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The first law of thermodynamics is essentially a ‘balance sheet of
energy’. It gives the precise relationship between the familiar concept
of work and the new concepts of internal energy and heat, both of
which we shall be defining shortly.

It is interesting to approach the first law historically.

3.1 JOULE’S EXPERIMENTS

At the beginning of the nineteenth century, the dominant theory as
to the nature of heat was that it was an indestructible substance
(caloric) which flowed from a hot body, rich in caloric, to a cold
body which had less caloric. Heat was quantified by the temperature
rise it produced in a unit mass of water, taken as a standard reference
substance. The experiments of Black at the end of the cighteenth
century had shown that, when two bodies were put in thermal contact,
the heat lost by one in this ‘method of mixtures’ was equal to the
heat gained by the other. This seemed to confirm that heat was a
conserved entity,

However, when Benjamin Thompson (who became Count
Rumford of Bavaria and founded the Royal Institution of Great
Britain) was working in the arsenal in Munich supervising the boring
of cannon, he noticed that great heat was produced, as measured
by the temperature rise in the cooling water. Further, when he used
a blunt boring tool, he found that he could even boil the water, with
the supply of heat being apparently inexhaustible. He concluded that
heat could not be a finite substance such as caloric and that there
was a direct relation between the work done and the heat produced,
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Adiabatic wall

Figure 3.1 A schematic representation of Joule's apparatus.

The precise relation was established by Joule some fifty years later
in a careful series of experiments between 1840 and 1849,

Joule, a Manchester brewer, constructed a tub contaming a paddle
wheel which could be rotaied by the action of weights falling outside
the tub, as in Fig. 3.1. Water inside the tub could thus be stirred
(irreversibly because of turbulence), raising its temperature between
two equilibrium states. The walls of the tub were insulating, so the
work was performed under adiabatic conditions; we call such work
adichatic work. Working with extraordinary accuracy, Joule found
the following,

1. That it required 4.2kJ of work to raise the temperature of one
kg of water through one degree kelvin {(we have converted his
British units to the modern SI units). This is known as the
mechanical equivalent of heat J. 1t is interesting to note that, when
Joule examined Rumford’s resulis, he obtained a value for J that
wag consistent with his own,

2. That no matter how the adiabatic work was performed, it always
required the same amount of work to take the water system
between the same two equlibrium states. Joule varied his
adiabatic work by changing the weights and the number of drops.
He also performed the same amount of adiabatic work electrically
by allowing the current produced by an electrical generator to
be dissipated in a known resistance immersed o the water.
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3.2 THE FIRST LAW OF THERMODYNAMICS AND
THE INTERNAL ENERGY FUNCTION

We may summarize these findings in the following statement of the
first law:

If a thermally isolated systern is brought from one equilibrivm state
to another, the work necessary to achieve this change is independent
of the process used,

This is saying that the adiabatic work W, .. expended in a process
is path independent, depending only on the end equilibrium points;
and this is truc whether or not the process is reversible. So there
must exist a state function whose difference between the two end
points 2 and 1 is equal to the adiabatic work. We call this state
function the internal energy U with

W,

adiabatic

U, -, (3.1)

In mechanics, we are familiar with the idea of the work done on a
system increasing the kinctic and potential energies. In our discussion
we have excluded any change in these bulk energies: Joule's tub was
neither lifted up nor was it set in motion across the floor of the
laboratory. From a molecular viewpoint, however, the external work
does in fact go into increasing kinetic and potential energies—-thosc
of the individual molecules which have kinetic energy because of
their random motion and potential energy because of their mutual
attraction. This viewpoint is helpful in understanding the physical
meaning of internal energy.

33 HEAT

If the system is not thermally isolated, it is found that the work W
done in taking the system between a pair of equilibrium points
depends on the path. Now, for a given change, AU = U, - U, is
fixed but W is not now equal to AU, In other words there is a
difference between the adiabatic work required to bring aboul a
change between two equilibrium states and the non-adiabatic work
required to effect the same change, with the latter having an infinite
number of possible values.

We call the difference between AU and W the heat, Q. The
generalization of equation (3.1) is then

(3.2)
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which is the mathematical statement of the first law. It tells us that
the internal energy can be increased cither by doing work on or by
supplying heat to the system. In this form, it is true for all processes
whether reversihle or irreversible. Now we have secn that all forms
of work are equivalent to the mechanical raising or lowering of a
weight in the surroundings so we conclude that

Heat is the non-mechanical exchange of enerpy between the system
and the surroundings because of their terperature difference.

{Here we are considering closed systems. The transfer of energy in
open systems is discussed in Chapter 10.)

There has to be a sign convention for heat, just as we have one
for work. We define ¢ as positive when it enters the system, so
equation {3.2) is correct as it stands, with U increasing if we do work
on the system and if we ailow heat to flow in.

For an infinitesimal process, the first law takes the form

AU = dW -+ dQ

where we write both dQ and dW with bars through them (o indicate
that W, and therefore Q, are in general path dependent., In the
language of Appendix B, we say they arc inexact differentials. Although
in the special case of adiabatic work [dW), ..., is path independent
and in that sense dW, ... is an exact differential, we shall consis-
tently write the infinitesimal work term as dW with a bar for all
cases, a8 W is not a state function.

Il we have a compressible fluid, where @W = — PdV for an
infinitesimal reversible process, the first law becomes

dU = — pdV -+ dQ

dQ = dU + PEI‘/J (reversible) 3.3

It is very important to realize that this form applies to a reversible
infinitesimal process, and so we have added reversible in brackets
to remind us.

Let us give an example which Hlustrates the difference between
heat and work. In Fig. 3.2 we have a gas in a container with rigid
diathermal walls, A current I flows through the heating coils of
resistance R wrapped round the container. In Fig. 3.2(a) the system,
denoted by the dotted line, includes the heating coils. Now we know,
from our discussion at the end of section 2.9, that work is being
done on the sytem at the rate [” R because the current [ enters the

or
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Heating coil Syslern

0060 a7

000 0D 0 g I

\

| |

\ |

\ i

\ \

\ [

\

|

|

|

| e

e s B B o B ¢ S e N | R Tw— B B B O B O BR8]
e

{a} (0

Figure 3.2 An illustration of the difference between work and heat. The
input of energy into the system is in (a) as work and in (b) as heat,

system. The energy crossing the system boundary is in the form of
work. In Fig. 3.2(b} the system is the gas and container alone,
excluding the coils. Here, no work is done on the system but there
is energy flow across the system boundary in the form of heat because
the temperature of the coils is higher than that of the gas. This simple
example shows that, in differentiating between heat and work, it is
very important to be clear as to what constitutes the system.

