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The standard theory of computation excludes computations whose completion
requires an infinite number of steps. Malament-Hogarth spacetimes admit ob-
servers whose pasts contain entire future-directed, timelike half-curves of infi-
nite proper length. We investigate the physical properties of these spacetimes
and ask whether they and other spacetimes allow the observer to know the out-
come of a computation with infinitely many steps.

1. Introduction. Is it possible to perform a supertask, that is, to carry
out an infinite number of operations in a finite span of time? In one sense
the answer is obviously yes since, for example, an ordinary walk from
point a to point b involves crossing an infinite number of finite (but rap-
idly shrinking) spatial intervals in a finite time. Providing a criterion to
separate such uninteresting supertasks from the more interesting but con-
troversial forms is in itself no easy task, but there is no difficulty in pro-
viding exemplars of what philosophers have in mind by the latter. There
is, for instance, the Thomsom lamp (Thomson 1954—1955). At ¢ = O the
lamp is on. Between ¢ = 0 and ¢ = !/, the switch at the base of the lamp
is pressed, turning the lamp off. Between ¢ = !/, and ¢ = 3/, the switch
is pressed again, turning the lamp on. And so on, with the result that an
infinite number of presses are completed by r = 1. Then there is super
o machine. Between ¢ = 0 and ¢ = !/, it prints the first digit of the decimal
expansion of 7. Between ¢+ = !/, and ¢ = 3/, it prints the second digit.
And so on, with the result that the complete expansion has been printed
at t = 1. More interestingly from the point of view of mathematical
knowledge is the Plato machine which checks some unresolved conjecture
of number theory for “1” during the first !/, second, for “2” during the
next 1/4 second. And so on, with the result that the truth-value of the
conjecture is determined at z = 1.
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Thomson thought that such devices are logically or conceptually im-
possible. The operation of the Thomson lamp (a misnomer if Thomson
were correct) entails that (i) V¢ such that 0 < ¢ < 1, if the lamp is off at
t, then 3¢’ such that t < ¢'< 1 and the lamp is on at ¢, and (b) V¢ such
that 0 < ¢ < 1, if the lamp is on at ¢, then 3¢’ such that t < ¢ < 1 and
the lamp is off at #'. Thomson thought that it followed from (i) that the
lamp is on at ¢ = 1 and from (ii) that the lamp is off at + = 1, a contra-
diction. The fallaciousness of the argument was pointed out by Benacerraf
(1962).

Others have held that though conceptually possible, such devices are
physically impossible. Benacerraf and Putnam, for example, seem to think
that these devices are kinematically impossible because relativity theory
sets ¢ (the velocity of light) as the limit with which the parts of the device
can move (1964, 20). Again, however, the impossibility is not as obvious
as claimed. A demonstration would have to rule out as a kinematic im-
possibility that the operation of the device is arranged so that with each
successive step the distance the parts have to move (as in an ordinary
stroll from a to b) shrinks sufficiently fast that the bound c¢ is never vi-
olated. Of course, even if the device can be shown to pass muster at the
kinematic level, it may still fail to satisfy necessary conditions for a dy-
namically possible process (see Griinbaum 1968, 1969 for a discussion).

We have nothing new to add to this discussion—except for a brief
comment on recent discussions of Ross’s paradox. (See Allais and Koestsier
1991 and van Bendegem [forthcoming]. We claim that the supertask in-
volved is impossible because the end state has contradictory properties.
Thus, the issue is purely logical and mathematical and has nothing to do
with physical limitations. We will present our argument for this claim
elsewhere.) Our focus will be on the ways that the relativistic nature of
spacetime can be exploited so as to finesse the accomplishment of a su-
pertask. Very crudely, the strategy is to use a division of labor. One
observer has available an infinite amount of proper time, thus allowing
her to carry out an infinite task in an unremarkable way. For example,
she may check an unresolved conjecture in number theory by checking
it for “1” on day one, for “2” on day two, and so on ad infinitum—or,
if she needs extra time, she can allow herself f(n) days to check the
conjecture for “n”, where f (n) is any increasing function of n so long as
f(n) < o for all n. A second observer, who uses only a finite amount of
his proper time, is so situated that his past light cone contains the entire
world-line of the first observer. The second observer thus has access to
the infinite computation of the first observer, and in this way he obtains
knowledge of the truth-value of the conjecture in a finite amount of time.
If this is genuinely possible, an irony is involved in relativity theory.
Prima facie it seems to make supertasks more difficult if not impossible
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by imposing kinematic limitations on the workings of Thomson lamps,
Plato machines, and the like. But on further analysis it opens a royal road
that leads to the functional equivalent of the accomplishment of a super-
task.

