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1. Introduction

Building on an idea by Pitowsky (1990), David Malament (private communica-
tions), Hogarth (1992) and Earman and Norton (1993) have shown how it is possible
to perform computational supertasks—that is, an infinite number of computational
steps in a finite span of time—in a kind of relativistic spacetime that Earman and
Norton (1993) have dubbed a Malament-Hogarth spacetimez.

Definition 1 A spacetime (M,g) is Malament-Hogarth just when there is a future
endless curve ACM with past endpoint and a point g€ M such that
}{dsz =eoand Ac)(q).

[T

(Hereafter, the symbols “q” and “A’ are assumed to have the properties they have in
Definition 1. I shall also speak of a “A-curve”.)

Various examples of Malament-Hogarth (hereafter, M-H) spacetimes are given in
Hogarth (1992), but the following artificial example from Earman and Norton (1993)
is perhaps the simplest. Start with Minkowski spacetime (R4, 1)) and choose a scalar
field Q on M such that Q=1 outside a compact set CcM and Q tends rapidly to infini-
ty as a point re C is approached. The spacetime (R%-r, Q21)), depicted in Figure 1, is
then M-H. (Although the region inside C appears quite small, it is in fact as large as
the complement of C.)

Hogarth (1992) and Earman and Norton (1993) show how in a M-H spacetime,
e.g., (R%r, Q21), one might solve, e.g., the Goldbach conjecture. From a point pe A
launch a Turing machine along A that is primed to first check if 2 is the sum of two
primes, then likewise to check 4, then 6, and so on, ad infinitum. The Turing machine
is also primed to signal to ¢ if and only if it finds a counter-example to the conjecture,
and then to halt operations. Since an observer, e.g. O in Figure 1, can travel from p to
q in a finite span of proper time, she can discover the truth of the conjecture before
her day’s out. Fermat’s last theorem is cracked in a similar fashion.
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Figure 1. A toy Malament-Hogarth spacetime.

2. Solving the Turing Unsolvable

[ move now to the objectives stated in the abstract. To simplify matters in this sec-
tion, no account will be taken of the physical plausibility of the spacetimes under con-
sideration or of the behaviour of the matter fields they support. Moreover, it will be
assumed that every spacetime permits Turing machines of any size to operate unprob-
lematically and that communication to future events is always possible. Note, howev-
er, that Hogarth (1992) has shown that M-H spacetimes cannot be globally hyperbolic
(so they violate strong cosmic censorship), and that Earman and Norton (1993) have
shown that in many M-H spacetimes photons travelling between some events suffer
infinite blue shifts (which may indicate horizon instability).

A problem is said to be Turing solvable if there is a Turing machine (operating ac-
cording to a finite instruction set, but having access to an infinite memory store) that
can solve the problem after a finite number of steps. In this paper I shall say, some-
what informally, that a problem is solvable in a spacetime (M,g) if there is an observer
OcM who can initiate a procedure which is comprised of only Turing machines and
ordinary communication devices and which will deliver the problem’s solution to O
after a finite span of O’s proper time.

Thus the Goldbach conjecture and Fermat’s last theorem are both solvable in the
M-H spacetime in Figure 1, and indeed in any M-H spacetime. These two problems
are Turing solvable (because in both cases the solution can be written into the finite
program of a TM), so they do not prove a difference between this more general solv-
ability and Turing solvability. I will now give a proof, by showing how a problem that
is known to be Turing unsolvable is demonstrably solvable in any M-H spacetime. In
fact I will give two examples: (see Boolos and Jeffery 1989.)

(1) The halting problem. This is the problem of deciding if an arbitrarily given Turing
machine, TM, will or will not eventually halt. Working in a M-H spacetime (M,g),
adopt the following procedure. Launch TM along AcM, having first primed TM
to signal to ge M if and only if TM halts. The question will then be settled at (.

