Assignment \#1

1. What does the 1st Law of Thermodynamics entail about the relation between $Q_{i n}, Q_{\text {out }}$, and W for a heat engine?
2. Show that, if Clausius' version of the 2nd Law if false, then so is Thomson's (i.e., Kelvin's). Hint 1: Draw a heat engine that violates Clausius's version of the 2nd Law, and hook it up to an appropriately constructed, allowable heat engine in such a way that the product is a heat engine that violates Thomson's version of the 2nd Law.
Hint 2: An "allowable" heat engine is a heat engine that obeys both the 1st Law and the 2nd Law!
3. Show that, if Thomson's version of the 2nd Law if false, then so is Clausius'.

Hint 1: Draw a heat engine that violates Thomson's version of the 2nd Law, and hook it up to an appropriately constructed, allowable heat engine in such a way that the product is a heat engine that violates Clausius' version of the 2nd Law.
Hint 2: An "allowable" heat engine is a heat engine that obeys both the 1st Law and the 2nd Law!

