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1. Introduction 

Building on an idea by Pitowsky (1990), David Malament (private communica- 
tions), Hogarth (1992) and Earman and Norton (1993) have shown how it is possible 
to perform computational supertasks-that is, an infinite number of computational 
steps in a finite span of time-in a kind of relativistic spacetime that Earman and 
Norton (1993) have dubbed a Malament-Hogarth spacetime2. 

Definition I A spacetime (M,g) is Malament-Hogarth just when there is a future 
endless curve h c M  with past endpoint and a point q c  M such that 

ds2 = and h d - ( q ) .  
h 

(Hereafter, the symbols "q" and "h"are assumed to have the properties they have in 
Definition 1. I shall also speak of a "h-curve".) 

Various examples of Malament-Hogarth (hereafter, M-H) spacetimes are given in 
Hogarth (1992), but the following artificial example from Earman and Norton (1993) 
is perhaps the simplest. Start with Minkowski spacetime (R4, q )  and choose a scalar 
field R on M such that R = l  outside a compact set C c M  and R tends rapidly to infini- 
ty as a point r c  C is approacl~ed. The spacetirne (R4-r, C12q), depicted in Figure 1, is 
then M-H. (Although the region inside C appears quite small, it is in fact as large as 
the complement of C.) 

Hogarth (1992) and Earman and Norton (1993) show how in a M-H spacetime, 
e.g., ( ~ ~ - r ,  one might solve, e.g., the Goldbach conjecture. From a point p~ h Q ~ ~ I ) ,  
launch a Turing machine along h that is primed to first check if 2 is the sum of two 
primes, then likewise to check 4, then 6, and so on, a d  infiniturn. The Turing machine 
is also primed to signal to q if and only if it finds a counter-example to the conjecture, 
and then to halt operations. Since an observer, e.g. 0 in Figure 1, can travel from p to 
q in a finite span of proper time, she can discover the truth of the conjecture before 
her day's out. Fer~nat's last theorem is cracked in a similar fashion. 
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Figure 1. A toy Malament-Hogarth spacetime 

2. Solving the Turing Unsolvable 

I move now to the objectives stated in the abstract. To simplify matters in this sec- 
tion, no account will be taken of the physical plausibility of the spacetirnes under con- 
sideration or of the behaviour of the matter fields they support. Moreover, it will be 
assumed that every spacetime pennits Turing machines of any size to operate unprob- 
lematically and that communication to future events is always possible. Note, howev- 
er, that Hogarth (1992) has shown that M-H spacetirnes cannot be globally hyperbolic 
(so they violate strong cosmic censorship), and that Earrnan and Norton (1993) have 
shown that in many M-H spacetirnes photons travelling between some events suffer 
infinite blue shifts (which may indicate horizon instability). 

A problem is said to be Turing solvable if there is a Turing machine (operating ac- 
cording to a finite instruction set, but having access to an infinite memory store) that 
can solve the problem after a finite number of steps. In this paper I shall say, some- 
what informally, that a problem is soh~able in a spacetime ( M , g )if there is an observer 
O c M  who can initiate a procedure which is comprised of only Turing machines and 
ordinary communication devices and which will deliver the problem's solution to 0 
after a finite span of 0 ' s  proper time. 

Thus the Goldbach conjecture and Fennat's last theorem are both solvable in the 
M-H spacetime in Figure 1, and indeed in any M-H spacetime. These two problems 
are Turing solvable (because in both cases the solution can be written into the finite 
program of a TM), so they do not prove a difference between this Inore general solv- 
ability and Turing solvability. I will now give a proof, by showing how a problem that 
is known to be Turing unsolvable is demonstrably solvable in any M-H spacetime. In 
fact I will give two examples: (see Boolos and Jeffery 1989.) 

( 1 )  The halting problem. This is the problem of deciding if an arbitrarily given Turing 
machine, TM, will or will not eventually halt. Working in a M-H spacetime (M,g), 
adopt the following procedure. Launch TM along h c M ,  having first primed TM 
to signal to q~ M if and only if TM halts. The question will then be settled at q. 