(2) The decision problem for first-order logic. This is the problem of deciding the va-
lidity or invalidity of an arbitrary sentence of first-order logic. First recall that
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there is Turing machine, TM, that will halt after a finite number of steps if and
only if a given sentence S of first-order logic is valid (ibid., p. 142). So, working
in a M-H spacetime (M,g), launch TM along AcM, having first primed TM to sig-
nal to ge M if and only if TM halts. Upshot: a signal at g means the sentence is
valid, no signal at q means the sentence is invalid.

In general, the decision problem for a property P is Turing solvable if there is both a
Turing machine TM that will halt after a finite number of steps if and only P holds
and a Turing machine TM” that will halt after a finite number of steps if and only if P
does not hold. If only one (or both) of the pair TM, TM~ exists, then the decision
problem for P is said to be partially Turing solvable. Problems (1) and (2) above are
clearly of this kind. It is now evident that:

Result 1. Any decision problem that is partially Turing solvable is solvable in a M-H
spacetime.

Attention is now turned to the decision problem for arithmetic in the standard model.
In what follows, the word “sentence” is used as shorthand for “sentence in the lan-
guage of arithmetic”. The results below are standard (ibid.).

(1) Deciding (i.e. establishing whether true or false) arbitrary sentences in arithmetic
is not partially Turing solvable. (This is a version of Godel’s first incompleteness
theorem.)

(ii) Deciding arbitrary quantifier-free sentences is Turing solvable.

(iii) There is a Turing machine that will, in a finite number of steps, translate an arbi-
trary sentence S into a coextensive (i.e. a sentence with the same truth-value) sen-
tence, S”, in prenex form (all quantifiers occurring at the extreme left).

(iv) There is a Turing machine that will, in a finite number of steps, translate an arbi-
trary sentence S (written in prenex form) containing two juxtaposed quantifiers of
the same type into a coextensive sentence, S°, with one quantifier of that type in
place of the previous two.

(v) If ¥nS(n) is a sentence or AnS(n) is a sentence, then the set of sentences {S(1),
S(2), S(3),...} is recursively enumerable (that is, there is a Turing machine that
will generate S(n) for any given n).

Because of (iii), it may be assumed that all sentences are in prenex form.

Because of (ii) and (v), it is clear that deciding arbitrary sentences of either the
form 3nS(n) or VnS(n), where S is quantifier-free, is partially Turing solvable. So by
Result 1, they are both decidable in any M-H spacetime. This fact, together with (iv)
above, implies that arbitrary purely existential or purely universal sentences in arith-
metic are decidable in any M-H spacetime. (Incidentally, the Goldbach conjecture
and Fermat’s last theorem can both be stated as purely universal sentences.)

But because of (i), Result 1 cannot be used to show that arithmetic is decidable in
any M-H spacetime. Indeed, although it cannot be “proved” that arithmetic is unde-
cidable in, e.g., the M-H spacetime in Figure 1, there is no obvious way to construct a
procedure in this particular spacetime that will decide even an arbitrary V3 type sen-
tence. A more subtle kind of M-H spacetime is required, as I will now show. The
following analysis contains a new piece of terminology. If a spacetime (M,g) con-
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tains non-intersecting open regions Oy, i=1,2,... such that (1) for all i O;cI"(Oj, ) and
(2) there is point ge M such that for all i O;cI"(q), then the O;s are said to form a past
temporal string, or just string for short. See Figure 2 (i).
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(i) A temporal string. (ii) A SAD; spacetime. (iii) A SAD4 spacetime.
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P(3) decides S(3) SAD,, region O SAD; region
P(2) decides S(2) SADy, region SAD; region
™
P(1) decides S(1) SAD,, region SAD region
(iv) Diagram used in Result 2. (v) An AD spacetime.
Figure 2

Definition 2. A spacetime (M,g) is an nth-order arithmetical sentence deciding (de-

noted SADy,) spacetime if the n conditions contained in the following scheme are
satisfied.

If n=1, (M,g) is a M-H spacetime.
If n>1, (M,g) admits a string of SAD,, ; spacetimes.
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According to Definition 2, a SAD spacetime is a M-H spacetime, a SAD; spacetime is
a spacetlme that contains a string of SADl spacetimes (Figure 2 (ii)), a SAD3 space-
time is a spacetime that contains a string of SAD, spacetimes (Figure 2 (iii)), and so on.

