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Introduction

0.1 Aim of the book

The overall aim of this book ;s to develop a theory of measurement that
incorporates the observer into the phenomenon under measurement, By this
theory, the observer becomes b@th collector of data and an activator of the
physical phenomenon that gives rise to the data. These ideas have e probably
been best stated by J. A. Wheeler (1990), (1994):

All things pay:mai are information-theoretic in origin and this is a

a

universe ... Observer participancy gives rise o in sformation; and infor
rise o p‘nysus.

The measurement theory that will be pmsemed is largely, in fact. & quantifica-
tion of these ideas. H@weven ‘{%*e reader might be surprised to find tha: the
‘information’ that is used is not the usual Shannon or Boltzmann en tropy
measures, but one that is relatively unknown to physicists, that of R. A Fisher.
During the same years that quantum mechanics was bemg aevelogea by
Schroedinger (1926) and others, the field of classical measurem
being developed by R. A. Fisher (1922) and co-workers (see E‘éa

for a personal view of his professional life). According to classi

ment theory, the quality of any measurement(s) may be specmf:@ by f orm of
information that has come to be called Fisher information. ce these
formative years, the two fields — quanrum mechanics and classical measure-
ment theory — have enjoyed huge success in their respective domains of

application. And until recent times it has been presumed that the two fields are

t

distinct and indepe nm“ )

er, the two fields actually have strong .
hysi Hrac equation o *Ht
v dispersien Iaw, may be unified under the ambre‘g‘i? of

mann
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70 at Princeton University. Sketch by

ticular, the information aspect of measurement theory —
the key to the unification.
‘S part of an overall theory of physical law called the
physical information (EPI). The unifying aspect of this
W by example, ie, by application to the major fields of
Chanics, classical electromagnetic theory, statistical mech-
1eory, etc. The defining paradigm of each such discipline
ition, a field €quation or tion function of some
derived by use of the EPT €. A separate chapter is
b derivation. New found, as well, by the

a distriby
principl

eifects are

S, perhaps, long overdue. Physics is, afrer all, the science
is, physics is a quantificatio

100 of observed phenomena.



Aim of the book 3

And observed phenomena contain noise, or fluctuations. The phy
equations (defined above) define the fluctuations or errors from id
that occur in such observations. That is, the physics lies in the flucrua

the other hand, classical Fisher information is a scalar measure of these very
physical fluctuations. In this way, Fisher information is intrinsi
the laws of fluctuation that define theoretical physics.

EPI theory proposes that all physical theory results from cobservation: in
particular, imperfecr observation. Thus, EPI is an observer-bases theory of
physics. We are used to the concept of an imperfect observer in addressing
quantum theory. But the imperfect observer does not seem 6 be terribly
important to classical electromagnetic theory, for example, where it is assumed
(wrongly) that fields are known exactly. The same comment can be made about
the gravitational field of general relativity. What we will show is that, by
admitting that any observation is imperfect, one can derive bo Maxwell
equations of electromagnetic theory and the Einstein ficld equations of gravita-
tional theory. The EPI view of these equations is that they are
fluctuation in the values of measured field positions. Hence, the four-positions
(r, 1) in Maxwell’s equations represent, in the EPI interpretation, random

I paradigm

el

Lid

sressions of

e

excursions from an ideal, or mean, four-position over the field.
Dispensing with the artificiality of an ‘ideal’ observer reaps many benefits

for purposes of understunding physics. EPI is, more precisely, an expressio
the ‘inability to know’ a measured quantity. For example, quar

is derived from the viewpoint of the mnability to know an idea n. We
have found, from teaching the material in this book, that students more easily

understand quantum mechanics from this viewpoint than from i}

viewpoint of derivative operators that somehow represent energy Or momen-
tum. Furthermore, that the same inability to know also leads I
equations when applied to that scenario is even more satisfying.
a human desire to find common cause in the phenomena we see.

Unification is also, of course, the major aim of physics, althe
probably not the ultimate unification that many physicists seek. Cur aim i
propose a comprehensive approach to deriving physical laws
new theory of measurement. Currently, the approach presumes
sources and particles. EPI derives major classes of particles
them, and does not derive the sources. We believe, however, tl

step in the right direction. Given its successes so far, the sources
particles should eventually follow from
At this point we want to emphasize

+

hese considerations as w

iat this book is nor ab

book whose primary emphasis

3, e . -
and their extrem
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e leads to other types of solutions as well. Some solutions
&, out of zeroing the integral. (See the derivation of the Dirac

extremization of a Lagrangian integral, the information

gua ion in Chap. 4.) Other laws arise out of 2 combinatior. of both zeroing and
extremizing the integral. Similar remarks may be made about the process by

which the Lz

ngians are formed. The zeroing and extremizing operations
s to solve for the Lagrangians of the scenarios {see Chaps. 49,
way we avoid, to a large degree, the ad hoc approach to

c uction that is conventionally taken. This subject is discussed
further in Secs. 1.1 and 1.8.8. The rationale for both zeroing and extremizing
the integral “ig developed in Chap. 3. It is one of information transfer from
phenomencn to data.