The rough sketch just given contains an unjustified optimism. We will
see that relativistic spacetimes provide opportunities for carrying out the
functional equivalents of supertasks, but at a price. One approach is to
set the supertask in a well-behaved spacetime (section 2). Here a double
price has to be paid, for the second observer who tries to take advantage
of the infinite labor of the first observer must submit himself to un-
bounded forces that end his existence, and in any case he never observes
the completion of the infinite labor at any definite time in his existence.

Alternatively, both of these difficulties can be overcome by exploiting
spacetimes with unusual structures which we will dub “Malament-
Hogarth spacetimes”. A large part of this paper will be devoted to artic-
ulating the senses in which these spacetimes are physically problematic.
As Hogarth has already shown, they are not globally hyperbolic (Lemma
1, section 3), so that the usual notion of determinism does not apply
globally, and they may violate cosmic censorship and other requirements
one would expect a physically realistic spacetime to fulfill (section 6). It
will turn out that the failure of global hyperbolicity occurs in a way that
necessarily defeats attempts to control disturbances to the signalling be-
tween the first and second observer from singularities and other sources.
This signalling will prove to be problematic in other ways. It may demand
that the second observer pursue his own mini-supertask in his neighbor-
hood of spacetime, forfeiting the advantage that a Malament-Hogarth
spacetime was supposed to offer (section 7). Again, the signalling will
be associated with indefinite blueshifts (Lemma 2, section 5), so that the
energy of the signals can be indefinitely amplified, threatening to destroy
the second observer who receives them.

2. Pitowsky Spacetimes. The first published attempt to make precise
the vague ideas sketched in section 1 for using relativistic effects to fi-
nesse supertasks was that of Pitowsky (1990). His approach is encapsu-
lated in the following definition:'

DEFINITION. M, g, is a Pitowsky spacetime just in case there are
future-directed timelike half-curves vy,, v, € M such that [, dr =
®, [,,dr <%, and y, C I (y,).

'We follow the standard notational conventions of Hawking and Ellis (1973) and Wald
(1984). A relativistic spacetime M, g,, consists of a differentiable manifold M and a Lor-
entz metric g, defined on all of M. For the case of dim(M) = 4 we work with signature
(+ + + —). All of the spacetimes discussed here are assumed to be time-oriented. The
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The blandest relativistic spacetime, Minkowski spacetime, is Pitowskian,
as shown by Pitowsky’s own example. (We conjecture that this example
can be generalized to show that any relativistic spacetime that possesses
a timelike half-curve of infinite proper length is Pitowskian.) Choose an
inertial coordinate system (X, 7). Let v, be the timelike half-geodesic x(¢)
= constant, 0 < ¢ < +. Choose v, to be a timelike half-curve that spirals
around 7, in such a way that its tangential speed is u(f) = [1 — exp(—2£)]",
¢ = 1. The proper time for 7, is dr = exp(—1)dt, so that [, dr = 1. Those
familiar with the “twin paradox” may take this example as the extreme
case of the paradox with vy, as the ultimate traveling twin who ages bi-
ologically only a finite amount while his stay-behind twin ages an infinite
amount. But this example does not conform to the usual twin paradox
scenario where the twins hold a final reunion.
Pitowsky tells the following story about this example:

While [the mathematician] M [v,] peacefully cruises in orbit, his
graduate students examine Fermat’s conjecture one case after the other.
. . . When they grow old, or become professors, they transmit the
holy task to their own disciples, and so on. If a counterexample to
Fermat’s conjecture is ever encountered, a message is sent to [M].
In this case M has a fraction of a second to hit the brakes and return
home. If no message arrives, M disintegrates with a smile, knowing
that Fermat was right after all. (1990, 83)

Two things are wrong with this story. The first concerns the notion that
“M [v,] cruises peacefully in orbit”. For ease of computation, assume
that M undergoes linear acceleration with u(f) as before. The magnitude
of acceleration a(r) = (A,(1)A”(r))", where A’ is the four-vector acceler-
ation, is exp(r)/[1 — exp(—2£)]", which blows up rapidly. (To stay within
a linearly accelerating 7y,’s causal shadow, y, would also need to accel-
erate. But 7y,’s acceleration can remain bounded. Indeed, vy, can undergo
constant [“Born”] acceleration, which guarantees that y,’s velocity ap-
proaches the speed of light sufficiently slowly that its proper length is
infinite.) Thus, any physically realistic M will be quickly crushed by g-
forces. The mathematician M disintegrates with a grimace, perhaps before
learning the truth about Fermat’s conjecture. What is true in this example
is true in general since any ultimate traveling twin in Minkowski space-
time must have unbounded acceleration. If the ultimate traveling twin
moves rectilinearly and has an upperbound to his acceleration, then an-
other traveler, Born-accelerated at this upperbound, would achieve equal

chronological past / "(p) of a point p € M is defined as the set of all points ¢ € M such
that there is a nontrivial future-directed timelike curve from g to p. If y is a timelike curve,
then 7 “(y) = U,e, I "(p). Proper time is denoted by 7. A timelike half-curve is one which
has a past endpoint and which is maximally extended in the future.
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or greater velocity at each instant and therefore age less. But this Born-
accelerated traveler’s world-line has infinite proper length. Therefore the
rectilinearly accelerated traveler must have no upperbound to his accel-
eration if he is to have finite total proper time. This result holds a fortiori
for the general case of a traveler in curvilinear motion, for part of his
acceleration will be transverse to the direction of motion, thus generating
no velocity over time and no resultant clock slowing.

The second and conceptually more important difficulty concerns the
claim that M [v,] can use the described procedure to gain sure knowledge
of the truth-value of Fermat’s conjecture. If Fermat was wrong, 7y, will
eventually receive a signal from 7y, announcing that a counterexample has
been found, and at that moment 7y, knows that Fermat was wrong. On
the other hand, if Fermat was right, M never receives a signal from v,.
But at no instant does y, know whether the absence of a signal is because
Fermat was right or because v, has not yet arrived at a counterexample.
Thus, at no definite moment in his existence does y, know that Fermat
was right. The fictitious mathematical sum of all of ,’s stages knows
the truth of the matter. But this is cold comfort to the actual, nonmath-
ematical y,. By way of analogy, if your world-line v is a timelike geo-
desic in Minkowski spacetime and you have drunk so deep from the foun-
tain of youth that you live forever, then /™ (%) is the entirety of Minkowski
spacetime. So the fictitious sum of every stage of you can have direct
causal knowledge of every event in spacetime. But at no definite time
does the actual you possess such global knowledge.

3. Malament-Hogarth Spacetimes. Malament (1988) and Hogarth (1991)
sought to solve the conceptual problem with Pitowsky’s example by uti-
lizing a different spacetime structure.

DEFINITION. M, g, is a Malament-Hogarth spacetime just in case there
is a timelike half-curve y; C M and a point p € M such that [, dr
=owand vy, CI (p).

This definition contains no reference to a receiver vy,. But if M, g,, is a
Malament-Hogarth (hereafter, M-H) spacetime, then there will be a
future-directed timelike curve 7y, from a point ¢ € I™(p) to p such that
Jysa d7 < ®, where g can be chosen to lie in the causal future of the
past endpoint of y,. Thus, if vy, proceeds as before to check Fermat’s
conjecture, y, can know for sure at event p that if he has received no
signal from v, announcing a counterexample, then Fermat was right.