The efficacy of SAD spacetimes to decide sentences in arithmetic derives from the
following result.

Result 2. Let (M,g) be a SAD,, | spacetime and let 3nS(n) and VnS(n) be two
sentences in arithmetic. Suppose that for each n=1, S(n) is decidable in any SAD;
spacetime.

Then 3nS(n) and VnS(n) are both decidable in (M,g).

Proof. This consists of showing how appropriately chosen and appropriately located
hardware can be used to decide 3nS(n) and VnS(n). Part of this involves the
Turing machine, TM, of (v) above travelling along a A-curve that picks up one
hour of proper time in each SADy,, component (this is possible because every such
component admits a A-curve), as deplcted in Figure 2 (iv). TM is primed to gener-
ate S(1) in the lead up to the first component and to signal that sentence to the first
component. TM is also primed to generate, for n>1, S(n) in the (n-1)th component
and to signal that sentence to the nth component.

Now let P(n) denote the procedure that decides S(n). The procedure for deciding
InS(n) consists of adding to each P(n) transmitting devices and receivers which oper-
ate as follows.

P(1) signals to ¢ and P(2) if and only if S(1) is true.

For n>1, P(n) signals to P(n+1) if and only if P(n-1) signals to P(n).

For n>1, P(n) signals to g and P(n+1) if and only if S(n) is true and P(n) has not
received a signal from P(n-1).

This procedure ensures that a single signal is sent to  if and only if there is an n such
that S(n) is true. (The signal is actually sent by P(m), where m is the smallest integer
for which S(m) is true.) Upshot: a signal at ¢ means 3nS(n) is true, no signal at g
means InS(n) is false.

The procedure for deciding ¥nS(n), given below, is similar except this time a sin-
gle signal at q means VnS(n) is false, no signal at ¢ means VnS(n) is true.

P(1) signals to q and P(2) if and only if —~S(1) holds.

For n>1, P(n) signals to P(n+1) if and only if P(n-1) signals to P(n).

For n>1, P(n) signals to q and P(n+1) if and only if =S(n) holds and P(n) has
not received a signal from P(n-1).

Thus 3nS(n) and VnS(n) are seen to be decidable in (M,g). QED

We have seen already how single quantifier sentences can be decided in SAD
(=M-H) spacetimes. By Result 2, double quantiﬁer sentences can be decided in
SAD, spacetimes. Applying Result 2 again shows that triple quantifier sentences can
be decnded in SAD5 spacetimes. And continuing in this way we see that n-tuple
quantifier sentences can be decided in SAD,, spacetimes.

In fact, these different order SAD spacetimes can be fitted into a single spacetime.
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Definition 3. A spacetime (M,g) is an arithmetic deciding (AD) spacetime just when
(M,g) admits a string of open regions Oy, O, Oj3,.. such that for each n=1, (Oy,g)
is a SAD,, spacetime.

In Figure 2(v), an observer can decide an arbitrary sentence S by communicating it to
the SAD,, region that decides sentences of that order. Arithmetic is therefore decid-
able in an AD spacetime.

It is natural to wonder how the computing hardware necessary to decide all of
arithmetic gets installed in the AD spacetime. What follows is a prima facie reason-
able method of performing that task.

The various paths of the hardware through spacetime are represented by world-
lines, and the idea of the method is to begin with one worldline at the initial event p in
Figure 3 and to have a process of worldline branching that results in each SAD; com-
ponent being populated by a A-curve and every other component of every string being
populated by at least one worldline. (Recall that the SAD | spacetimes accommodate
Turing machines travelling on A—curves, while all the other components accommo-
date communicating devices a la Result 2.)

(1) A worldline that meets a SAD,, component, n>1, must bifurcate, with one world-
line branch extending to the next component of that string and the other branch en-
tering the component and extending to the first component of the string on the
“next level down”.

(2) Two kinds of worldline must follow the first available A-curve: the one that enters
the first SAD| component and any one that is constrained by (1) to enter a SAD
component.