It is helpful to differentiate between heat and work from a
microscopic viewpoint, When we add energy to the system in the
form of heat, we increase the random motion of the constituent
molecules. However, when we increase the energy by performing
work, we disptace the molecules in an ordered way. Consideration
of the stretching of a spring immediately illustrates this point. Work
then results in organized motion while heat results in random
motion, It is interesting to apply these ideas to a gas in a cylinder
and to see how a rise in temperature can be achicved either by the
addition of heat or the performance of work. If heat is added through
diathermal walls, this increases the random kinetic energy of the
molecules, which means a rise in temperature. Why is there a rise
in temperatue if work ts performed on the gas which we now consider
o be in a cylinder with adiabatic walls? When the piston is pushed
in, the molecules striking the piston are accelerated in the direction
of its travel. If these molecules strike the walls of the cylinder, they
cannot lose energy to the surroundings because the walls are
adiabatic. However, any organized motion initially imparted to these
molecules is rapidly randomized by collisions, either with the walls
or with other molecules. This increase in the random kinetic energy
appears again as a tempetrature rise.
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Finally, we should remark that the most illuminating distinction
between heat and work as different ways of increasing the mternal
energy of a system is given by statistical mechanics, The reader is
recommended to read sectton 2,32 of the companton book to this
by Guenault for a complete discussion but we shall give an outline
of the ideas here. Briefly, il is a result of quantum mechanics that
each of the N particles in the system can exist in a series of discrete
energy levels. We refer ahead to Fig. 6.5. If there is a population of
n; particles in the ith energy level g, the total internal energy of the
system will be U = Z¥_ a6, Now U can be increased in two ways:
either the energies & can be changed, with the populations remaining
the same-—this is work; or the populations n; can be changed with
the energies remaining the same—this is heat.

34 HEAT CAPACITY

Suppose we have a process where we allow heat O to flow into a
system, changing it {rom one equilibrium state to another with a
temperature difference AT, as in Fig. 3.3. The heat capacity C of a
system is defined as the limiting ratio of the heat introduced
reversibly into the system divided by the temperature risc:

Coe= limit (Q/AT) = d@/dT (3.4)
AT =0
The specific heat ¢ is the heat capacity per unit mass:
¢=U/mdQ/dT (3.5
(We shall use lower-case symbols frequently in this book when we

wish to denote specific quantities which are quantities referred to
unit mass, which could be a kilogram or a mole.)

Too T AT

Q
Figure 3.3 The heat capacity is limit O/AT.

AT20
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38.2 Flow threugh a nozzle

When a gas flowing down a pipe encounters a change in the cross-
sectional area, there is a change of gas velocity, We utilize this effect
frequently in enginecring and in particular in a turbine where we
‘throw’ the gas on to the turbine blades with a high velocity. The
incoming gas (steam in the case of a steam turbine) is speeded up
by passing it through a nozzle, as in Fig. 3.7. No shaft work w is
done, the system is assumed to be horizontal ard we further assume
that no heat g enters the system as the gas flow is too rapid for this
to be appreciable. Equation (3.16) then becormnes:

which relates the velocity change to the enthalpy change.

In practice, we will be given the ‘upstream’ conditions P,, T|
which means that we know h,. However, i as is usual, only the
‘downstream’ pressure P, is specified, we have insufficient
information to determine h,. If we now assume the flow through
the nozzle to be reversible as well as adiabatic and the gas is treated
as ideal, then we can find the downstream temperature T, from the
adiabatic relation

T (Pl)‘f"l
TZ N Pz

Figure 3.7 A steady flow process through a nozzde.

The first law of thermodynamics tells us that, in any process, encrgy
1s conserved. It may be converted from one form to another but the
total amount of energy is unchanged. The second law of thermo-
dynamics imposes limits on the efficiency of processes which convert
heat into work, such as steam or internal combustion engines. Tt
will allow us to set up the thermodynamic temperature scale which
is independent of the nature of the thermometric substance, and to
define the concept of entropy, which we shall see is refated to the
microscopic disorder in the system.

Before we set up the second law we shall first discuss Carnot
cycles, which are central to the discussion.

4.1 CARNOT CYCLES

At the beginning of the nineteenth century, when steam engines were
in their infancy, there was enormous interest in how their efficiency
could be increased. An intellectual giant in this field was a French
engineer, Carnot, who published in 1824 a powerful paper on how
work could be produced from sources of heat, He knew that work
could be obtained from an engine if there were heat sources at
different temperatures—-the boiler and the surrounding air in {he
case of a steam engine. He also knew that it was possible for heat
to flow from a hot body to a cold body with no work being performed,
the flow continuing until thermal equilibrium was attained. Carnot
realized then, since any return to thermal equilibrium could be
used to produce work, any return to equilibrium without the produc-
tion of this work must be considered a loss. So any temperature
difference may be utilized in the production of work oy it may be
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adiabatics

¢ isotherms
M F

v
Figure 4.1 A Carnot cycle for an ideal gas.

wastefully dissipated in a spontaneous flow of heat. He concluded
that, in an efficient engine, all transfers of heat should be between
bodies of nearly equal temperature. With these ideas in mind, he
designed an tdealized engine which is of fundamental significance.
The cycle for the Carnot engine is depicted in Fig. 4.1.

A working substance, which could be any substance but we have
chosen it to be an ideal gas for the purpose of our discussion, is
taken round the reversible cycle abed. ab is an isotherm at the
temperature 1) and heat ¢, enters from a heat reservoir at T, ¢d
is an isotherm at a lowér temperature T, where heat 0, is rejected
to another reservoir at that temperature. be and da are adiabatics.
The work W doue in the cycle is the area abed,

It isimportant to emphasize that a Carnot engine operates between
only two reservoirs and that it is reversible. Also, if a working sub-
stance is chosen other than an ideal gas, then the shape of the Carnot
cycle as depicted in Fig. 4.1 is different because the equations for
the adiabatics and isotherms are no longer PV =consiant and
PV =nRT.

It is interesting to note thal Carnot’s ideas were conceived before
the first law was formulated, using the caloric concept of heat.

4.2 EFFICIENCY OF AN ENGINE

Any general heat engine ¥ may be represented by the schematic
diagram Fig. 4.2 where the heat supplied @, and the heat rejected
0. are not necessarily obtained from just two heat reservoirs as in
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S e Y

Q[?

Cold body

Figure 4.2 A schematic representation of an engine working in a cycle, The
efficiency 5= WiQ, =1 - Q,/0,,

the special case of the Carnot engine. W is the work done by the
engine. The arrow around the edge of the block depicting the engine
indicates that the latter works in a cycle.

As a measure of ‘what we get out for what we put in’, we define
the efficiency # of an engine as the work performed divided by the
heat put in. For the engine cycle depicted in Fig. 4.2,

= W/’Q.{
Applying the first law to the working substance in the engine,
AU =@, ~ 2y~ W

In writing this, we have remembered our sign convention where the
heat into the system and the work done on the system are both
counted positively. As the working substance in unchanged in a
cyele, AU =0 and our first law becomes

S0

(1)

4.3 STATEMENTS OF THE SECOND LAW
OF THERMODYNAMICS

There are two statements of the second law of thermodynaimics which
are both based on our general expericnce. They were cach formudated
in the 1850s by Clausius and Kelvin, but the second was subsequently
modified by Planck. We shall shortly show that both statements are
equivalent and they are as follows, although not in the original words,
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4.3.1 The Kelvin-Planck statement

It is impossible to consiruct a device that, operating in a cycle, will
produce no cffect other than the extraction of heat {rom a single
body at a uniform temperature and the performance of an equivaleni
amounit of work.