The ‘avom: of the book is, very briefly, as follows. The current chapter is
ve and exemplify mathematical techniques that the reader
iliar with. Chap. 1 is an introduction to the concept of Fisher
is for single-parameter estimation problems. Chap. 2 gen-
4“&1 izes ﬂae concept to multidimensional esﬁmanm problems, ending with the
scalar information form 7 that will be used thereafter in the applications Chaps.
4-11. Chap introduces the concept of the ‘bound information’ J, leading to
the principle of extreme physical information (EPD). This is derived from

various points of view. Chaps. 411 apply EPI to various measurement
scenarios, in thi

(8] (\$

118 way deriving the fundamental wave equations and distribution
functions of physics. Chap. 12 is a chapter-by-chapter summary of the key
points made in the development. The reader in a hurry might choose to read
this first, to get an idea of the scope of the approach and the phenomena
covered

9.2 Level of approach

1

The level of p
that of a seni

sics and mathematics that the reader is presumed to have is
undergraduate in physics. Calculus, through partial differential
equations, and introductory matrix theory, are presumed parts of his/her back-

3

ground t‘%em from elementary probability theory are also used. But
since these intuitive in nature, the appropriate formula is usually just given,
wvith reference to a suitable text as needed.

’;3»
40*“*

ursory scan through the chapters will show that a minimal amount of
prior xmmﬂdge of physical theory is actually used or needed. In fact, this i
the nature of the ?formazmn approach taken and is one of ifs strengths. T‘le

s
put to each application of the approach is a simple law of
mnvariance that is sbbved by the given phenomenon.

,v

tain physical
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The overall mathematical notation that is used is that of conventional
calculus, with additional matrix and vector notation as needed. Tensor notation

1s only used where it is a ‘must’ — in Chaps. 6 and 11 on classical and quantum
relativity, respectively. No extensive operator notation is used; this author
believes that specialized notation often hinders comprehension more than it
helps the student to understand theory. Sophistication without comprehension
1s definitely not our aim.

A major step of the information principle is the extremization and/or zeroing
of a scalar integral. The integral has the form

K= de%’[q, a4’ xL X = (g, .o x), dX = dxy - diy, g, ¥ real,

A=(G1, -5 gn) 90 = ¢4(X), g'(x) = 0q:/0xy, Ogqy/0xs, ..., Ogn/Oxy.

(0.1)

Mathematically, K = K[q(x)] is a ‘functional’, ie., a single number that
depends upon the values of one or more functions q(x) continuously over the
domain of x. Physically, K has the form of an ‘action’ integral, whose
extremization has conventionally been used to derive fundamental laws of
physics (Morse and Feshbach, 1953). Statistically, we will find that X is the
‘physical information’ of an overall system consisting of a measurer and a
measured quantity. The limits of the integral are fixed and, usually, infinite. The
dimension M of x-space is usually 4 (space-time). The functions ¢, of x are
probability amplitudes, i.e., whose squares are probability densities. The g, are
to be found. They specify the physics of a measurement scenario. Quantity %4
1s a known function of the ¢, their derivatives with respect to all the x,,,, and x.
# is called the ‘Lagrangian’ density (Lagrange, 1788). It also takes on the role
of an information density, by our statistical interpretation.

The solution to the problem of extremizing the information X is provided by
a mathematical approach called the ‘calculus of variations’. Since the book

L)

makes extensive use of this approach, we derive it in the following.

0.3 Calculus of variations

0.3.1 Derivation of Euler—Lagrange equation

We find the answer to the lowest-dimension version M = N =1 of the
&

problem, and then generalize the answer as needed. Consider the problem of
finding the single function g(x) that satisfies



N

Introdiction

[ | o [FRS - N H /
K= dcZx, g{x), ¢'(x)] = extrem., q'(x} = dglx)/ dx. {0.2)

A well-known example is the case & = %mg”z — V(g) of a particle of mass m
moving with displacement amplitude g at time x = ¢ in a known field of
potential V(). We will return to this problem below.

Suppose that the solution to the given problem is the function go(x) as shown
in Fig. 0.1. Of course at the endpoints (a, ) the function has the values gola),

40(b), respectively. Consider any finite departure g(x, &) from go(x),

9(x. &) = qo(x) + enlx), (0.3)
with & a finite number and 5(x) any perturbing function. Any function g(x, &)
must pass through the endpoints so that, from Eq.(0.3),

na) = 5n(hy = 0. (0.4)
Eq.{0.2) is, with this representation g(x, ¢) for ¢(x),
K= gﬂb dxZx, g(x. ), ¢'(x, &)] = K(¢), (0.5)
Ja

£

a function of the small parameter ¢. (Once x is integrated out, only the e-
dependence remains.)

We use ordinary calculus to find the solution. By the construction (0.3), K (&)
attains the extremum value when e = 0. Since an extremum value is attained

there, K(¢e) must have zero slope at £ = 0 as well. That is,

oK |
-— | =0. 0.6
% (0.6)
=0

The situation is sketched in Fig. 0.2.

We may evaluate the left-hand side of Eq. {0.6). By Eq. (0.5), % depends
upon & only through quantities ¢ and q'. Therefore, differentiating Eq. (0.5)
gives

0K b [050g9 0% dg'
= | dx|——+ ——1 1| 0.7)
de |, ié?c os  0q' Oe
The second integral is
I
[ 07 P _0%0q] _ s
;ax ’ P - 7oy < . )
Ja  0q' 0x0s g’ He |
B

after an integration by parts. (In the usual notation, setting « = 9.%/8q' and
dv = 8%g/0x¢.)