Figure 3 illustrates the process at work on the SAD| and SAD, stages of the AD space-
time. The tree-like property is an obvious attraction, but this system also guards against
one potential disaster, namely, that an infinite amount of hardware mass might be
forced to reside in a compact set. I omit the formal proof of why this cannot happen. It
relies on the fact that if a region R contains worldlines whose lengths sum to infinity,
then it must contain at least one future endless curve. But according to Proposition
6.4.7 in Hawking and Ellis (1973), this can only occur if R is non-compact or violates
strong causality. Part of the reason why I chose from the outset to consider only strong-
ly causal spacetimes was to ensure that in this case R must be non-compact.

Admittedly, there remains the worry that an unbounded mass might reside in a re-
gion which is non-compact but of finite volume. I am not sure whether or not this can
happen. (Are there any SAD; spacetimes with finite volume?) In any case, the exam-
ple in the next section suffers no such pathology.

We have also shown that the hardware for the AD spacetime can be built up using a
finite set of instructions. Roughly: start at an event p, then manoeuvre and bifurcate ac-
cording to (1) & (2), while creating communication devices and the Turing machines of
(iv), and having them operate according to Result 2. One other instruction states that
the instructions of the previous sentence must be issued to each new piece of hardware.

A word about terminology. In what follows, a SAD spacetime will be used as a
generic term to cover SAD,, spacetimes of all orders and AD spacetimes. (Of course
in this case SAD=SAD, but the term “SAD” sounds rather specific.) Also, a simple
SADy, spacetime is a SADy, spacetime that is not SAD,, ;. Finally, a SAD,, (respec-
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tively, SAD, AD, etc.) computer will refer to a computing device whose underlying
spacetime is SAD,, (respectively, SAD, AD, etc.).

SAD; region

SAD, region

sp
Figure 3. The “hardware tree” grows up into the AD spacetime.

3. An Example of an AD Spacetime?

Start with Minkowski spacetime (R4, 1) and choose a compact set CCR4. Now
draw a closed inertial line segment vcC. About this v, define regions Oy, Oy, O5,...
with inclusion relations appropriate for all the strings of an AD spacetime, in such a
way that v intersects every component, as depicted in Figure 4. Then choose a scalar
field Q on M such that Q=1 outside C and Q tends rapidly to infinity as the line v is
approached. Remove v. Then (R4-v, Q2n) is an AD spacetime because O; is a SAD;
spacetime, O is a SAD, spacetime, and so on. Moreover, it not difficult to show that
(despite appearances!) every component of every string has infinite volume.

Although the corresponding AD computer consists of an infinite number of infinitely
large regions, each with its own communication devices and Turing machines, it can still
be contained in a box, e.g. the one depicted in Figure 4, with finite spatio-temporal surface
area. So in this regard this AD computer is no different to an ordinary desktop computer.

I do not yet have a proof, but I think that anti-de Sitter spacetime (see Hawking
and Ellis 1973, p.132) is probably an AD spacetime. This spacetime is usually not
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viewed as a reasonable solution of the Einstein equations, but the fact that its structure
is so simple hints, perhaps, that reasonable AD solutions may indeed exist.
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Figure 4. An AD spacetime.
4. The Impact on Church’s Thesis

A typical way of stating Church’s thesis (CT) is the following: In an ideal world
the limit of computation is exactly captured by Turing computability. As it stands,
this statement of CT is vague: it has no truth-value since we are not told which set of
worlds, W, the “ideal” worlds are chosen from. Different choices of W give different
truth-values, but I want to choose a W which gives CT a real fighting chance of suc-
cess. (In that way, the doubt I manage to cast on CT will not be seen as a hollow vic-
tory.) This means W should not be the set of logically possible worlds; for the “Zeus
machine” in Boolos and Jeffery (1989, p. 14) is perfectly consistent and is able to per-
form Turing unsolvable tasks. Nor, on the other hand, should W be a set of worlds all
of which are very similar to our universe in such matters as possessing only a finite
amount of material (as our universe might) or being temporally finite (as our universe
might be). For that would again make CT fail—this time because the arbitrarily mas-
sive Turing machines entailed by Turing computability would be impossible, leaving
the ideal computing limit somewhere short of Turing computability.