Schemaiically this statement is represented in Fig 4.3 (a) The
second law implies that some heat must also be rejected by the device
to a body at a lower temperature; otherwise, as can be seen from
cquation (4.1), one could have an engine with 100%] efficiency. Were
this statement untrue, we could drive a ship across the sea just by
extracting heat from the sea and converting it totally into work!

There are some key words and phrases in this statement which
need further discussion.

{a) Cwele requires that the state of the working substance is the same
at the start and end of the process, although it may change in
between these end points; in other words, there is nol a net
change in the state of the working system. Many processes can
be thought of which convert heat completely into work, but in
all of them there is a net change in the state of the working system.
Por example, we could heat | mole of an ideal gas and allow it
to expand quasistatically and isothermally (by keeping it in
contact with a thermal reservoir) from a volume V| to ¥, > V|
as in Fig. 4.4. The work done by the gas is

& Yady V.
wwf PdeRTf (V'"“RTII'I(_Z)>U

Vi Vi

Hot body | Hot body
# () Q)
Kelvin e W = () Clougiug e
Naot Not
aliowed allowed Q
Cold bady I o) Cold body !

(a)

Figure 43 Schematic representation of the Kelvin-Planck statement.
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Figure 4.4 An isothermal expansion of an ideal was. W= (.

As the expansion is isothermal, Ty = T, and so AU =0, The first
law then shows that Q = W > 0 where (s the net heat supplied,
and we have a 100% conversion of heat into work, However
there is no violation of the second law here as there has been a
net change in the state of the ideal gas working system,
No effect other than tells us that, in addition to the rejection of
heat to a body at a lower temperature, the only other effect on
the surroundings is via the work delivered by the engine. This
means that the bodies delivering and accepting heat 1o and from
the engine must do so without defivering any work. In other
yvorcis, their volumes must remain constant if only PV work
is being considered. Such a body which delivers its heat with no
work is sometimes called a source of heat,
(c} Single.  Suppose that the heat 0, + (1; was supplied from two
bodies: ¢, from a body at T, and 0, from a body at T, with
}"1 > T, say, The cyclical engine delivers an amount of work
W=0,+0, as shown in Fig. 4.5 and we appear to have a

(b

-

Body 1 Body 2
Ty T,
0, Qy

S e Y

Figure 4.5 Two bodies supplying heat to an engine do not violate the Kelvia
statement, as (), could be negative,
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complete conversion of heat into work in a cyclical process with
no heat being rejected to a reservoir at a lower temperature.

However, there is no violation of the second law here because
possible type of engine (rom the Kelvin statement by specifying

a single body,

[t should be remarked here that, were we Lo run an engine wilh
bodies as the sources of heat rather than reservoirs, it would eventually
run down as the bodics approach cach other in temperature and would
not be a very useful engine; however, the second law as given above
applies to both situations.

The Kelvin statement of the sccond law is sometimes given in the
very concise form:

A process whose only effect is the complete conversion of heat into
work is impossible

A few moments thought on behalfl of the reader will show that the
word only ensurcs that all the points we have made carlier are
covered. We have preferred to give the Kelvin statement in the
first more extended form, as the significance of only in the concise
form 13 too easily overlooked.

4.3.2 'The Clausins statement

It is impossible to construct a device that, operating in a cycle,
produces no effect other than the transfer of heat frem a colder to
a hotier hody.

schematically, this statement is represented in Fig. 4.3 (b). What
this form of the second law tells us is that work must be performed
if heat is to be transferred from a colder to a hotter body. Were this
not so, we could heat our houses just by cooling the ground at no
cost with no work having to be done!

An engine which extracts heat from a cold body and delivers heat
to a hot bedy when work is performed on the engine we recognize
as a refrigerator, In our diagrams, we shall denote refrigerators by R,

There is one final point that should be discussed. The Kelvin
statement of the sccond law refers (o the impossibility of heat being
extracted from a hot body and the performance of an equivalent
amount of work, with there being no net change in the state of the
working system. It does not forbid the opposite situation depicted
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F 0w
J

RS S —

System W
unchanged

Figure 4.6 Work can be converted compietely into heat, with no chiange in
the working substance, .

in Fig. 4.6 where all the work W done on an unchanged system may
be converted completely into heat. Rumford’s experinment with a blunt
boring tool is an example of such a total conversion of work mio
heat.. Another example would be rubbing stones together under
running water,

4.4 THE EQUIVALENCE OF THE KELVIN AWND
CLAUSIUS STATEMENTS
The two statements of the second law of thermodynamics may be
shown to be equivalent by showing that the falsity of cach tmplies
the falsity of the other,

Let us suppose first that the Kelvin stalement is untrue, This
means that we can have an engine E which takes 0, from a hot
body .and delivers work W =@, in one cycle. Let this engine drive
a refrigerator R as shown in Fig, 4.7(a) and et us now adjust the
srze.of the working cycles so that W is sufficient work to drive the
refrigerator round one cycle. Suppose the refrigerator extracts heat
0, frqm the cold body. Then the heat delivered by it to the hot
bod‘y 18 Q0+ Wor @+ @, We may regard the engine and the
refrigerator as the composite engine enclosed by the dotted line as
shown in Fig. 4.7(b). This composite engine (strictly a refrigerator)
extracts O, from the cold body and delivers a net amount of heat
G+ 0~ 0, =0, tothe hot body, but no work is done. Henee we
have a violation of the Clausius staternent.

Suppose now that the Clausius statement is untrue. ‘This means
that we can have a refrigerator which extracts heat @, from 4 cold
body and delivers the same heat (2, to a hot body in oe cycle, with
no work having to be done. Let us now have an engine which operates
between the same two bodies and let us adjust the size of its working
cycle so that, in one cycle, it extracis heat ¢J; from the hot bndy;
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Figure 4.7 If the Kelvin statement of the second law is false, this implies that
the Clausius statement is also false. We use the arrangement illustrated here
to prove this,

(a) Hot body k) Hot body
|
0y o i Q=

e et ey e e -
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Figure 4.8 If the Clauvsius statement of the second law is false, this implies
that the Kelvin statemnent is also false. We use the arrangement illustrated
here to prove this,

gives up the same heat @, to the cold body as was extracted by the
refrigerator and so delivers the work W= @, — @,. This is depicted
in ¥ig, 4.8(a). The engine and the refrigerator may be regarded as the
composite engine enclosed by the dotted line, as shown in Fig. 4.8(b),
which takes in heat (Q; — @) from the hot body and delivers the

Carnot’s theorem 5

same amount of work. Hence, we have a violation of Kelvin, This
proves the equivalence of the two statements.