(2) The decision problem forfirst-order logic. This is the problem of deciding the va- 
lidity or invalidity of an arbitrary sentence of frst-order logic. First recall that 



there is Turing machine, TM, that will halt after a finite number of steps if and 
only if a given sentence S of first-order logic is valid (ibid., p. 142). So, working 
in a M-H spacetime (M,g), launch TM along hcM,  having first primed TM to sig- 
nal to qc M if and only if TM halts. Upshot: a signal at q means the sentence is 
valid, no signal at q means the sentence is invalid. 

In general, the decision problem for a property P is Turing solvable if there is both a 
Turing machine TM that will halt after a finite number of steps if and only P holds 
and a Turing machine TM' that will halt after a finite number of steps if and only if P 
does not hold. If only one (or both) of the pair TM, TM' exists, then the decision 
problem for P is said to be partially T u r i n ~  solvable. Problems ( 1 )  and (2) above are 
clearly of this kind. It is now evident that: 

Result I .  Any decision problem that is partially Turing solvable is solvable in a M-H 
spacetime. 

Attention is now turned to the decision problem for arithmetic in the standard model. 
In what follows, the word "sentence" is used as shorthand for "sentence in the lan- 
guage of arithmetic". The results below are standard (ibid.). 

(i) Deciding (i.e. establishing whether true or false) arbitrary sentences in arithmetic 
is not partially Turing solvable. (This is a version of Godel's first incompleteness 
theorem.) 

(ii) Deciding arbitrary quantifier-free sentences is Turing solvable. 

(iii) There is a Turing machine that will, in a finite number of steps, translate an arbi- 
trary sentence S into a coextensive (i.e. a sentence with the same truth-value) sen- 
tence, S', in prenex form (all quantifiers occurring at the extreme left). 

(iv) There is a Turing machine that will, in a finite number of steps, translate an arbi- 
trary sentence S (written in prenex fonn) containing two juxtaposed quantifiers of 
the same type into a coextensive sentence, S', with one quantifier of that type in 
place of the previous two. 

(v) If VnS(n) is a sentence or 3nS(n) is a sentence, then the set of sentences {S(l),  
S(2), S(3), ...} is recursively enumerable (that is, there is a Turing machine that 
will generate S(n) for any given n). 

Because of (iii), it may be assumed that all sentences are in prenex form. 

Because of (ii) and (v), it is clear that deciding arbitrary sentences of either the 
form 3nS(n) or VnS(n), where S is quantifier-free, is partially Turing solvable. So by 
Result 1, they are both decidable in any M-H spacetime. This fact, together with (iv) 
above, implies that arbitrary purely existential or purely universal sentences in arith- 
metic are decidable in any M-H spacetime. (Incidentally, the Goldbach conjecture 
and Fermat's last theorem can both be stated as purely universal sentences.) 

But because of (i), Result 1 cannot be used to show that arithmetic is decidable in 
any M-H spacetime. Indeed, although it cannot be "proved" that arithmetic is unde- 
cidable in, e.g., the M-H spacetime in Figure 1, there is no obvious way to construct a 
procedure in this particular spacetime that will decide even an arbitrary V3 type sen- 
tence. A more subtle kind of M-H spacetime is required, as I will now show. The 
following analysis contains a new piece of terminology. If a spacetime (M,g) con- 



tains non-intersecting open regions Oi, i=1,2,. .. such that (1) for all i OicI-(Oi+l) and 
(2) there is point q~ M such that for all i OicI-(q), then the 0 ,s  are said to form apast 
temporal string, or just string for short. See Figure 2 (i). 

0 0
SAD, region SAD2 region 

SADl regioo SAD2 region 0 0
00 0SADl region (>SA'.;regio~i 

(i) A temporal string. (ii) A SADz spacetime. (iii) A SAD? sprtcetime. 

P(3) decides S(3) bSAD, region 

P(2) decides S(2) SAD,,, region SADz region 0 

TM 


P(1) decides S(1) SAD,, regioi~ SAD, region 0 

(iv) Diagram used in Result 2. (v) An AD spacelime. 

Figure 2 

Llefinition 2. A spacetilne (M,g) is an nth-order arithmetical sentetzce deciding (de- 
noted SAD,) spacetirne if the n conditions contained in the following scheme are 
satisfied. 

If n=l, (M,g) is a M-H spacetime. 