We now show that the first right-hand term in Eq. (0.8) is zero. By Eq. (0.3),
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a b x

Fig. 0.1. Both the solution go(x) and any perturbation go(x) + e7(x) from it must pass
through the endpoints x = ¢ and x = b.

K
. zero slope

0
Fig. 0.2. K as a function of perturbation size parameter €.
Oq
—= = #{x), 0.9
= 1) (09
so that by Eq. (0.4)
9q| dq| ‘
=—-— =0. 0.10
Be | Oe : (0-10)
b a

This proves the assertion.



result with Eq. (0.7 gives
— | = dxgl EY- Sl el I (0.11)
Je | Ja | Og O Oedx N A

ractoring on

the common term dg /O, evaluating it at ¢ = 0 and using Eq.

(0.9) gives

oK b [ 0% d [9F\]
= | dx —— =150 1
Oe 1; .}{a * | 09 dx i\@q’/}J 7(x) (0.12)
&=

1 (0.6) this is to be zero at the solution q- But the factor #(x) is,
A . arbitrary. The only way the integral can be zero, then, is for the
‘actor in square brackets to be zero at each x, that is,

celebrated Euler—Lagrange solution to the problem. It is a
{ ution clearly depends upon the function %,
called the ‘Lagrangian’, for the given problem. Some examples of its use

keturn to the Lagrangian given below Eq. (0.2) where x = ¢ is the

mdepen

i ariable. We directly compute
0.7 L 0F oV
= —mg and 22 _ OV (0.14)
Jq Oq Og
g. (0.13) gives as the solution
o OV
Mg = — e (0.15)
dq

1's law of motion for the particle.

sted that Newton’s law will not be derived in this manner in the
oliow. The EPI principle is covariant, Le., treats time and space in the
hereas the above approach (0.14), (0.15) is not. Instead, the EPI
o¢ used to derive the more general Einstein field equation, from
faws follow as a special case (the weak-field limit).

r may well question where this particular Lagrangian came from.
is that it was chosen merely because it ‘works’, t.e., leads to
of motion. It has no prior significance in its own right. This has
own drawback to the use of Lagrangians. The next chapter
sblem in detail.

S
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What is Fisher information?

Knowledge of Fisher information is not part of the educational background of
: hy should a physicist bother to learn about this concept?
elated) concept of entropy is sufficient o describe the degree of
2 given phenomenon. These important guestions may be answered

point made about entropy is true, but does not g0 far enough. Why not seek a
measure of disorder whose variation derives the phenomenon? The concept of
cannot do this, for reasons discussed in Sec. 1.3, Fisher information will
to be the appropriate measure of disorder for thi is purpose.

{b) Why should a physicist bother to learn this concept? Aside from the partial answer

in{a): (i) Fisher information is a & simple and ntuitive concept. As theories g0, it i
-mentary. To understand it does not require mathematics beyond differ-
juations. Even no prior knowle dge of statistics is needed: this is easy
enough to learn ‘on the ﬂy The derivation of the defi ning property of Fisher
i tion, in Sec. 1.2.3, is readily understood. (if) h:e subje@i has very little
spex zed jargon or notation. The be eginner does not need a glossary of terms and

’ o aid in its understanding. (i) Most i mmportantly, once understood, the
t gives strong payoff — one mi ight call it ‘phenomen-all’ — in scope of
tion. It’s simply worth learning.

information has two basic roles to play in theory. First, it is a measure
fy to estimate a parameter; this makes it 2 cornerstone of the
statistical field of study called parameter estimation. Second, it is a measure of
; disorder of a system or phenomenon. As will be seen, this makes 1t
¢ of physical theory.

Before starting the study of Fisher information, we take a temporary

detour into a subject that will provide some immediate physical motivation
for it

a corner

i~
[\
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‘most elegant’.

its Lagrangians come from. L would be nice to ausﬂfy
om a prior principle, but none seems to exist. Indeed, when a

resented in the literature, it is often with a disclaimer, such as

(¢

”tﬁ

(Meise V:,M'baw 1953) ‘It usually happens that the ﬁ'u@ ential equa-
tions for a given phenomenon are known first, and only later is the Lagrange
function found, from which the differential equations can be obtained.’ Fven
in a case where the differential equations are nor known, often candidate

Lagrangians are first constructed, to see if ‘reasonable’ differential equations

Lagrange function has been principally a contrivance for getting
tanswer. It is the means to an end — a differential equation — but
cance in its own right. One of the aims of this book is to show, in
ngians do have prior significance. A second aim is to presem a
approach to deriving Lagrangians. A third is to clari fy the role of

in a measurement. These aims will be achieved through use of the

‘;890 1%2) was a researcher whose work is not well-known o
phys.%césﬁ& Pf 1s renowned in the fields of genetics, statistics and sugenics.