4.5 CARNOTS THEOREM

In the introduction to this chapter, we saw that Carnot had arpned
that cfficient engines must be those operating as neatly as possible
to a Carnot cycle. Using our Clausius statement of the second law,
let us now prove Carnot’s theorem which states:

MNo engine operating between two reserveirs ean be more efficient
than a Carnot engine operating between those same two reserveirs,

To prove this, let us imagine that such a hypothetical engine E’ does
exist with an efficiency #', As shown in Fig. 4.9(a), this engine extracts
heat ] from the hot reservoir, performs the work W' and delivers
the heat Q) = (@} — W) to the cold reservoir.

Let us now operate a Carnot engine, denoted by C and with
cfficiency #¢, between the two reservoirs extracting and delivering
the heats @ and @,, and let us also adjust the size of the cycle to
make this engine perform the same amount of work as the
hypothetical engine. For this Carnot engine, 0, =0, — W, As the
hypothetical engine is assumed to be more efficient than the Carnot

{a) Hot reservoir {b) Hot resarvoir
|
Q5 Q r () 03
P L Al
e : I
| =
! C ‘ B ety - C Composite
EF w’ < WW } I:?V A(C | refrigerator
, “O;_) = 01 — W . ‘A, R SR l )
Q; O = () — W Qs Oy~ W
T
Cold reservoir Cold reservoir

Figure 45 The arrangement vsed to prove Carnol’s theorsm: no engine
workmg between two reservoirs can be more efficient that a Carnot engine
working between the same two reservoirs,
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engine,

WQ, > W0, (W= W)
50
Q>0
Now a Carnot engine is a reversible engine so we may drive it
backwards as a refrigerator as shown in Fig. 4.9(b). The hypothetical
engine and the Carnot refrigerator together act as a composite device,
shown by the dotted line, which extracts positive heat (@, — 07) from
the cold reservoir and delivers the same heat to the hot reservoir
with no external work being required. But reservoirs are just large
bodies where the temperature is unchanged upon the addition of
heat. This means that we have a violation of the Clausius formation
and so the engine E' cannot exist and our original assumption that
' > e in incorrect. Also, we could allow ' to be equal to # as then
Q' = Q,; this means that the composite refrigerator simply transfers
no net heat for no work, which is allowed.
We conclude that, for any real engine.
[ H<ile ]
N
which proves the theotein.

4.6 COROLLARY TO CARNOT'S THEOREM
It follows from Carnot’s theorem that:

All Carnot engines operating between the same (wo reservoirs have
the same efficiency.
To prove this statement, let us imagine two Carnot engines C and
' operating between the same two reservoirs, and let the size of the
working cycles be adjusted so that they each deliver the same amount

of work.
Let © run € backwards as in Fig. 4.10. Tt follows from the

argument just given in the previous section that
e € 1e

If ¢’ now runs C backwards,

We conclude that

which proves our assertion!

The thermodynamic temperature scale &1

Hot reservoir I

Cold reservoir '

Figure 410 The arrangement used to prove that all Carnot engines
operating between the same two reservoirs have the same efficiency.

47 THE THERMODYNAMIC TEMPERATURE SCALE

We have just seen that the efficiency of a Carnot engine operating
between the two reservoirs is independent of the nature of the
working substance and so can be dependent only on the temperatures
of the reservoirs. This gives us a means of defining a lemperature
scale which is independent of any particular material, Let us define
the thermodynamic temperature T so that 7| and T, for the two
reservoirs in a Carnot engine are related as

= 1T (4.2}

If we compare this with equation (4.1}, we have

/1, =0,/0, (Carnot) (4.3)

where we have written Carnot in brackets to remind us that this
definition holds only for a Carnot engine. Note that here, we have
defined the heat flow Q4 in and the heat flow @, out to be both
positive numbers.

We can see that equation (4.3) gives a sensible definition for a
scale of temperature by considering Fig. 4.11. Here, we have a Carnot
engine |, operating between the reservoirs at 1) and T, For this
engine, equation (4.3) gives

T =0,/0, (4.4

Suppose we have a second Carnot engine C,, operating between
the reservoir at T, and a third reservoir at 75. Let C,, absorb the
same amount of heat @, from the reservoir at T, as was rejecled (o
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Figure 4.11 The thermodynamic temperature scale, as defined by
equation (4.3), is cousistent with the arrangement illustrated here.

that reservoir by € ;. When the two engines operate together, the
reservoir at T, is thus unchanged. Equation (4.3) gives

Ty T3 = 0,/Q {4.5)
Multiplying equation (4.4) by equation {4.5),

T)/T;=Q/05
which does not involve the intermediate temperature T,. As the
reservoir at 7, is unchanged, we may consider the two engines C,
and C,,, acting together, to be a composite Carnot engine C,,
operating between the two reservoirs at Ty and 7. This composite
engine is denoted by the dotted line in Fig. 4.11. The application of
equation (4.3} again shows that the previous relation is precisely the
one that holds for this composite Carnot engine. It follows that, by
taking a whole series of Carnot engines, any range of temperatures
may be defined in a self-consistent way.

This temperature scale is independent of the choice of working
substance, which was one of our objectives in our discussion of scales
of temperature in Chapter 1, The thermodynamic scale of temperature
will now be shown to be identical o the familiar ideal gas scale,

4.8 THE EQUIVALENCE OF THE THERMODYMNAMIC
AND THE IDEAL GAS SCALES

Until now, we have used the symbol T for absolute temperature as
defined on the ideal gas scale. In this section, until we prove them to
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Pa

F igurc 412 A Carnot cycle with an ideal gag as the working substance.
Ugmg thls figure, we show in the text that the ideal gas scale temperature
is identical to the thermodynamic temperature 7,

be identical, we shall use the symbol T, for the gas scale temperature
and T for the thermodynamic temperature as just defined.