If n>l, (M,g) admits a string of SAD,,_I spacetimes. 




According to Definition 2, a SADl spacetime is a M-H spacetime, a SAD2 spacetime is 
a spacetime that contains a string of SAD1 spacetimes (Figure 2 (ii)), a SAD3 space- 
time is a spacetime that contains a string of SAD2 spacetimes (Figure 2 (iii)), and so on. 

The efficacy of SAD spacetimes to decide sentences in arithmetic derives from the 
following result. 

Result 2. Let (M,g) be a SAD,+I spacetime and let 3nS(n) and VnS(n) be two 
sentences in arithmetic. Suppose that for each 1121, S(n) is decidable in any SAD,, 
spacetime. 

Then 3nS(n) and VnS(n) are both decidable in (M,g). 

Proof. This consists of showing how appropriately chosen and appropriately located 
hardware can be used to decide 3nS(n) and VnS(n). Part of this involves the 
Turing machine, TM, of (v) above travelling along a h-curve that picks up one 
hour of proper time in each SAD, component (this is possible because every such 
component admits a h-curve), as depicted in Figure 2 (iv). TM is primed to gener- 
ate S(1) in the lead up to the first component and to signal that sentence to the first 
component. TM is also primed to generate, for n>l, S(n) in the (n-1)th component 
and to signal that sentence to the nth component. 

Now let P(n) denote the procedure that decides S(n). Tlie procedure for deciding 
3nS(n) consists of adding to each P(n) transmitting devices and receivers which oper- 
ate as follows. 

P(l)  signals to q and P(2) if and only if S(1) is true. 

For n>l, P(n) signals to P(n+l) if and only if P(n-1) signals to P(n). 

For n>l, P(n) signals to q and P(n+l) if and only if S(n) is true and P(n) has not 


received a signal from P(n-1). 

This procedure ensures that a single signal is sent to q if and only if there is an n such 
that S(n) is true. (The signal is actually sent by P(m), where In is the smallest integer 
for which S(m) is true.) Upshot: a signal at q means 3nS(n) is true, no signal at q 
means 3nS(n) is false. 

The procedure for deciding VnS(n), given below, is similar except this time a sin 
gle signal at q means VnS(n) is false, no signal at q means VnS(n) is true. 

P(1) signals to q and P(2) if and only if 4 ( 1 )  holds. 

For n>l, P(n) signals to P(n+l) if and only if P(n-1) signals to P(n). 

For n>l, P(n) signals to q and P(n+l) if and only if 4 ( n )  holds and P(n) has 


not received a signal from P(n-1). 

Thus 3nS(n) and VnS(n) are seen to be decidable in (M,g). QED 

We have seen already how single quantifier sentences can be decided in SAD 1 
(=M-H) spacetimes. By Result 2, double quantifier sentences can be decided in 
SAD2 spacetimes. Applying Result 2 again shows that triple quantifier sentences can 
be decided in SAD3 spacetimes. And continuing in this way we see that n-tuple 
quantifier sentences can be decided in SAD,, spacetimes. 

In fact, these different order SAD spacetimes can be fitted into a single spacetime. 



Definition 3. A spacetime (M,g) is an arithmetic deciding (AD) spacetime just when 
(M,g) admits a string of open regions 01,  0 2 ,  0 3 ,  such that for each n21, (On,g) 
is a SAD,, spacetime. 

In Figure 2(v), an observer can decide an arbitrary sentence S by communicating it to 
the SAD, region that decides sentences of that order. Arithmetic is therefore decid- 
able in an AD spacetime. 

It is natural to wonder how the computing hardware necessary to decide all of 
arithmetic gets installed in the AD spacetime. What follows is a prima facie reason-
able method of performing that task. 

The various paths of the hardware through spacetime are represented by world- 
lines, and the idea of the method is to begin with one worldline at the initial event p in 
Figure 3 and to have a process of worldline branching that results in each SADl com- 
ponent being populated by a h-curve and every other component of every string being 
populated by at least one worldline. (Recall that the SAD1 spacetimes accommodate 
Turing machines travelling on h-curves, while all the other components accommo- 
date communicating devices B la Result 2.) 