Among his pivotal contributions to these fields (Fisher, 1959) are the maximum
hke’iéhoo«é estimate, the analysis of variance, and a measure of indet terminacy
now cailed ‘Fisher information.” (He also found it itkely that the famous
geneticist Gregor Mendel contrived the ‘data’ in his famous pea plant experi-
ments, Thw were too regular to be true, statistically.) It will become apparent
that his form of information has great utility in physics as well.

hows a list of Lagrangians (most from Morse and Feshbach,
sizing the common presence of a squared- -gradient term. In
quanfum mechanics, this term represents mean kinetic energy, but why mean
1<Anﬂﬁc energy should be present remains a mystery: Schroedinger called it

‘incomprehensible’ (Schroedinger, 1926).

Historical note: As will become evident below, Schroedingers mysterious
Lagrangiar term was simply Fisher's data information. May we presume from
this that Schroedinger and Fisher, despite developing their famous theories
nearly simultaneously, and with baszcaliv just the English channel between
© communicated? If they had, it would seem that the mystery should
ckly dispelled. This is an enigma.

them, neve

} Ve bﬁfﬁ P

we will show is that, in general, the squared gradient represents a
on that is natural to all fields, i.e., information. In particular, it is the

g

her information residing in a variety of data called intrinsic data.

51e
of

amount ¢



On Lagrangians ‘ 2

Table 1.1. Lagrangians for various physical phenomena. Where do these come
Jrom and, in particular, why do they all contain a squared gradient term?
(Reprinted from Frieden and Soffer, 1995.)

Phenomenon Lagrangian
; 2
s [0g9\"
Classical Mech. Ll 24}y
A\t
w } 1 ! : (}(f : 2% ‘
Flexible String or Compressible Fluid 001 = | —cVg¥Vg
RN
Diffusion Bg. V-Vt —
fZ
Schrodinger W. E. —5- Vy-Vy™ —
Zin
. K2 .
Klein—Gordon Eq. ——Vy-Vy
I
Elastic W. E. ipg* —
Electromagnetic Egs. 4 Z Clg,-Og, —
=}
Dirac Egs. b Vy™ =0
Zfrn
4
General Relativity (Egs. of motion Z -
mon=1 oT o
3
etric tensor
; < h\
Boltzmann Law J\ )
OE /
oo 2
ogi{v
Maxwell-Boltzmann Law 4 (~—§—>J — ...
v

Lorentz Transformation (special relativity) 3:q .09, (invariance o

=4

Helmholtz W, E. —Vy- Tyt

The remaining terms of me Lagrangian !M“ be seen to arise out of the
o

L& gran Ea’ﬁs »Gfb‘qt

information and phenomenological information.

W



245 What is Fisher informatio

The concept of Fisher Afom*aizcz 1s a natural outgro
urer

wth of classical meszs-

1.2 Classical measurement theory

1.2.1 The ‘smart’ measurement
Consider ¢
phenomes
narame‘vﬁef
Vector no

basic problem of estimating a single parameter of a 'sﬁ:em {or
from knowledge of some measurements. See Fig.
wve value 6, and let there be N data values Vs oo, YW=V in
on, at hand. The system is spesn%eﬁ by a conditional probability
) ed the ‘likelithood law’.

iata obey y = 0 + %, where the xy, ..., Xy = X are added noise values.
The daia are used in an estimation principle to form an estimate of 8 which is
an optimal function 9{‘/} of all the data; e.g., the function might be the sample
.- The overall measurement procedure is ‘smart’ in that 8( V) is

-,
t"“
[¢]
ot
=+
e
[¢]

o

mean F‘J*EZ_{

on average a be ﬁer estimate of 6 than is any one of the data observables.

The noise x is assumed to be inirinsic to the parameter 6 under measure-
ment. R‘«‘f ample, 4 and x might be, respectively, the ideal position and
quantum fiuctuations of a particle. Data v are, correspondingly, called intrinsic

d ii{)"lai noise cffects Sudn as ?3015@ of defecfiim are assumed

1.2.2 Fisher information

This information arises as a measure of the expected error in a smart measure-
ment. Consider the class of ‘unbiased’ estimates, obeving @(w = §; these are
cotrect ‘on average’. The mean-square error 2 in such an estimate 6 obeys a
relation (Van Trees, 1968; Cover and Thomas, 1991)

=1, (1.H)
where / is called the Fisher ‘information’. In a particular case of interest
N = 1 (see below), this becomes

s T

/

= fhp 2(x) '/ p(x), p' = dp/dx. (1.2)

{(Throughout the book, integration limits are infinite unless otherwise speci-
ty p(x) denotes the probability density function for the noise value




Classical measurement theory

2
~J

Estimator

8 (y)

Estimation

Principle

ewmoaooet‘c«\‘(:
s

Y

Known but
fixed pdmmeter value 0 causes intrinsic Jatd y Lhmuch mndom sampling of a
likelihood law p{v|#). Then, the random like lihood law and the data are e used to form
the estimator O(y) via an estimation principle. (Reprinted from Frieden, 1991, by
permission of Springer-Verlag Publishing Co.)

x. If p(x) is Gaussian, then / = 1 /0% with ¢° the variance (s
Sec. 8.3.1)

Eg. (1.1} is called ¢ Uamerw!{&c inequality. It express
between the mean-square error e and the Fisher information 7 in
data. Hence, it is an expression of infrinsic uncertainties, i.e., in the absence of
outside sources of noise. It will be shown ar Eq. (4.53) thav the reciprocity
relation goes over into the Heisenberg uncertainty principle, in the case of a
single measurement of a particle position value 6. Again, this ignores the
possibility of noise of detection, which would add in additional uncertainties to
the relation (Arthurs and Goodman, 1988; Martens and de Muynck,

The Cramer—Rao inequality (1.1) shows that estimation quali

decreases) as [ increases. Therefore, / is a quality metric of
procedure‘ This 15 the essential reason why / is called an ‘infors
(1.1) and (1.2) derive quite easily, shown next.