Thus the set W should be neither very large (all logically possible worlds) nor very
small (worlds very similar to our own). A middle way is needed. One’s initial reaction
might be to take W as the set of worlds that are “beefed up” versions of our world, i.e.
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worlds based on our world but with enough added space, time and material to allow the
realisation of a Turing machine. But of course this is naive, for spacetimes like the
Robertson-Walker k=+1 (big bang, big crunch) model, which is a good candidate for
the cosmological structure of our universe, cannot be spatio-temporally extended in any
natural way and cannot be plied with an unbounded amount of material. Another and
more promising proposal is that W should be the set of physically possible worlds, i.e.
worlds that share our universe’s fundamental laws of physics, but not necessarily our
universe’s boundary conditions. Of course given our ignorance of what these laws are,
this proposal provides at best a working characterisation of W. Nevertheless, this some-
what ill-defined W results in a version of CT that is physically relevant, is not refuted
by the hypothetical Zeus machine, and does not fail on account of material limita-
tion—assuming of course that material limitation is not a requirement of physical law.

Moreover, this CT stands firm against two putative counter-examples that have ap-
peared in the literature (Griinbaum 1967, Earman and Norton 1993). Both are ma-
chines that can perform an infinite number of computations in a finite time. In one
version the machine’s components are accelerated to infinite speed in a finite time; in
the other, the components shrink continuously to nothing in a finite time. But neither
machine seems to cut any ice with CT, for whatever the laws of physics in fact are,
the requirements of speed and shrinkage presumably violate them.

But is this CT true? Well, it will be if there is at least one physically possible Turing
machine and if there are no physically possible non-Turing computers (=SAD comput-
ers in this context). The first part of the condition is almost certainly true because there
are some thoroughly reasonable solutions of the Einstein equations (e.g. the Robertson-
Walker k=0 big bang model) which have both spacetime enough and matter enough to
realise a Turing machine. What about the second part of the condition, that all SAD
computers are physically impossible? This seems prima facie false because there are
known simple SAD| solutions of the Einstein equations with spacetime enough for the
SAD; hardware. The Reissner-Nordstrom black hole solution (see Hogarth 1992) isa
case in point. Admittedly this is a vacuum solution, but its existence suggests that sim-
ple SAD is a not uncommon property among reasonable models, including ones with
infinite material. Against this however is the fact that all SAD spacetimes violate vari-
ous versions of cosmic censorship. That is to say, physicists have conceived of laws
that would effectively outlaw SAD spacetimes and a fortiori SAD computers. But of
course it is not yet known whether any kind of censorship laws really exist, still less
whether one exists that will outlaw SAD computers and save CT. Far be it from me to
predict the outcome of the debate on the cosmic censorship hypothesis, but I will note
that, in concluding his survey of the subject, Earman (1994) remarks that “it is much
too soon to pronounce the cosmic censorship hypothesis dead, but the prognosis is not
particularly cheerful”. Perhaps then the same could be said of CT.

At this juncture, advocates of CT might try to advance their case from a quite differ-
ent angle, by appealing to the fact that several apparently independent explications of the
concept of computability—by Markov, Church, Post, Kleene etc.—have all been found
to be exactly equivalent to Turing computability. Of course, I concede this equivalence.
But as Horowitz (1992) has rightly stressed, all these explications rest on a shared as-
sumption: that it is impossible to perform a computational super-task. Thus the very as-
sumption that threatens Turing computability, also threatens these other explications.
Any attempt, therefore, to base a case for CT on this equivalence is futile: if one explica-
tion falls, they all fall.