(1) A worldline that meets a SAD, component, n>l ,  must bifurcate, with one world- 
line branch extending to the next component of that string and the other branch en- 
tering the component and extending to the first component of the string on the 
"next level down". 

(2) Two kinds of worldline must follow the first available h-curve: the one that enters 
the first SAD1 component and any one that is constrained by ( I )  to enter a SADl 
component. 

Figure 3 illustrates the process at work on the SADl and SADZ stages of the AD space- 
time. The tree-like property is an obvious attraction, but this system also guards against 
one potential disaster, namely, that an infinite amount of hardware mass might be 
forced to reside in a compact set. I omit the formal proof of why this cannot happen. It 
relies on the fact that if a region R contains worldlines whose lengths sum to infinity, 
then it must contain at least one future endless curve. But according to Proposition 
6.4.7 in Hawking and Ellis (1973), this can only occur if R is non-compact or violates 
strong causality. Part of the reason why I chose from the outset to consider only strong- 
ly causal spacetimes was to ensure that in t h s  case R must be non-compact. 

Admittedly, there remains the worry that an unbounded mass might reside in a re- 
gion which is non-compact but of finite volume. I am not sure whether or not this can 
happen. (Are there any SADl spacetimes with finite volume?) In any case, the exam- 
ple in the next section suffers no such pathology. 

We have also shown that the hardware for the AD spacetime can be built up using a 
finite set of instructions. Roughly: start at an event p, then manoeuvre and bifurcate ac- 
cording to (1) & (2), while creating communication devices and the Turing machines of 
(iv), and having them operate according to Result 2. One other instruction states that 
the instructions of the previous sentence must be issued to each new piece of hardware. 

A word about terminology. In what follows, a SAD spacerime will be used as a 
generic term to cover SAD, spacetimes of all orders and AD spacetimes. (Of course 
in this case SAD=SADI, but the term "SAD1" sounds rather specific.) Also, a simple 
SAD, spacetime is a SAD, spacetime that is not SAD,,+1. Finally, a SADn (respec- 



tively, SAD, AD, etc.) computer will refer to a computing device whose underlying 
spacetime is SADn (respectively, SAD, AD, etc.). 

Figure 3. The "hardware tree" grows up into the AD spacetime. 

3. An Example of an AD spacetime3 

Start with Minkowski spacetime (R4, Q)and choose a compact set CcR4. Now 
draw a closed inertial line segment v c C .  About this V, define regions 01,02,03,... 
with inclusion relations appropriate for all the strings of an AD spacetime, in such a 
way that v intersects every component, as depicted in Figure 4. Then choose a scalar 
field R on M such that R=1 outside C and C2 tends rapidly to infinity as the line v is 
approached. Remove V .  Then ( R ~ - v ,  CI2q)is an AD spacetime because 0 is a SAD I 
spacetime, O2 is a SAD2 spacetime, and so on. Moreover, it not difficult to show that 
(despite appearances!) every component of every string has infinite volume. 

Although the corresponding AD computer consists of an infinite number of infinitely 
large regions, each with its own communication devices and Turing machines, it can still 
be contained in a box. e.g. the one depicted in Figure 4, withfiite spatio-temporal surface 
area. So in this regard this AD computer is no different to an ordinary desktop computer. 

I do not yet have a proof, but I think that anti-de Sitter spacetime (see Hawking 
and Ellis 1973, p.132) is probably an AD spacetime. This spacetime is usually not 



viewed as a reasonable solution of the Einstein equations, but the fact that its structure 
is so simple hints, perhaps, that reasonable AD solutions may indeed exist. 

v removed 

Figure 4. An AD spacetime. 

4. The Impact on Church's Thesis 

A typical way of stating Church's thesis (CT) is the following: In an ideal world 
the limit of computation is exactly captured by Turing computability. As it stands, 
this statement of CT is vague: it has no truth-value since we are not told which set of 
worlds, W, the "ideal" worlds are chosen from. Different choices of W give different 
truth-values, but I want to choose a W which gives CT a real fighting chance of suc- 
cess. (In that way, the doubt I manage to cast on CT will not be seen as a hollow vic- 
tory.) This means W should not be the set of logically possible worlds; for the "Zeus 
machine" in Boolos and Jeffery (1989, p. 14) is perfectly consistent and is able to per- 
form Turing unsolvable tasks. Nor, on the other hand, should W be a set of worlds all 
of which are very similar to our universe in such matters as possessing only a finite 
amount of material (as our universe might) or being temporally finite (as our universe 
might be). For that would again make CT fail-this time because the arbitrarily mas- 
sive Turing machines entailed by Turing computability would be impossible, leaving 
the ideal computing limit somewhere short of Turing computability. 