1.2.3 Derivation

We follow Van Trees {1968, Consider the class of estimators
unbiased, obeying
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(1
H
x

iations in data

¥ in the pz@'esence of the para meter v‘aiue 4. PDF p{y!é’) is called the
cod iaw’. Differentiate Eq. {LB‘»&/U? giving
P R 3}4
dy(0 — 0) == — ;m p=0. (1.4)
o8
Use the
a Clnp
er_ 0mp (1.5)
a9 96
and the fact that p obeys normalization. Then E Eq. (1.4) becomes
Jln
%w HZEL -, (1.6)
Factor the integrand as
[0 R
jfd’: 5 ¢ J“(@-@)\/a:a (1.7)
Square the equation. Then the Schwarz i mequality gives
Olnp [ s |
j@( > JH@(%@}%; =1, (1.8)
The left-mest factor is defined to be the Fisher information 7,
I=1(6)= |dyl — = p(v]6), 1.9
1= |as(22) p. o= pirie (19)
while the second factor exactly defines the mean-squared error e?,
= |astic) - o2 (110)
. 3.1}
woted that / = 1(6) in Eq. (1.9), ie., in general 7 depends upon the

arameter . But note the following i important exception to this
rule.

ar

1.2.4 Important case of shift invariance

Suppose 1l
Also, supp

there is only N = 1 data value taken so that pyle) = p(v]6).

that the PDF obeys a property
P(10) = p(x - ). (1.11)
This means that the fluctuations in v from 8 are invariant to the size of g, a




Comparisons of Fisher information 29

kind of shift invariance. (This becomes an expression of Galilean invariance
when random Var*éabi“s v and 0 are 3-vectors instead.) Using condition (1.11
and identity (1.5) in Eq. (1.9) gives

i} - [Op(y — &) .
o] o

since 0/06 = —0/0(y — ). Parameter 9§ is regarded as fixed (see above), so
that a change of variable x = y — 6 gives dx = dy. Eguatwn (1.12) then
becomes Eq. (1.2), as required. Note that / no longer depends upon 8. This is
convenient since 6 was unknown,

o
[,
o
o

M

1.3 Comparisons of Fisher information with Shannon’s form of entropy

A related quantity to / is the Shannon entropy (Shannon, 1948) H {called
Shannon ‘mformation’ in this book). This has the form

H= ~de,av{ x)In plx). (1.13)

Like 7, H is a functional of an underlying probability density function (PDF)
p{x). Historically, [ predates the Shannon form by about 25 years (1922 vs.
1948). There are some known relations conmecting the twe information
concepts (Stam, 1959; Blachman, 1965; Frieden, 1991) but these are not
germane to our purposes. // can be, but is not always, the thermodynamic,
Boltzmann entropy.

The analytic properties of the two information measures are quite different.
Thus, whereas ¥ is a global measure of smoothness in p(x), 7 is a Jocal
measure. Hence, when extremized through variation of p(x), Fisher’s form
gives a differential equation while Shannon’s always gives directly the same
form of solution, an exponential function. These are shown next.

1.3.7 Global vs. local nature

For our purposes, it is useful to work with a discrete form of Eq. { (1.13)

H= Aé\xy Pl In plx,y = 0H, Ax — 0. (i

(Notation 64 ¢
tion.) Gf
this means ih :

{x. . »ix
(xn, D(

fepfesent: an incremient in t

_g,
may be taken in any order

A \

an szi rgoes a rearrangeme:
curve will drastically chan



e

discrete form of Fish

p(x,) undergoes a rearrangement of points x, as above, dis-
in plx,) will now occur. Hence the local slope  values
)}/ Ax will change drastically, and so the sum ( L1535} will also
ly. Since 7 is thereby sensitive to local rearrangement of points
is said to have a property of locality.

Thus, /7 is a global measure, while / is a local measure, of the behavior of
the curve p(x,). These properties hold in the limit Ax — 0, and so apply to the

obability density p(x) as well.

vs. local property has an interesting ramification. Because the
[ contains a squared derivative p'? (see Eg. (1.2}), when the
used as part of a Lagrangian the resulting Euler—Lagrange
equation will contain second-order derivative terms p". Hence, a second-order
differential equation results (see Eq. (0.25)). This dovetails with nature, in that
the major fundamental differential equations that define probability densities or
amplitudes in physics are second-order differential equations. Indeed, the thesis
of this book is that the correct differential equations result when the informa-

change stro i

+
i
5 1L

CoOntnNuous

the integrand of H in (1.13) does not contain a derivative.
en this integrand is used as part of a Lagrangian the resulting
& equation will not contain any derivatives (see Eq. (0.22)); it
n algebraic equation, with the immediate solution that p(x) has the
exponential form Eq. (0.22) (Jaynes, 1957a,b). This is not, then, a differential
' and hence cannot represent a general physical scenario. The excep-

ose distributions which happen 70 be of an exponential form, as in
rechanics. (In these cases, 7 gives the correct solutions anyhow; see

Chap. 7))

It follows that, if one or the other of global measure 7 or local measure 7 is
to be used in a variational principle in order to derive the physical faw p(x)
describing a general scenario, the preference is to the local measure 7.