Consider a Carnot engine, with an ideal gas as the working
substance, operating between the two reservoirs at the ideal pas scale
temperatures T, and T, . Let us follow the operating cycle abed
shown in Fig. 4.11. For the isotherm bc, we have the empirical
equation of state involving the gas scale temperature T,

PV =nRT, (4.6)
The first law gives for an infinitesimal part of this reversible process
dQ =dU + PdV = PdV (4.7)

as dU = 0 because the temperature is constant. The heat ¢, entering
the engine in this portion of the cycle is

Ve Ve
0, = f PdVWnRTg,} dvv

|41 ¥
=nRT, In{V /) (4.8)

This is positive if ¥, > V|, which is consistent with our idea that heat
enters the engine in this portion of the cycle. Similarly, the heat
entering the engine along the da isotherm part of the cycle is
nRT, In(V,/V,). This is negative if ¥, < V,, which means that heat
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flows out of the engine. But we have defined positive ¢, as the heat
flow out of the engine here, so
0y = - nRT, In(V,/Va) = nRT, In(Vy/V,) (49)
Dividing equation (4.8) by squation (4.9),
T, T, In(V./V,

O Ty = A n(/ . h) (4.10)

QE ’Iij ’I 53 lﬂ( V{i/’ V.A)
But ab and cd are adiabatics where T,)7 ' = a constant, holds so:

T, V7= T, V1™'  (cd adiabatic) (4.11)

T, Vitt=T, ¥~ (ab adiabatic) (4.12)
Dividing equation (4.11) by equation (4.12),
Ve W
v, W
or

T,

[2 ..... .{'&
This means that

T,=¢T

where ¢ is a constant. But we know that all temperature scales agree
at the fixed point of 273.16 K so ¢ must be unity. We conclude then
that

L=T] 4.13)

That is, the thermodynamic and the ideal gas scales of temperature
are identical.

49 THE EFFICIENCIES OF ENGINES AND
REFRIGERATORS USING CARNOT CYCLES
In the next section we shall consider an example of a real engine,

but it is instructive to consider first, because the analysis is so
delightfully simple, an engine based on a Carnot cycle. This has a
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Hot reservoir
at 1

44

Cold reservoir
atv,

Figure 4.13 A Carnot refrigerator,

practical use in that it gives us an upper limit, by Carnot’s theorem,
for the efficiency of any possible engine that we might design,

A Carnot engine, such as the one depicted in Fig. 4.1, has the
efficiency

o= 1= Qa0 = 1= Ty/T, (42)

It is then a simple maiter to calculate the efficiency knowing T,
and T,. It is interesting to note that the efficiency would be 100 per
cent were we able to obtain a lower temperature reservoir al absolute
zero; this we shall see is forbidden by the third law.

Imagine now that the Carnot engine is run backwards, as in
Fig. 4.13, to act as a refrigerator. We can define the ‘efficiency’ n%
of a refrigerator as the heat extracted divided by the work expended
and this is customarily known as the coefficient of performance. For
our Carnot refrigeraior,

3 T.
rf({ - 2 _— Q2 P (4.14)

If we take the realistic values of T = 293K and T, = 273K, 8 = 1 5.6,
Real refrigerators have coefficients of performance of about 4 ov 5.

The most interesting application of these ideas, and & first sight
a rather disquicting one, is to so-called heat pumps. We all know
that the back of a refrigerator becomes rather warm, Let us defineg,
as a measure of how good a refrigerator is at providing heat, the
‘efficiency’ ' of a heat pump to be quantity Q,/W. For a Carnot
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Figure 414 The ‘efficicncy’ of a Carnot heat pump as a function of the ratio
of the reservoir temperatures.

heat pump

U U | S (4.15)
w QIQ? Il“" jr2 1 [2/11

Suppose now that T, = 293K and T, = 273K. Then " = 15, s0 we
obtain 13 joules of heat for every joule of work we put in! Of course
this is an idealized and most efficient device but real heat pumps
have been produced for some forty years and, although their
‘efficiencies’ are not 15, they are in the region of 3 or 4, which makes
them attractive propositions. Their disadvantage is their high capital
cost, {t is expensive to lay pipes under one’s garden in order to cool
this to heat one’s house. The Festival Hall in London is heated by
operating a heat pump between it and the Thames, and one Oxford
college derived, until recently, its warmth by cooling the city sewers.

Fig, 4.14 shows the efficiency of a Carnot heat pump against
(T5/T)). Because the efficiency rises as the temperature difference
between the reservoirs decreases, heat pumps are best used in
providing background heating, with the final ‘top up’ being provided
by a conventional source.

416 REAL ENGINES

The Carnot engine is an idealized engine. Real engines operate in
various cycies, all different from the idealized Carnot one. At this
stage we shall temporarily depart from the central thread of our
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argument to discuss, for interesi, the four-stroke Otto-cycle or
common peirol engine.
We are all familiar with the principle of this engine.

L. Petroleum vapour and air are drawn into the cytinder on the

downstroke of the piston.

The mixture is compressed.

3. Mear top dead centre, the mixture is ignited giving rise to the
power stroke.

4. The burnt mixture is expelled.

v

Figure 4,15(a) shows this cycle. The air standard Otto cycle is a close
but simplified representation of this process which facilitates analysis;
it is shown in Fig. 4.15(b). The working substance is assumed to be
just air rather than air and petrol, with no chemical changes occurring
in its composition. Also, instead of the heat being added internally
by the burning of the fuel, heat is assumed to be added from external
sources. The suction intake and the exhaust processes of the actual
cycle, shown in Fig. 4.15(a), are omitted from the Otto cycle.
Let us now go round the Otto cycle.

a-b The piston rises to compress the gas reversibly and adiabatically
with

TV =Tt {4.16)
b-c Heat (, is added at constant volume from an external source
with

Q.= Cy(T, - T (4.17)
¢-d The gas expands adiabatically and reversibly in the power
stroke with

TV t= TV ! {4.18)

d-a At the bottom of the power stroke the gas is assumed to cool
at constant volume down to the pressure Py by giving up heat
to external reservoirs with

2, = Cy(Ty—T)) (4.19)
We may now derive an expression for the efficiency using
equations (4.1), (4.17) and (4.19). For this cycle,

Ty— T
=1 _ S T - .
n=1-0,0. {:r; 1}
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Figure 4.135 The 4-stroke internal combustion engine. (a) The actual cycle.
(b) Otto cycle, which is # simplified representation of the actual cycle.

The two relations, equations (4.16) and (4.18), for the adiabatic
processes, give on subtraction

(To= TV =T~ TV

(1) fr
Vs T, —T,
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We call the ratio V{/V, the compression ratio v, so

VY 1
=1 (17,2) =1 (4.20)

<

and it can now be seen why it is important to have as high o
compression ratio as possible. Pinking or pre-ignition finits r, to
about 7 or 8 for unleaded low-octane petrol, giving a theoretical
efficiency of 1 — 1/79* = 54 per cent. The actual efficicncy of a real
petrol engine is much lower than this value, being probably only
about 30 per cent.

411 SUMMARY

This has been a very important chapter and it is useful to summarize
what we have found.

1. A heat engine converts heat into work in a cyclical process in
which the working substance is unchanged.

Z. A Carnot engine is a reversible engine which operates between
two temperatures only. In general, engines take in and reject heat
at a variety of temperatures.

3. The efficiency of an engine is

4. The essence of the Kelvin statement of the second law is that a
cyclical engine cannot converl heat from a single body at a
uniform temperature completely into work. Some heat has to be
rejected at a lower temperature.

The essence of the Clausius statement is that heat cannot flow
from a cold body to a hot body by itself-—work has to be done
on a cyclical refrigerator to achieve this,

5. The most efficient engine operating between a given pair of
reservoirs is a Carnot engine. All Carnot engines operating
between the same reservoirs have the same efficiency, this being
independent of the nature of the working substance.