Thus the set W should be neither very large (all logically possible worlds) nor very 
small (worlds very similar to our own). A middle way is needed. One's initial reaction 
might be to take W as the set of worlds that are "beefed up" versions of our world, i.e. 



worlds based on our world but with enough added space, time and material to allow the 
realisation of a Turing machine. But of course this is naive, for spacetimes like the 
Robertson-Walker k=+l (big bang, big crunch) model, which is a good candidate for 
the cosmological structure of our universe, cannot be spatio-temporally extended in any 
natural way and cannot be plied with an unbounded amount of material. Another and 
more promising proposal is that W should be the set of physically possible worlds, i.e. 
worlds that share our universe's fundamental laws of physics, but not necessarily our 
universe's boundary conditions. Of course given our ignorance of what these laws are, 
this proposal provides at best a working characterisation of W. Nevertheless, this some- 
what ill-defined W results in a version of CT that is physically relevant, is not refuted 
by the hypothetical Zeus machine, and does not fail on account of material limita- 
tion-assuming of course that material limitation is not a requirement of physical law. 

Moreover, this CT stands firm against two putative counter-examples that have ap- 
peared in the literature (Griinbaum 1967, Earman and Norton 1993). Both are ma- 
chines that can perform an infinite number of computations in a finite time. In one 
version the machine's components are accelerated to infinite speed in a finite time; in 
the other, the components shrink continuously to nothing in a finite time. But neither 
machine seems to cut any ice with CT, for whatever the laws of physics in fact are, 
the requirements of speed and shrinkage presumably violate them. 

But is this CT true? Well, it will be if there is at least one physically possible Turing 
machine and if there are no physically possible non-Turing computers (=SAD comput- 
ers in this context). The f i s t  part of the condition is almost certainly true because there 
are some thoroughly reasonable solutions of the Einstein equations (e.g. the Robertson- 
Walker k=O big bang model) which have both spacetime enough and matter enough to 
realise a Turing machine. What about the second part of the condition, that all SAD 
computers are physically impossible? This seems prima facie false because there are 
known simple SADl solutions of the Einstein equations with spacetirne enough for the 
SAD1 hardware. The Reissner-Nordstrom black hole solution (see Hogarth 1992) is a 
case in point. Admittedly this is a vacuum solution, but its existence suggests that sim- 
ple SAD1 is a not uncommon property among reasonable models, including ones with 
infinite material. Against this however is the fact that all SAD spacetimes violate vari- 
ous versions of cosmic censorship. That is to say, physicists have conceived of laws 
that would effectively outlaw SAD spacetimes and afortiori SAD computers. But of 
course it is not yet known whether any kind of censorship laws really exist, still less 
whether one exists that will outlaw SAD computers and save CT. Far be it from me to 
predict the outcome of the debate on the cosmic censorship hypothesis, but I will note 
that, in concluding his survey of the subject, Earman (1994) remarks that "it is much 
too soon to pronounce the cosmic censorship hypothesis dead, but the prognosis is not 
particularly cheerful". Perhaps then the same could be said of CT. 

At this juncture, advocates of CT might try to advance their case from a quite differ- 
ent angle, by appealing to the fact that several apparently independent explications of the 
concept of computability-by Markov, Church, Post, Kleene etc.-have all been found 
to be exactly equivalent to Turing computability. Of course, I concede this equivalence. 
But as Horowitz (1992) ha? rightly stressed, all these explications rest on a shared as-
sumption: that it is impossible to perform a computational super-task. Thus the very as- 
sumption that threatens Turing computability, also threatens these other explications. 
Any attempt, therefore, to base a case for CT on this equivalence is futile: if one explica- 
tion falls, they all fall. 