As all of the preceding discussion implies, A and 7 are two distinct
functionals of p(x). However, quite the contrary is true in comparing / with an
entropy that is closely related to #, namely, the Kullback—Leibler entropy. This
is discussed in Sec. 1.4,
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Table 3.1. 4 2 X 2 payoff matrix.

i J 1 2
1 3.0 2.0
2 5.0 4.0

table. This item results because the point (2, 2) is locally a saddle point in the
payouts, i.e., a local minimum in j and a maximum in i. Also, note that there is

nothing random about this game; every time it is played the result will be the
same. Such a game is called ‘fixed-point’.

3.4.12 EPI as a game of knowledge acquisition

We next construct a mathematical model of the EPI process that has the form
of such a mathematical game (Frieden and Soffer, 19935). Note that
model 18 an explanatory device, and not a distinct, physical derivation of EPL
Also, delegating human-like attributes to the players is merely part of the
anthropomorphic model taken. The ‘game that is played’ is merely a descrip-
tive device. EPI is a physical process (Chap. 10).

The game model can also be regarded as an epistemological model of EPL It
will show that EP] arises, in certain circumstances, as if it were sh‘: result
quest for information and knowledge.

In many problems the Fisher coordinates are mixed real and imaginary
quantities. Denote by x the subset of real coordinates of the pmblmm We want to
deal, in this section, with problems having only real coordinates. Thus, let the
amplitudes g(x) of the problem represent either the fully dimewmh d ampli-
tudes for an all-real case, or the marginal probability amplitudes in the real x for
a mixed case. Eq. (2.19) shows that, for real coordinates x, / monotonically
decreases as the amplitudes g are monotonically broadened or blurred. This
effect should hold for any fixed state of correlation in the intrinsic data.

On the other hand, we found (Sec. 2.3.2) that the form Eq.
represents a model scenario of maxz’mzwa information due to effi
tion and independent data. The latter effect is illustrated by
gxample.

Q

\Z,i > for 7

estima-

Example Suppose th

, isher variables {x, v} and thes
Ga&s‘iam bivariant PDF, with a common variance ¢°, a genera! correlution
. en ;

Lie L0

n value @, Regard the latter as th




L Extrem e D‘"“Sl( al ”ﬂO? mation

«astémaﬁaé Then the Fisher information Eg. (1.9) gives
s shows how the information in ?%e variables {x, 1}
therr degree of correlation. Suppose that the variables are
lated, with p>0. Then as p — 0, / — 2/0? = max. in p. As a

!

depends
mi‘{iaﬁv o
check, this is twice the information in a single variable (see Sec. 1.2.2), as s
required ?‘3}’ the additivity of independent data (Sec. 2.4. }} in the case of
independent data. Hence, independent data have maximal  valu

h s effect holds in the presence of any fixed state of blur, or ﬁalf—width, of
tude function q(x) of all the data fluctuations.
then, deiermined the qua?ifa‘téve depend@nce of { upon the data

-~ g

3.1, the Ve‘f‘{'mi and h@nzontal cuordmates are dvs;gnatcd by i and J,
respectively, although they are continuous variables here. Coordinate i in-
creases with the degreb of independence (by any measure) of the intrinsic data,
and each coordinate j represents a possible trial solution g(x) to EPI in the
particular sequence defined below. Since, as we saw, the 7 values increase with
increasing independence, they must increase with increasing ;.

Now, the solution q = qq to EPI is given by the simultaneous solution to
Egs. (3.16) and (3.18). Also, Eq. (2.19) for / presumes maximal independence
(vertical coordinate) of the intrinsic data (Sec. 2.1.3). Then the EPI solution o

s represented by a particular coordinate value j located along the hottom row
of Fig. 3.2
The trial so

s

”“3”‘

1
i

utions q are sequenced according to the coordinate ; as follows.
Let cach g,(x) function of a given vector g monotonically decrease in blur
from the solution ‘point’ j -— go(x) on the far right to an initial sharp state at
the far left, s‘“f\m‘esp@nding to j= 1. Then, by the form Eq. (2.19) of 7, the
values [ decrease along that row as j increases to the right. On the other hand,
we found before that, for a given j, values 7 increase with increasing I
(independence) values. Then the solution point g, designates a local maximum
in i but a minimum in j, i.e., a saddle point.

We found, by analysis of the game in Table 3.1, that a saddle point represents
the outcome of a zero-sum mathematical game. Hence, the EPI solution point
Go represents the outcome of such a game. Here, the commodity that the two
players are vying for is the amount of Fisher information I in a trial solution g.