To summarise, the physically possible computing limit does not “hold sway above
the flux”, like the concepts of pure mathematics, but is firmly tied to some contingent
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and as yet unknown facts about the world. I have suggested that this elusive limit will
extend at least as far as the Turing machine, but that it may extend yet further, to the
simple SAD| computer and perhaps even to the AD computer. Indeed the limit point
could even lie somewhere between these last two computers, e.g. at some simple SAD,
computer, where n>1. In any case, this particular issue can only be settled with a deep-
er understanding of singularities and the status of the cosmic censorship hypothesis.

5. Towards a Theory of Non-Turing Computability

In his famous paper of 1937, Alan Turing set out the details of what he believed to be
the most general computer. The result was surprisingly simple. Just a machine com-
prised of an ordinary mechanical device? and a infinite supply of paper tape for memory
storage. This Turing machine is intuitive, for sure, but it is also fantastic: it possesses an
unbounded quantity of material and is capable of operating for all eternity. This might
lead us to worry that such a machine is physically impossible (how, otherwise, could it
be set apart from the incredible shrinking computer of the previous section?), but for
Turing and most of his followers there was no such concern. They simply grasped the
idea of a finite computing device, closed their eyes, and extrapolated like mad.

Now Turing’s intuition was, I presume, based on Newtonian spacetime. Had his
intuition been deepened by exposure to SAD | spacetimes then he might have arrived
at the SAD| computer in Figure 1. Of course that is only a guess. But it does show
that if the intuitive approach of Turing and his followers—roughly, the global me-
chanics of the machine are unproblematic—is applied not to (the now defunct)
Newtonian spacetime but to a spectrum of relativistic spacetimes, the result is not
only Turing machines but also various kinds of non-Turing computers. This provides
the initial impetus for elaborating a theory of non-Turing computability. The theory’s
raison d’ étre is further discussed in the final section. But now I turn to some results
and conjectures of the theory itself.

We first recall that Turing computability theory ordinarily begins with an argument
aimed at showing that any number of Turing machines in any configuration can always
be mimicked by a single appropriately programmed Turing machine. The theory then
proceeds in terms of this one abstract and easily characterised machine, and thereby
manages to transcend irrelevant hardware details. [ now use this approach with the
simple SAD| computer and the AD computer (i.e. the least and the most powerful of
the SAD computers, roughly speaking). Thus, an ideal simple SAD| computer is a
simple SAD| computer that can mimic any other simple SAD| computer; and an ideal
AD computer is defined analogously. Now consider the following five claims.

(a) The SAD1 computer underpinned by the spacetime in Figure 1 and fitted with a
single Turing machine that follows the l-curve is an ideal simple SAD1 computer.
I shall refer to this particular computer as the naked Turing machine.

(b) All partially Turing solvable problems are solvable by the naked Turing machine.
They included: all Turing solvable problems, the Halting problem, first-order pred-
icate logic (i.e. Hilbert’s Entscheidungsproblem), Diophantine problem (i.e.
Hilbert’s tenth problem) and the word problem for semi-groups.

(c) Arithmetic is not decidable by the naked Turing machine.

(d) A decision problem that is not partially Turing solvable is not solvable by the
naked Turing machine.
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Statements (b), (c) and (d) are true ((b) is Result 1, (c) and (d) are easily proved), but
statement (a) is a conjecture. My evidence for (a) derives only from the fact that all
my attempts to construct a simple SAD| computer that cannot be mimicked by this
putative ideal computer have failed.

Now to AD computers.

(e) The AD computer underpinned by the spacetime in Figure 4 and fitted with the
AD solving hardware described in Section 2 is an ideal AD computer. I shall refer
to this particular computer as the multi-string computer.

(f) Arithmetic is decidable by the multi-string computer.

(g) The multi-string computer can mimic any computer underwritten by a relativistic
spacetime and containing only Turing machines and simple communications de-
vices. In other words, the multi-string computer is the “ideal relativistic computer”.