To summarise, the physically possible computing limit does not "hold sway above 
the flux", like the concepts of pure mathematics, but is fxmly tied to some contingent 



and as yet unknown facts about the world. I have suggested that this elusive limit will 
extend at least as far as the Turing machine, but that it may extend yet further, to the 
simple SADl computer and perhaps even to the AD computer. Indeed the limit point 
could even lie somewhere between these last two computers, e.g. at some simple SAD, 
computer, where n>l. In any case, this particular issue can only be settled with a deep- 
er understanding of singularities and the status of the cosmic censorship hypothesis. 

5.  Towards a Theory of Non-Turing Computability 

In his famous paper of 1937, Alan Turing set out the details of what he believed to be 
the most general computer. The result was surprisingly simple. Just a machine com- 
prised of an ordinary mechanical device4 and a infinite supply of paper tape for memory 
storage. This Turing machine is intuitive, for sure, but it is also fantastic: it possesses an 
unbounded quantity of material and is capable of operating for all eternity. This might 
lead us to wony that such a machine is physically impossible (how, otherwise, could it 
be set apart from the incredible shrinking computer of the previous section?), but for 
Turing and most of his followers there was no such concern. They simply grasped the 
idea of a finite computing device, closed their eyes, and extrapolated like mad. 

Now Turing's intuition was, I presume, based on Newtonian spacetime. Had his 
intuition been deepened by exposure to SADl spacetimes then he might have arrived 
at the SADl computer in Figure 1. Of course that is only a guess. But it does show 
that if the intuitive approach of Turing and his followers-roughly, the global me- 
chanics of the machine are unproblematic-is applied not to (the now defunct) 
Newtonian spacetime but to a spectrum of relativistic spacetimes, the result is not 
only Turing machines but also various kinds of non-Turing computers. This provides 
the initial impetus for elaborating a theory of non-Turing computability. The theory's 
raison d'2tre is further discussed in the final section. But now I turn to some results 
and conjectures of the theory itself. 

We first recall that Turing computability theory ordinarily begins with an argument 
aimed at showing that any number of Turing machines in any configuration can always 
be mimicked by a single appropriately programmed Turing machine. The theory then 
proceeds in terms of this one abstract and easily characterised machine, and thereby 
manages to transcend irrelevant hardware details. I now use this approach with the 
simple SADl computer and the AD computer (i.e. the least and the most powerful of 
the SAD computers, roughly speaking). Thus, an ideal simple SADl computer is a 
simple SADl computer that can mimic any other simple SADl computer; and an ideal 
AD computer is defined analogously. Now consider the following five claims. 

(a) The SADl computer underpinned by the spacetime in Figure 1 and fitted with a 
single Turing machine that follows the 1-curve is an ideal simple SADl computer. 
I shall refer to this particular computer as the naked Turing machine. 

(b) All partially Turing solvable problems are solvable by the naked Turing machine. 
They included: all Turing solvable problems, the Halting problem, first-order pred- 
icate logic (i.e. Hilbert's Entscheidungsproblem), Diophantine problem (i.e. 
Hilbert's tenth problem) and the word problem for semi-groups. 

(c) Arithmetic is not decidable by the naked Turing machine. 

(d) A decision problem that is not partially Turing solvable is not solvable by the 
naked Turing machine. 



Statements (b), (c) and (d) are bue ((b) is Result 1, (c) and (d) are easily proved), but 
statement (a) is a conjecture. My evidence for (a) derives only from the fact that all 
my attempts to construct a simple SADl computer that cannot be mimicked by this 
putative ideal computer have failed. 

Now to AD computers. 

(e) The AD computer underpinned by the spacetime in Figure 4 and fitted with the 
AD solving hardware described in Section 2 is an ideal AD computer. I shall refer 
to this particular computer as the multi-string computer. 

(f) Arithmetic is decidable by the multi-string computer. 

(g) The multi-string computer can mimic any computer underwritten by a relativistic 
spacetime and containing only Turing machines and simple communications de- 
vices. In other words, the multi-string computer is the "ideal relativistic computer". 