Then the game is one of Fisher ‘information hoarding’ between a player A,
who controls the vertical axis choice of correlation, and a player B, who
controls the
players?

rizontal axis choice of the degree of blur. Who are the opposing

The choice of correlation is made by the observer (Sec. 2.1.3) in a prior
scenario, so this identifies plaver A. Player B is associated with the degree of
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Fig. 3.2, The information game. The observer bets on a state of independence 7 (z
value). The information demon bets on a state of blur J (& column value)
from the demon to the observer is the inform
solurnron ¢y, (Reprinted from Frieden and So

blur. This is obviously out of the hands of the observer, Therefore i i ;
by ‘nature’. This may be further verified by the zero-sum nature of the san
By Egs. (3.13) or (3.18) we notice that any information 7 that is acquired by ¢
observer is at the expense of the phenomenon under measurement,
player B is identified to be the phenomenon, or, nature in gen
according to the rules of such a game, nature has the ‘aim’ of incre:
degree of blur.

Hence, for real coordinates x the EPI principle represents a gam
information hoarding between the observer and nature. The observer ws
maximize [ while nature wants to minimize it. Each different physical scenario,
defined by its dependence Jq], defines 2 particular play of the game, leading
to a different saddle point solution g, along the bottom row of Fi
the game-theory aspect of EPI that we sought.

Such real coordinates x occur in the )

.2, Thigis

xwell-Boltzmann law d

in
rivation in

Chap. 7, in the time-independent Schrosdinger wave equation 4
Appendix D, and in the 1/f power-law derivation in Chap.

0

play of the knowledge acqui

information transfer efficiencs

s indicates that, of the two



a particle
y the use of
e force field,
oy Q conserved,
i in a definite energy state £. Tt results
ude funcﬁrm separaices as Y(r, 1) = u(r)exp (iEt/h). Suppose
tuations ¢ are constrained to lie within a Jinite, albeit large,
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&
@
fond
Q
0Q

it
; . ATHY. Show that, under these circumstances, the time-coordinate
contribution ¢ information 7 is merely

an additive constant, and that the space
¢ rise to positive information terms, sc that the game may be
space coordinates. Hence, the knowledge game applies, more
- scenarie of a quantum mechanical particle in a conservative

coordinates ¢

3.4.13 The information ‘demon’

to the game defines a physical law {e.g., the Maxwell—
The preceding shows. then, that a physical law is the result of
on transfer game between an observer and the phenomenon
ion. Since we can sympathize with the observer’s aims of
nation and knowledge. and since he always loses the game to

{or at best breaks even), it seems fitting to regard the
paenomenon as an all-powerful, but malevolent, force: an information “de-
mon’. {Note: demon is not the Maxwell demon.)

In sum 7, for real Fisher coordinates x the EPI process amounts to
carrying through a game. The game is a zero-sum contest between the observer
and the information demon for a limited resource 7 of intrinsic information.

increased
the pheno

1 interest that the existence of such a demon i implies the /-

'1.30). (This is the converse of the proof in Sec. 34.7)
[ —J = K represents the change of Fisher information A7 due to
EPI process J — T that takes place over an interaction time interval Ar.
¢ 1s played and the demon wins, ie., K < 0, and since A] = K
n@cessamiy AT = 0. Then since Af = 0, the Z—*neozxm follows.

meoem Eqg

?r f@z’matém
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on two effects:
can be re-
#* — has an
“fgy Such 2 pair of
ffects in Chap. 11
general, ie., foy
} is not satlsﬁed,
a the known unitary
me identical and,
imde functions q).

oo

(11) must be a distinet, ; vsical input into the
Chap. 4 (Secs. 4.1.15,4.1.16)

scenarios there is not an obvious unitary
m;er QpaCﬁ Sucn cases occur n

EPI process is shaped, or constrained, by the form of the

; ;‘me for the scenario. This may be shown explicitly
v the knowle d@ﬂ game’ of Fig. 3.2. All EPI solutions
w, and each phenomenon has a generally different

. Each such solution point is defined by its

e connsction between statistical unitary trans-
approach. More work needs to be done on exploring

ary transformations, and their implications via the EPI

3.5 EPI as a staie of %@@wéeége
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{B) the concept of a level J of F'%sher information that is
cach phenomenon {Secs. 3.3.1, 3.4.5); and
(C) the invariance, or symmetry, pnncmie {Sec.3.4.

The laws (A)—(C), which we call the ‘top laws’, exist p
dent of, any explicit measurements. They can possibly be ve
by measurement, but that’s another matter.

At the second rung down the knowledge ladder are the three ax

-

(1) Censervation of information perturbation. Eq. (3.13}, d
(i) Eq. (3.19) defining information densities 7,{x), j,(x} or
(i) Eq. (3.20) governing the efficiency of information transitio
from phenomencn to intrinsic data.

At the third rung down the ladder is the EPI primip’
found) from either the axioms or from the existence of a
unitary transformation space.

