inequality is 
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• Consider an irreversible cycle: 

!  Irreversible cycle consisting of an irreversible 
process I from i to f, followed by a reversible 
process R from f back to i. 
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• Then:     ΔS ≥ 0   or   Sf ≥ Si 

Note:  If the cycle was reversible 
(i.e., if the path I was reversible), 
then the ">" would become an "=". 
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4. Summary of 2nd Law of Thermodynamics 
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(1)  Clausius Form: No heat transfer from cold to hot place 
without work input: 

(2)  Thomson Form: No conversion of 
heat to work without exhaust: 
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⇑ w 
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Consequence of 2nd Law: 
The thermodynamic entropy of a thermally isolated system increases 
in any irreversible process and is unalterted in a reversible process. 

• These are absolute statements. 

• They are meant to hold for all systems subject to thermodynamical analysis. 



• Summary of Entailments: 

Carnot's 
Claim #2 

⇒

In a reversible 
cyclic process, the 
work produced 
depends only on the 
temperature of the 
hot and cold places, 
and not on the 
working fluid. 

2nd Law 

(Clausius Version) 

There can be no cyclic 
process whose sole 
effect is the transfer of 
heat from a cold place 
to a hot place. 

Clausius' 
Inequality 

In a cyclic process, 
the sum of all trans-
formations δQ/T, 
consisting of an 
element of heat δQ 
absorbed by the 
system at tempera-
ture T, must be less 
than or equal to zero: 
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⇒

2nd Law 

(Entropy Version) 

The entropy of a 
thermally isolated 
system increases in 
any irreversible 
process and is 
unalterted in a 
reversible process: 

ΔS ≥ 0. 

⇒

2nd Law 

(Thomson Version) 

There can be no cyclic 
process whose sole 
effect is the extraction 
of heat from a source 
and the performance 
of an equivalent 
amount of heat. 

⇔
 



1. Maxwell's (1867) letter to Tait. 
• Consider 2nd Law in the form: "If two things are in contact, the 

hotter cannot take heat from the colder without external agency." 

• Maxwell's counterexample: 

• The neat-fingered being only lets hot molecules through to A and cold 
molecules through to B. 

A B 

a "very observant and 
neat fingered being" 

II. Maxwell's Demon. 

James Clerk 
Maxwell 



• Upshot: 

"The hot system has got hotter and the cold colder and 
yet no work has been done, only the intelligence of a very 
observant and neat fingered being has been employed." 

• Moral #1: 

"The 2nd Law of Thermodynamics 
has only statistical certainty." 

• In other words: It's very probable, but not completely certain, that "If two 
things are in contact, the hotter cannot take heat from the colder without 
external agency." 



• Moral #2: Attempts to derive the 2nd Law from (deterministic) mechanics 
will fail. 

"...it is rare sport to see those learned Germans contending for the 
priority of the discovery that the 2nd law of [thermodynamics] is 
the Hamiltonische Princip... [It] soars along in a region unvexed by 
statistical considerations while the German Icari flap their waxen 
wings in nephelo coccygia amid those cloudy forms which the 
ignorance and finitude of human science have invested with the 
incommunicable attributes of the invisible Queen of heaven." 



• Moral #3: The distinction between dissipated energy (heat that we cannot 
make use of) and energy available for work depends on our state of 
knowledge. 

[If we supposed]... our senses sharpened to such a 
degree that we could trace the motions of molecules as 
easily as we now trace those of large bodies... the 
distinction between work and heat would vanish... 

[The truth of the 2nd Law depends]... on the fact that 
the bodies we deal with consist of millions of molecules 
and that we can never get hold of a single molecule." 

• In other words: If we were neat-fingered beings capable of knowing the 
positions and velocities of molecules, the 2nd Law would not apply. 



2. Vexing Unanswered Questions: 

(1)  Why is the 2nd Law only statistical? 

• Are the probabilities really epistemic? Do they really reflect our lack of 
knowledge of the micro-physics (Moral #3)? 

• Are the probabilities ontic? Do they reflect an instrinsic probabilitistic nature 
of micro-physical objects? 

 ! But then why do the vast majority of observable macroscopic systems obey 
the 2nd Law? 

• Subsequent development of statistical mechanics and attempts to derive 2nd 
Law within it. 



(2)  Should the Demon itself be subject to thermodynamics? 

• Must be:  Otherwise why would we care if a non-thermodynamic demon was 
capable of violating the 2nd Law of thermodynamics? 