6. Fora Carnot engine, we can define the thermodynamic temperature
as

9 :b with o= 1 T/T,

0. T,

The thermodynamic temperature is identical to the ideal gas

temperatute,

We are now in a position to meet the powerful concept of entropy.



5.1 THE CLAUSIUS INEQUALITY

There is a very important theorem for cyclical processes which leads
to the concept of entropy. This theoremt is known as the Clausius
inequality.

Let us consider a working substance undergoing a cycle so that,
at the end of the cycle, its state is unchanged. In Fig. 5.1(a) we
symbolically represent this cycle by the circle in the cenire with the
starling stale at the temperature T’ being represented by the point 1.
We shall take the heat causing the changes as ultimately being
supplied by a principal reservoir at T. We can take the working
substance around the cycle in the following way.

The state of the working substance is first changed to an infini-
tesimally close neighbouring state 2 at a temperature T, by injecting
a small amount of heat 3¢,. We do this with a Carnot engine Cy,
which operates between two auxiliary reservoirs at T, and T. The
auxiliary reservoir at Ty supplies 3Q, to the working subs.tcmcc and
an equal quantity of heat is supplied by C, to that reservoir to
leave it unchanged. C1 in its turn takes heat {T”/TI}EQ] from the
auxihiary reservoir at T and performs work, W, say. If the auxiliary
reservoir at 7 is to remain unchanged, heat {I/I 130, enters it
from the principal reservoir. In this way, we can effect a change from
I to 2 with the only other changes being the Ecrformance of the
external work dW, and the extraction of heat {T/T,}40Q, from the
principal reservoir,

The process is repeated taking the working substance from 2 to 3
with the help of the Carnot engine C; and a new pair of auxiliary
reservoirs at T, and T, and so on round the cycle.

system

S e - ™ _Composite

Auxiriary |
rEservolrs

i
i

ngne working f}

inacircie
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-
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Consider now the composite system consisting of the working
system, all the Carnot engines and all the auxiliary reservoirs. This
composite system includes everything within the dashed line in
Fig. 5.1{a) At the end of the cycle:

I. everythingin the compostte system is unchanged and so AU = (;
2. the heat supplied (o it is

i
T,

QSJZ(SQL_ ...... ..

where the summation s over the number of different Carnot

engines used;
3. the external work performed is

Y W, = W, say.

Applying the first law to the composite sysiem,
O=Q—W or W=0

This situation is represented in Fig. 5.1(b), where we can see that
we have extracted heat from a single reservoir and have performed
an equal amount of work. This is a violation of the Kelvin statement
of the second law. The only way this process can occur is for both
W and  to be negative, that is, work is done on the system and an
equal quantity of heat flows out. This is just the allowed situation
of Fig. 4.5. Alternatively, both W and @ could be zero.
We conclude that

We=0<0

Tz 0’?’ £ 0 or Z iSer < 0

SJ;@;?; <0
-

where the circle on the integral sign indicates that the cycle is
complete or closed. This is known as the Clausius inequality and is
one of the key resuits in thermodynamics.

There are three important points that should be made.

In the limit,

1. The proof of the inequality emphasizes that the Tappearing inside
the integral ts the temperature of the auxiliary reservoirs supplying

Entropy 13

heat to the working substance. It is thus the temperature of the
external source of heal. We shall always write the Clausins
mequality as

ﬁ; Q <0/ (Clausius mequality) (5.1)

Ty
where we have written Ty to remind us of this.

2. It the cycle is reversible, the cycle could be undertaken in the
opposite direction and our proof would give

:}ng >0
1,

W would then be done on the composite system, with an equal
amount of heat TZ,60,/T, being rejected to the principal reservoir.
This will not violate the Kelvin statement providing

W s Q= TESQ,/T, 2 0.

The only way for both inequalities to be satisfied is for

S d
J} : ?R = ﬂ (reversible cyele only) {(5.2)
R -

We have added R to the bottom of the integral sign and as a
subscript to dQ to remind us that this relation is valid only for
a reversible process. However, we have dropped the 0 subscript
on T as there is now no difference between the temperature of
the external source supplying the heat and the temperaiure of the
working substance.

3. One can never forget the sign of the inequality il one remembers
that, in the proof, heat was always flowing into the engine so
T, > T and that the equality sign holds for the reversible case
where T, = T. Replacing T by the large T, makes the inequality
less than zero.

52 ENTROPY

This concept follows immediately from the previous section. Suppose
we were to take a system along a reversible path R, from an initial
state i to a final state f and then back again to the initial state along
another reversible path R,, compieting a reversible ¢ycle. In Fig. 5.2
we have illustrated this for a gas system.



74 Entropy

PV

Figure 5.2 A reversible cycle. We show in the text that f dQ/T is the same for
the reversible paths R, and R, connecting i and .

As the cycle is reversible, the equality sign holds in the Clausius
inequality. Remembering that the cycle is composed of the two
reversible paths, R, and R, we have

(JngR_ f‘wﬂ r fidg“;o
ks T Ry i T Rao/f T

w7

50

But

wewi A

as R, is reversible. Thus,

rt @Qu _ J‘f a0,
Rz4i

Ryoi T

f
which means hat the integral J‘ —? is path independent. We
R

conclude that there must be a state function § with

fﬁ
AS= S, 8, = f Q“ (5.3)
edi T

We call this state function the entropy. Notice that only entropy
differences have been defined. Also, it cannot be stressed too strongly
that the defining integral for entropy differences has to be taken over
a reversible path,

A caleulation of an eniropy change 7!

For an infinitesimal reversible process.

{reversible only) (5.4)

The name entropy comes from the Greek en micaning ‘in’ and irope
meaning ‘turning’. Clausius infended the word (o convey the idea
of heat being converted in an engine into work.

53 AN EXAMPLE OF A CALCULATION OF
AN ENTROPY CHANGE

S0 that we may see how entropy changes are calculated, let us
determine the entropy change of a beaker of water when it is heated
at atmospheric pressure between room temperature, at 20°C, and
100°C by placing it on a reservoir at 100°C, When the water reaches
100°C, the beaker is removed from the reservoir and placed in an
insulating jacket. This process is shown in Fig. 5.3. Heat passes from
the reservoir into the water and it might seem that a simple application
of equation (5.3) would suffice. However this equation applies to a
reversible process, while the actual process here is irreversible because
of the inherent finite temperature differences.

We resort again to the argument encountered in section 2.4. As
the water is initially and finally in equilibrium states, with well-
defined entropies, the entropy change for this process is also wel
defined. We can then imagine any convenient reversible process that
takes the system between the same two end points and caleulate,
using equation (5.3), the entropy change for this imaginary process.
This entropy change is then the same as that occurring in the actual
irreversible process.