Finally, at the fourth rung down the ladder, is the carrvin
a calculation. This requires the EPI principle, as augmented b
The output of the calculation is the law Gm'ﬂrmng formation of
q for that scenario. For example, in Chap. 4 it is the Klein—G
governing formation of the amplitude v,

The question of what should be regarded as the laws of physics i
Should they, e.g., be the ‘top’ laws (A)—(C) mentioned above,
conventionally assumed, the output laws, such as the Klein—Go
We can expect, and the chapters ahead will verify, that so
principles (C) do double (or more) duty in implying physi
example, the continuity of flow condition is used by EPI
Maxwells equations (Chap. 5) and the Finstein field equatio
Therefore, there are more physical laws than there are invarian
(C) for their derivation. Clearly it is desirable to have 10 m
assumptions about nature. On this basis, the EPI output laws can
subsidiary to the top laws. They are also subsidiary in being

Commgency situation — measurement — for their thES?QﬁC@ asis o

=3

D

)

3.10 EPI as a physical process
The physical picture that is provided by EPI should alsc be
postulate that if real data are at hand, they must have ber n caused &
process. The EPIL view is that an output law is part of
“process that includes the measurement step as its acti




108 Extreme physical information

‘creates’ the probability law from which it is sampled. Imagine

ement must be a real one upon a real object, say, a particle. The
¢ physically activates the three axioms (or the unitary transforma-
nd, suosequently, EPI as a continuation of the process. In the absence of
measurement upon a real object, the process is not activated so that the
i oes not physically occur. (This does not prevent us from computa-
ng the form of the output law, e.g., the Schroedinger wave equation,
fure, or past, states of an unmeasured, hypothetical entity. We are
cting attention to physical processes, not states of knowledge as in

tionally
to predict

The output law continues as a physical process until another measurement is
made. This re-initializes the state of the particle; etc. This is a continuing
physical process punctuated and refreshed by step-like jolts due to new meas-
urenients. 1he new measurements act as unpredictable, discontinuous, irrever-
sible, instantaneous operations upon the object, somewhat like so many deus ex
maching activities, Chap. 10 and Sec. 11.2.16 clarify these effects.

Since output laws only physically occur as reactions to measurement
they are subsidiary to the top laws (A)~(C), which exist as absolutes, i.e.,
whether or not measurements take place. On this basis, the real laws of physics
are, again, the top laws.

Many ¢ preceding ideas were developed jointly with B. H. Soffer.

oned, above, that the initiation of a measurement creates the
- faw from which the data value will be sampled. That is, it locally
creates the physics of the observed phenomenon. This view regards reality as

being perpetuated by requests for knowledge. It adds a new, creative dimension
to the nominally passive act of observation. A traditional view of reality called
logical positivism holds that all statements other than those describing or
predicting observations are meaningless. Creative observation goes one step
fi stating that the observations are, themselves, meaningless except
w2y create local physics.

Making 2 measurement is a quantitative way of asking a question. The idea
I'measurement begetting phenomenon seems to be the physical counterpart to
adage that a well-posed mathematical problem, or question, contains the
i its solution. It is interesting to consider whether asking a qualitative
s well, leads in some sense to a physical phenomenon (partially
p. 250-2). v
of measurement has some strange ramifications. For example, in
own Schroedinger’s cat experiment, it is now observation of the cat
it or endows it with life. Or, in the many-worlds theory of

G
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Everett (1973), whereby each new observation occurs in a new world, the new
world 18 now created by the observation (see also Sec. | 1.2.16).

3.11 On applications of EPI

In each of the following chapters, the EPI principle is applied to a different
measurement scenario. Each such scenario leads to the derivation of 2 different
physical law. The ordering cof the chapters is, in the main, arbitrary so that they
may be read in any order. However, the chapters are grouped as to similarity of
approach or of application.

The flow of operations in each chapter’s derivation follows those in Fig. 3.4,
A parameter § is chosen to be measured. The measurement is to be carried
through with an instrument that has a given ‘instrument function’ {Sec. 3.8,
Chap. 10). The measurement is initiated. The measurement process interferes,
and interacts, with the phenomenon governing the parameter. This results in
the perturbation of all the probability amplitudes q describing the phenomenon
in the input (object) space to the instrument.

The phenomenon is identified by a suitable invariance principle. The
principle should, by Wheeler’s proposal of Sec. 0.1, be identified by the
internal processes of the measuring instrument. An example was the unitary
transformation suggested by the optical device in Sec. 3.8. An alternative 1 2
unitary transformation is a property of continuity of flow for the scurces. This
could likewise be implied by the operation of a measuring device that obeys
continuity of flow. The invariance principle is the only physical input to the
procedure and, ultimately, allows the bound information J to be solved for.

The continuity of flow and unitary transformation principles are, respec-
tively, invariance principles of the non-equality and equality type. These are
designated as types (a) and (b), respectively, in Sec. 3.4.6. Type (a) principles
give rise to a unique EPI solution, while type (b) principles give rise to two
distinct EPI solutions. It is interesting that type (b) scenarios only occur for
quantum phenomena (Chaps. 4, 10, 11 and Appendix D). All other phenomena
that are derived in this book are of type (a).

The perturbed probability amplitudes g perturb, in turn, the channel capacity
{ (through defining Eq. (2.19)) and information J (through Eq. 73.13)). This
activates the steps (3.13)—(3.20) defining the EPI process.

The EPI solutions define the phenomenon in the input space 1o f
ing instrument. Solutions at the output, or measurement, space must be
obtained by other means. As examples: the output solution is obt

simple convolution of the EPI solution with the instrument £
{(3.51), {10.26h)).




