Thermodynamics. Analysis of a single system.

- *Thermodynamic properties* = volume, pressure, temperature, *etc*.
- Thermodynamic equilibrium state = state of single system in which thermodynamic properties are constant.
- *Thermodynamic entropy* (property of a state *f*) = change in heat to temperature for a reversible process that begins in state *i* and ends in state *f*:

$$S_T(f) = \int_{R}^{f} \frac{\delta Q_R}{T}$$

• <u>Claim</u>: $S_T(f)$ takes maximum value when f is a thermodynamic equilibrium state.

Boltzmannian Statistical Mechanics. Analysis of a *single* multiparticle system.

- Thermodynamic properties = macroproperties that reduce to microproperties (position, momentum) of particles.
- Point *X* in Ω = possible *microstate* of system; subset Γ of Ω = possible *macrostate* of system.
 - Macroproperty = a function $f: \Omega \to \mathbb{R}$.
- Boltzmann equilibrium macrostate = macrostate of single system with greatest phase space volume.
 No guarantee that system will remain in it (no guarantee that macroproperties of this state remain constant).
- *Boltzmann entropy* (property of a macrostate Γ) = size of macrostate Γ : $S_B(\Gamma) = k \log |\Gamma|$
 - <u>*Or*</u>: $S_B(\Gamma_D) = k \log(G(D)) + const.$, where G(D) is the probability of the Boltzmann distribution *D* corresponding to the macrostate Γ_D .
 - <u>Or</u>: $S_B(\Gamma_D) = -k \sum ni \log ni + const.$, where *ni* is the number of microstates in cell *wi*.
 - <u>Or</u>: $S_B(\Gamma_D) = -Nk \sum p_i \log p_i + const.$, where p_i is the probability of finding a microstate in cell w_i .

Gibbsian Statistical Mechanics. Analysis of an ensemble of infinitely many copies of a multiparticle system.

- Point x in Ω = microstate of a member of ensemble.
- State of entire ensemble = Gibbs distribution $\rho(x, t)$ on Ω .
 - $\int_{a} \rho(x, t) dx$ = probability at time *t* of finding the system's microstate in region *S*.

- Ensemble average of f:
$$\langle f \rangle = \int_{\Omega} f(x)\rho(x,t)dx$$

- *Statistical equilibrium distribution* = stationary distribution ρ (doesn't change in time).
 - $\langle f \rangle$ is constant just when ρ is stationary. So, if thermodynamic properties are represented by ensemble averages, then they do not change in time for stationary distributions.
- <u>Averaging Principle</u>: The measured value of a thermodynamic property f of a system in thermodynamic equilibrium is the ensemble average $\langle f \rangle$ of an ensemble in statistical equilibrium.
- Gibbs entropy (property of a Gibbs distribution ρ):

$$S_G(\rho) = -k \int_{\Omega} \rho(x, t) \log(\rho(x, t)) dx$$

• <u>*How to pick a p*</u>: Require ρ be stationary and $S_G(\rho)$ be maximal.

Comments on Gibbs

- <u>Why ensembles</u>? "In an ensemble, recurrence and reverse behavior are no problem because it can be accepted that some systems in the ensemble will behave non-thermodynamically, provided that their contribution to the properties of the ensemble as a whole is taken into account when calculating ensemble averages." (Frigg 2008)
- <u>Statistical equilibrium</u>: Applies to an ensemble, and not a single system. A system in an ensemble in statistical equilibrium can be vastly out of thermodynamic equilibrium.
- <u>*Gibbs entropy*</u>: Applies to an ensemble, and not a single system. A system in an ensemble characterized by a maximal Gibbs entropy can be vastly out of thermodynamic equilibrium.