One simple reversible heating process between the end points
could be affected by bringing up a whole series of reservoirs between
20°C and 100°C, keeping the pressure constant, so that the water

20C 20°C 100°C 100°C
_— ] L.
L. ] E = 0 r
o . | [
Yorrrrrry
35;5;% ;;5/;/‘;/ Insulating
00°C 100 C Jacket

Resarvoir Reservair

Figure 5.3 A beaker of water is heated irreversibly and isobarieally between
20°C and 100°C in this process.
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58 THE CENTRAL EQUATION OF THERMODYNAMICS

By combining the first and second laws of thermodynamics, we can
obtain the most important equation in thermodynamics.
The diferential form of the first law 1s

dU =dQ +dw

which is true for both reversible and irreversible processes. For an
infinitesimal reversible process, we have

dW= — PdV and dQ,= TdS
Thus
dU = TdS — pPdV

or
TdS =dU + PdV

We now argue that this equation is true for all processes, whether
reversible or not, and not just for reversible processes, as our argument
seems to suggest. For, as all quantitics in the equation are state
functions whose values are fixed by the end points (£, T) and
(P +dP, T+ dT) of the infinitesimal process, the increments dU, d8
and d1” are fixed und do not depend on the path joining the end
points. Thus any relation between them is independent of whether
or not the process is reversible.

This is a significant advance because we now have a general
relation between P, V, T and S which holds for all paths between a
pair of infinitesimally close equilibrium states, whether or not they
are reversible. We call the relation

TdS =dU 4 PdV (310}

the central equation of thermodynamics or, in view of what we have
Just said about its gencrality, the thermodynamic identity. The whole
of the science of thermodynamics is consequent on this equation,
just as the whole of mechanics is consequent on MNewton’s laws.
Because it is an identity, and we do not have to enquire whether
the process we are considering is reversible or irrcversible, then it
follows that the equations derived from it are generally true.

Two remarks should be made at this point, both of which fead
to modification of equation (5.10). The first is that we have considered
only PdV or volume work; if for example there were also magnetic
work, this equation would have to be modified to

TdS =dU + PdV — Byd.#
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The second remark is that here we are considering only closed
systems where the mass of the system is constant. If this restriction
is removed, then additional terms involving the so-called chemical
potential have to be introduced. Open systems are considered in
Chapter 10.

5.9 THE ENTROPY OF AN IDEAL GAS

Although the demonstration of the power of equation (5.10) has to
watt until the next chapter, we can give an example herc of its use
to determine an expression for the entropy of an ideal gas in terms
of the volume and temperature.

For an ideal gas, where U = [(T),

and so equation (5.10) becomes
Tds =C,dT 4+ PdV

Let us consider one mole and use lower-case letiers to refer to molar
quantities, Using Pv = R'f, this last equation becomes

- m RT

Tds = c dT + """ dp

or

Integrating, we have for the entropy per mole

[s=c,In7+RInot s, | (5.11)

where s, 15 the integration constant which disappears when entropy
differences are taken.

510 ENTROPY, PROBABILITY AND DISORDER

In our discussion so far, entropy has appeared as a rather mysterious
quantity related to the heat flow in reversible processes. Although we
have learnt how to use it, we have not really given entropy a physical
interpretation. To do this, we have to resort to the MIcroscopic
picture, just as we did in Chapter 3 when we interpreted internal
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energy as the random kinctic and potential energies of the constituent
molecules.

How can we describe a system microscopically? We could do so
exactly by specilying the position ceordinates x, p and z anld the
momentum components p,, p, and p, for cach of the N L:unﬁhlugnt
particles in the system. A given sel of these quantities for a particle
is represented as a point in the six-dimensional space Ts_pamled by
X, V.2, Popy and po; this space is called phase space. H()Wﬂvcz; we
cannot measure x with absolute accuracy but only to within a range
Ax; similarly we can measure p, only to within a range Ap. So we
have to be satisfied with less than an cxact description by dividl_ng
the phase space up into cells of volume (Ax)*(Ap)® and knowing
how many particles are in each cell. We have assumed here that_lhe
uncertainty in y and z 13 also of the order of Ax and that the uncertainty
in each of the momentum components is Ap. One such arrangement
could be as in Fig. 5.12, where each dot represents a particle having
momentum and position within the ranges appropriate 1o the cell.
As 11 is impossible to draw a six dimensional phase space, we have
split this up inte the separate pictures: real space is showr_] on {hc‘
left consisting of space cells and momentum space, consisting of
momentum cells, 15 shown on the right. For simplicity, the third
coordinates z and p, have been omitted. Now, although each different
arrangement of the particles amongst the cells gives rise to a definite

&y b 0y

|

Ap

[ . X T g A )
Ax

Space cells Momentum cells

B Oy

Figure 5,12 A schematic representation of phase space. A distribution of all
the particles over the cells gives rise to a definite bulk state.J The space cells
are of volume Ax?® and the momentum cells of volume Ap?’.
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bulk state, in general there will be many different arrangements ihat
give rise io the same bulk state. We call the number of arrangements
that give rise to a siate the thermodynamic probabiiity, £, of that
state. The states with the largest Qs will be the ones most fikely to
ocecur.

This is analogous to the game of craps where two dice are thrown,
The most likely score of 7 can be realized in six ways while the feast
likety scores of 2 or 12 can be realized in only one way (you should
work this out).

For our microscopic system, where the number of particles is huge,
being of the order of 1023, the thermodynamic probability becomes
overwhelmingly large for a particular state, and this will be the
observed equilibrium state. An isolated system will move from a
state of low thermodynamic probability to the final equilibrium state
of maximum thermodynamic probability, consistent with the internal
energy U remaining constant. We conclude that

£2—a maximum

This is our clue as to the meaning of entropy. We remember that,
for an isolated system,

5 -+a maximum

while U remains constant. Additionally § is an extensive quantity,
so that the entropy of two separate systems is S, -+ 5, If the number
of ways of realizing the first system is Q, and this is £, for the
second, then the number of ways of realizing both systerns togetheris

We see that

EEY 512

satisfics these properties. This famous equation is known as the
Boltzmann relation and is carved on Boltzmann’s tombstone in
Vienna. ky is the so-called Boltzmann constant.

The microscopic viewpoint thus interprets the increase of entropy

for an isolated systems as a consequence of the natural tendency

of the system to move from a less probable to a more probable siate,
It is usual to identify €2 as a measure of ‘disorder’ in the system. This
implies that we expect the disorder of an isolated system to increase.
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To see what this means, let us consider all the particles being in one
cell in phase space. This is a highty ordered arrangement in phase
space which can be achieved in only one way with G =1 and § = 0.
it is a highly ordered arrangement in real space, too, with all the
particles being in the same place and moving with identical velocities.
The particles will spread out from this highly ordered state,
occupying more cells in phase space and lessening the order or
increasing the disorder in that space. The thermodynarmic probability
will increase from 1 to a large value, with the entropy increasing
accordingly. It is in this sense that € is a measure of disorder.