Statement (f) is true, but statements (e) and (g) are conjectures. Because (g) is
stronger than (e), I will only try to justify the former. Two arguments support its case.
The first is that if SAD| computers are the basic building blocks of relativistic com-
puters (as they seem to be), and if forming strings is the best method of connecting
computers together (as it seems to be), then the multi-string computer is king because
it possesses strings of every order. The other reason is that all my various attempts to
construct a machine that cannot obviously be mimicked by this computer have failed.
For example, one can show that a single multi-string computer can mimic a string of
multi-string computers; it can also mimic a countably infinite number of multi-string
computers working “in parallel”. I know of no problems that are not solvable by the
multi-string computer. But some are sure to exist.

6. Concluding Dialogue

Frank, who works on the theory of computability by means of Turing machines,
reckons these new computers are not worth the candle. Isabel disagrees.

Frank 1 like the idea of these non-Turing computers, but frankly I can’t see them
catching on. They’re just too, well, fantastic.

Isabel Surely a Turing machine is fantastic. At least, an infinitely massive device ca-
pable of computing to eternity sounds pretty fantastic to me.

Frank Well that’s one way of putting it. I prefer to think of a Turing machine as just
the natural extension of an everyday computer.

Isabel Inaway itis. And that’s why the hardware of these new computers is chosen
to be essentially nothing but Turing machines. A simple SAD computer, for ex-
ample, is just a Turing machine to the past of a point. Or in more picturesque
terms, it’s a naked Turing machine.

Frank Yes, O.K., when I said the non-Turing computers are fantastic I didn’t mean
the hardware so much as the spacetime supporting the hardware. Of course I be-
lieve in Turing machines; that’s my job! No, my unease stems from the wild
spacetimes you employ.
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Isabel They are not all wild. For example, there is a spacetime that represents a
charged black hole which is SAD;.

Frank Yes, but surely the spacetime underlying our universe is not like that. These
solutions are just idealisations.

Isabel That’s beside the point. You don’t want to rubbish a hypothetical
computer—Turing or non-Turing—simply because it can’t fit into our universe. If
you do, you’ll leave your precious Turing machine to the mercy of the cosmolo-
gists, because according to one of their theories, the universe and all it contains,
will crunch to nothing in a few billion years. Your Turing machine would be cut-
off in mid-calculation!

Frank O.K.]I grant you that the particular spacetime structure of our universe has lit-
tle bearing here. But isn’t it true that while lots of really nice spacetimes can house
Turing machines, all the spacetimes that might house non-Turing computers, in-
cluding that black hole spacetime you just mentioned, are in some way grossly un-
physical? I’ve heard you say yourself that these spacetimes are prone to infinite
photon blue shifts, horizon instabilities, and the red pencil of the cosmic censor.
They don’t seem to have a hope.

Isabel On the contrary, they have lots of hope. For one thing, the problems you men-
tion are probably just aspects of the putative cosmic censor; they’re not additional
problems. And the verdict on whether there is a cosmic censor could go either
way: the jury is still out. I take it that you’re prepared to accept that. In that case,
am [ to understand that you want to argue against non-Turing machines solely be-
cause the spacetimes that underwrite them may fall prey to a censor?

Frank Pretty much, yes.

Isabel Then let me put this to you. Just suppose that tomorrow we read in Nature
that a new law of physics has been discovered that forbids spacetime to extend to
temporal infinity. It would be a kind of “temporal infinity censor”, if you like.
Now that would censor your Turing machines, and so my question is: would the
fact of this censor destroy the Turing machine’s raison d’ étre? 1 mean: be honest,
would you quit your line of research?

Frank Well probably not.
Isabel And I say “fair enough”. But just as the prospect of temporal censorship need

not affect your attitude towards Turing computers, so also the prospect of cosmic
censorship need not put us off non-Turing computers.

Notes

IT would like to thank Gordon Belot, George Boolos, Rob Clifton, John Norton,
Adrian Stanley and particularly Jeremy Butterfield for their helpful suggestions.

2] shall follow the standard notational conventions of Hawking and Ellis (1973).
All spacetimes are assumed to be causally well-behaved in the sense that they satisfy
strong causality.
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3There are other known AD spacetimes, but this beautifully simple example is due
to John Norton.

4In Turing (1937), the “mechanical device” is actually a man faithfully executing a
finite set of instructions.
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