Statement (0is true, but statements (e) and (g) are conjectures. Because (g) is 
stronger than (e), I will only try to justify the former. Two arguments support its case. 
The first is that @SAD1 computers are the basic building blocks of relativistic com- 
puters (as they seem to be), and if forming strings is the best method of connecting 
computers together (as it seems to be), then the multi-string computer is king because 
it possesses strings of every order. The other reason is that all my various attempts to 
construct a machine that cannot obviously be mimicked by this computer have failed. 
For example, one can show that a single multi-string computer can mimic a string of 
multi-string computers; it can also mimic a countably infinite number of multi-string 
computers working "in parallel". I know of no proble~ns that are not solvable by the 
multi-string computer. But some are sure to exist. 

6. Concluding Dialogue 

Frank, who works on the theory of computability by means of Turing machines, 
reckons these new computers are not worth the candle. Isabel disagrees. 

Frank I like the idea of these non-Turing computers, but frankly I can't see them 
catching on. They're just too, well, fantastic. 

Isabel Surely a Turing machine is fantastic. At least, an infinitely massive device ca- 
pable of computing to eternity sounds pretty fantastic to me. 

Frank Well that's one way of putting it. I prefer to think of a Turing machine as just 
the natural extension of an everyday computer. 

Isabel In a way it is. And that's why the hardware of these new computers is chosen 
to be essentially nothing but Turing machines. A simple SADl computer, for ex- 
ample, is just a Turing machine to the past of a point. Or in more picturesque 
terms, it's a naked Turing machine. 

Frank Yes, O.K., when 1 said the non-Turing computers are fantastic I didn't mean 
the hardware so much as the spacetime supporting the hardware. Of course I be-
lieve in Turing machines; that's my job! No, my unease stems from the wild 
spacetimes you employ. 



Isabel They are not all wild. For example, there is a spacetirne that represents a 
charged black hole which is SADI. 

Frank Yes, but surely the spacetime underlying our universe is not like that. These 
solutions are just idealisations. 

Isabel That's beside the point. You don't want to rubbish a hypothetical 
computer-Turing or non-Turing-simply because it can't fit into our universe. If 
you do, you'll leave your precious Turing machine to the mercy of the cosmolo- 
gists, because according to one of their theories, the universe and all it contains, 
will crunch to nothing in a few billion years. Your Turing machine would be cut- 
off in mid-calculation! 

Frank O.K. I grant you that the particular spacetime structure of our universe has lit- 
tle bearing here. But isn't it true that while lots of really nice spacetimes can house 
Turing machines, all the spacetimes that might house non-Turing computers, in- 
cluding that black hole spacetime you just mentioned, are in some way grossly un- 
physical? I've heard you say yourself that these spacetimes are prone to infinite 
photon blue shifts, horizon instabilities, and the red pencil of the cosmic censor. 
They don't seem to have a hope. 

Isabel On the conhary, they have lots of hope. For one thing, the problems you men- 
tion are probably just aspects of the putative cosmic censor; they're not additional 
problems. And the verdict on whether there is a cosmic censor could go either 
way: the jury is still out. I take it that you're prepared to accept that. In that case, 
am I to understand that you want to argue against non-Turing machines solely be- 
cause the spacetimes that underwrite them may fall prey to a censor? 

Frank Pretty much, yes. 

Isabel Then let me put this to you. Just suppose that tomorrow we read in Nature 
that a new law of physics has been discovered that forbids spacetime to extend to 
temporal infinity. It would be a kind of "temporal infinity censor", if you like. 
Now that would censor your Turing machines, and so my question is: would the 
fact of this censor destroy the Turing machine's raison d'2tre? I mean: be honest, 
would you quit your line of research? 

Frank Well probably not. 

Isabel And I say "fair enough". But just as the prospect of temporal censorship need 
not affect your attitude towards Turing computers, so also the prospect of cosmic 
censorship need not put us off non-Turing computers. 

Notes 

I1 would like to thank Gordon Belot, George Boolos, Rob Clifton, John Norton, 
Adrian Stanley and particularly Jeremy Butterfield for their helpful suggestions. 

21 shall follow the standard notational conventions of Hawking and Ellis (1973). 
All spacetimes are assumed to be causally well-behaved in the sense that they satisfy 
strong causality. 



3 ~ h e r eare other known AD spacetimes, but this beautifully simple example is due 
to John Norton. 

4 ~ nTuring (1937), the "mechanical device" is actually a man faithfully executing a 
finite set of instructions. 
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