• But:  If so, then shouldn't we "naturalize" the Demon? 

(3)  Is Demonology Necessary? 

! Subsequent 20th-century history of the Demon: 

-  Fluctuation phenomena as naturalized demons. 

-  Information-theoretic analyses of entropy. 

• To investigate the conceptual significance of the 2nd Law, look to securing the 
foundations of statistical mechanics, as opposed to demon-bashing (Earman & 
Norton 1998). 

! Perhaps a comprehesive thermodynamical analysis of Demon-
plus-system will indicate that the 2nd Law is not violated. 



3. Fluctuation Phenomena and Naturalized Demons 

•  Gas in separate chambers initially at equal pressures and temperatures. 

•  Spring-loaded trapdoor allows randomly fluctuating molecules to pass from one side to 
the other, but not vice-versa. 

•  Expected Result: Build-up of pressure on one side that can be exploited to perform 
work. Violation of 2nd Law! 

• Idea: Exploit such phenomena to construct devices that violate 2nd Law. 

• Early 20th century thermal fluctuation phenomena: 

 ! Brownian motion. 

 ! Density fluctuations in fluids near critical states. 
Key characteristic: 
Completely random processes! 

(a) Smoluchowski's (1914) trapdoor device: 



Questions: 
(1)  Is this an example of a decrease in entropy of a thermally-isolated system? 

 ! Yes! 

(2)  Can this decrease in entropy be used to perform work? 

 ! No! Spring must be sufficiently weak, and trapdoor sufficiently light. 

 ! But then trapdoor itself will be subject to thermal fluctuations that will 
prevent its intended operation. 

• Smoluchowski's response to (1): 

 ! Weaken the 2nd Law: In the long run, on average, a thermally isolated 
system's entropy will increase. 

• New (old) question: What if the trapdoor is replaced with an 
intelligent being who knows when to open/close it?  



(b) Szilard on Entropy and Information 
(1929) "On the Decrease of Entropy in a Thermodynamical System by the Intervention of Intelligent Beings" 

"...measurements themselves are necessarily 
accompanied by a production of entropy." 

Leo Szilard 

Claim: Any device that employs fluctuations in an attempt to violate 
the 2nd Law will fail since there is an inevitable hidden entropy cost 
in the aquisition of information needed to run the device. 



Szilard's One-Molecule Engine 

(b) Being inserts partition/piston and 
determines which side molecule is on. 

• 

(c)  Being attaches weight to side with 
molecule. Gas expands reversibly and 
isothermally by absorbing heat from 
reservoir. Work performed on weight. 

• 

(d) Weight is detached. Partition/piston 
removed. Cycle returns to (a). 

(a) Single molecule exhibiting thermal 
fluctuations. System at const. temp. 

heat reservoir 



• Result: Violation of 2nd Law! Heat converted to work with no exhaust. 
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• In particular: 
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Szilard's Solution: There must be an entropy increase of k log 2 in 
the being which balances the entropy decrease in the reservoir. 

! So:  Change in entropy is  ΔS =
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A decrease in entropy (in reservoir)! 



This entropy increase is associated with measurement: 

• First: Assume only two possible measurement outcomes (simplest case). 

• Let    ,     be the entropies associated with outcomes 1 and 2, respectively.   S1   S2

• And: The claim then follows from w1 + w2 = 1. 

   w1 ≥e−S1/k
   w2 ≥e−S2/k

or 
   S1 ≥−k logw1    S2 ≥−k logw2

• Then (it turns out), lower bounds for     and     are given by:   S1   S2

Claim:  A lower bound on         is given by: 

   e
−S1/k +e−S2/k ≤ 1

S1,S2

Why? 

• Let w1, w2 be the probabilities of getting outcomes 1 and 2, respectively. 



Definition:  The average entropy cost of measurement per cycle is 

   S = w1S1 +w2S2

• Thus: On average, the entropy increase due to measurement is no less 
than the entropy decrease from the conversion of heat to work. 

• So: The 2nd Law is saved. 

• Now show that for any values of    ,     that satisfy lower-bound constraint, 
the resulting value for    is no less than the entropy decrease that violates the 
2nd Law. 

  S1   S2

 S

! These satisfy lower-bound constraint: 

   e
−S1/k +e−S2/k = 2e− log 2 ≤ 1

S = w1S1 +w2S2 = k log 2! And: 

   S1 = S2 = k log2.Ex:  Szilard choses 