Let us now be a little more definitc and scc how there is complete
agreement between the macroscopic and microscopic viewpoints in
two specific examples.

5.10.1 The entropy change in a free expansion— microscopic
approach

We known that there is no temperature change in a free expansion
of an ideal gas and so the mean kinetic energy and root mean square
mementum j of the molecules remains unchanged. Let us consider
such an expansion in which the volume is doubled.

Now the momentum space is a box of volume ~ 5* and so the
number of momentum cells that can be occupied is ~ p3/Ap and this
number does not change upon expansion as ji is unchanged, However,
the number of space cells doubles from V/Ax? to 2V/Ax?. This means
that, if the number of possible arrangements for fitting the molecules
in the cells before the expansion is €, after expansion it is now 2VQ
because each of the N molecules now has a choice of twice as many
cells in phase space. Thus

AS = kg In (280 — kpln € = kyIn 2V
or
AS = NkpIn2=nRIn2

for n moles as N =nN , and N ky = R where N, is the Avogadro
number.
This is exactly the result we obtained earlier as equation (5.6),

5.10.2 The entropy of an ideal gas—microscopic approach

We have previously derived an expression (equation (5.11)) for the
entropy of anideal gas using the central equation of thermodynamics.
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Figure 5.13 Space cells of volume Ax®,

Let us see if we can derive the same result from microscopic
considerations using a simplified argument. We shall consider a
monatomic gas where the atoms have translational degrees of freedom
only,

The atoms of the gas have to be fitted into the cells of phase
space subject to the following two restrictions.

L. All the atoms have to be contained in a box of volume V.
2. The total energy of the atoms of mass m is fixed at U and is all
kinetic, with

where the summation is over the N atoms.

The total number of ways £ of filling up the cells in phase
space is the product of the number of ways € . the space cells*
of volume Ax? can be filled times the number of ways £ e the
different momenta cells of volume Ap? can be filled. Thus ‘

D=0__ 10

sSpace motnenium

Let us calculate £ e

In Fig. 5.13 we have drawn the box showing jusi two dimensions
and the space cells. Each atom has V/Ax? distinct locations in the

box. Thus
[
Qspace = [K):;:]

*Strictly the use of the word cell in statistical mechanics shouid be confined to an
elementary velume Ax?Ap? of phase space,
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Let us now calculate €, Although each atom is not confined
1o a finite ‘momentum box’, they have a root mean square momentum
p, given by

pr_u

2Zm N
and, for the purpose of this caloulation, we may take them as being
confined within a momentum box of side p as shown in Fig. 5.14,
The number of cells in the momentum box is (§/Ap)° for each atom.

Thus
5 ON\AN
Qnmmcml.m o (P__)
Ap

Multiplying these two results,

sy W
Q=00 Cyomentun = h-f-_.}. e~ J

However, we have over-counted our ways of {illing up the cells
because we have assumed that the atoms are distinguishable, just as
if they arce labelled with a number. The two situations depicted in
Fig. 5.14 are clearly physically the same.

There are N1 ways of arranging the N identical atoms in a given set
of boxes. Thus

L ﬁJV v
g?‘indiwlinguishnhlcm_m a3
| ' NILAx?Ap~ .
iy 4
R
AR p
L B o,
—p AP

Figure 5,14 Momentum cells of volume Ap®.
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Figure 515 An illustration of two ecquivalent arrangements in phase
space

If N is large, we may use Stirling’s approximation for factorials:

NN
Nzl -
(t)

vyt P
indistinguishahle ™ - N(AXAP}j )
N [ eV (2mU)*?

S0
(9]

i

" - . 2w\
NS;Z(AXAP)j USlﬂg p (STl J—

If we replace the product AxAp with h, this becomes

0 N eV (2mUyr P
indistinguishable ™ ___j\_[_‘;*?hS 7
eV(2mUY»? }”N”‘
~ (nNA)S,ith

if we have n moles with N = ni 4.

This result is very close to the famous result derived by Sackur and
Tetrode using somewhat more rigorous and complicated arguments
than the simple ones that we have emploved, namely
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It is now a simple matter to obtain the entropy:
S =kyln2
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04 Entropy
So for one mole,
3
s=RlIne+ ? Inu -+ constant terms

But we know from kinetic theory that
w=3N kT

for a monatomic gas, so

s=Rlnv+3RInT + s

where s, is a constant. As ¢, = 3/2 R for a monatomic gas, this is
the identical resuii to equation (5.11) which was obtained using
macroscopic ideas.

These two resulés are a confirmation that entropy s indeed given by

SekylnQ {5.12)

511 THE DEGRADATION OF ENERGY AND
THE HEAT BEATH

We conclude this important chapter on entropy by discussing the
simple connection between the increase in entropy of the universe
associated with an irreversible process and the decrease in the
cnergy that is available for performing work. This can best be seen
by considering an example.

In Fig. 5.16(a), a Carnot engine operates between two reservoirs
lLagged bar
7 ]

Figure 516 An exampile illustrating the degradation of energy.
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at T, and T, where the temperature T}, of the second reservoir ig
the lowest temperature available. The efficiency of this engine is
n=1—(Ty/T)and so, if heat ¢ is extracted from the hotter reservoir
at T, the work delivered s w = g{1 — T,/T)). As we are considering
a Carnot engine, the process is reversible and AS™°"*° = (), Now let
us pul in the same amount of heat ¢ into the engine from a second
reservoir at a temperature 1 < T, We do this, as shown in
Fig. 5.16(b), by allowing the heat ¢ first to be conducted along a
lagged metal bar from the reservoir at 7 to the reservoir at 7' and
then being delivered to the engine. The work given out by this
combined device s now w' = g(1 — T,,/T"); this is less than w by an
amount

L 1
Aw=w—w =gTy{ - — - (5.13)
T
Now this second process is irreversible because the conduction of
heat along the bar is irreversible. The entropy change of the universe

15

Asuniverse - C]{ 1 . 1 } (514)
A

because of the entropy changes —q/T, and +¢/T at the two
reservoirs. We see immediately from equation 5.13 and 5.14 that the
amount of work we have lost from ¢ by using our second irreversible
device is simply

Aw == T()Asuniverse (5‘ Ef))

Although we have chosen to illustrate this point using this simple
example, it can be shown that it is gemerally true that, in any
irreversible process, the energy that becomes unavailable for work
is always T,AS"™**"¢_ This result is called the degradation of energy.
It means simply that the quality, or potential for work, of the energy
in the universe decreases by ToAS" ™ in every itreversible process.

It is often said that the world is suffering from an energy crisis,
We knew from the first Jaw that energy is always conserved-—we
can never destroy cnergy. What we are really suffering from is an
entropy crisis. Every irreversibic process increases the entropy of the
universe and this means, as we have just discovered, a loss of capacity
of energy for work. The universe is gradually running oui of tow
entropy or order. When all the order has been destroved, the universe
will suffer a heat dearh!