This more interesting scenario cannot be carried out in Minkowski
spacetime, as follows from

LEMMA 1. A M-H spacetime is not globally hyperbolic.
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Figure 1. A Toy Malament-Hogarth Spacetime.

A formal proof of Lemma 1 was given by Hogarth (1991). A simple
informal proof follows from the facts that a globally hyperbolic spacetime
M, g, contains a Cauchy surface (i.e., a spacelike S C M such that every
nonspacelike curve without endpoint meets S exactly once) and that a
spacetime with a Cauchy surface can be partitioned by a family of Cauchy
surfaces (see Hawking and Ellis 1973). Suppose for purposes of contra-
diction that M, g, is both globally hyperbolic and contains an M-H point
p € M, that is, there is a future-directed timelike half-curve vy such that
y C I"(p) and [, dr = . Choose a Cauchy surface S through p, and
extend y maximally in the past. This extended vy’ is also contained in
I7(p). Since vy’ has no past or future endpoint, it must intersect S. But
then since there is a timelike curve from the intersection point to p, S is
not achronal and cannot, contrary to assumption, be a Cauchy surface.’

What of the problem in Pitowsky’s original example that the receiver
v, has to undergo unbounded acceleration? In principle, both vy, and v,

*David Malament has pointed out to us that a quick proof of Lemma 1 can be obtained
by using Proposition 6.7.1 of Hawking and Ellis (1973): For a globally hyperbolic space-
time, if p € J*(g), then there is a nonspacelike geodesic from g to p whose length is
greater than or equal to that of any other nonspacelike curve from ¢ to p. (Here J *(x) =
{y: there is a future-directed nonspacelike curve from x to y}.) Suppose that y € I "(p)
and that [,dr = . Since the endpoint g of y belongs to I”(p), we could apply the prop-
osition to p and ¢ if the spacetime were globally hyperbolic. But then a contradiction results
since whatever the bound on the length of the timelike geodesic from g to p, we could
exceed it by going along 7 sufficiently far and then over to p.
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can be timelike geodesics in at least some M-H spacetimes. The toy ex-
ample illustrates the point and also serves as a useful concrete example
of a M-H spacetime. Start with Minkowski spacetime R*, 1,, and choose
a scalar field {2 which is 1 outside of a compact set C (see figure 1) and
which goes rapidly to + as the point r is approached. The M-H space-
time is then M, g,, where M = R* — r and g, = 2%n,,. Timelike geo-
desics of m,, in general do not remain geodesics in g,,, but {2 can be
chosen so that vy, is a geodesic of g,, (e.g., if y, is a geodesic of 7,
choose an (2 with vy, as an axis of symmetry).

4. Paradoxes Regained? Consider again the super 7 machine which is
supposed to print all the digits in the decimal expansion of 7 within a
finite time span. Even leaving aside worries about whether the movement
of the parts of the machine can be made to satisfy obvious kinematic and
dynamic requirements, Chihara (1965) averred that something is unin-
telligible about this hypothetical machine:

The difficulty, as I see it, is not insufficiency of time, tape, ink,
speed, strength or material power, and the like, but rather the incon-
ceivability of how the machine could actually finish its super-task.
The machine would supposedly print the digits on tape, one after
another, while the tape flows through the machine, say from right to
left. Hence, at each stage in the calculation, the sequence of digits
will extend to the left with the last digit printed at the “center.” Now
when the machine completes its task and shuts itself off, we should
be able to look at the tape to see what digit was printed last. But if
the machine finishes printing all the digits which constitute the dec-
imal expansion pi, no digit can be the last digit printed. And how
are we to understand this situation? (P. 80)

This conundrum can seemingly be mapped into the setup we have
imagined for a M-H spacetime. Sender y;, who now has available to her
an infinite amount of proper time, prints the digits of =, say, one per
second. At the end of each step she sends a light signal to y, announcing
the result. Receiver vy, has a receiver equipped with an indicator which
accordingly displays “even” or “odd”. By construction at some point p
€ 7,, ¥, has received all of the signals from v,. One can then ask: What
does the indicator read at that moment?

Any attempt to consistently answer this query fails. How the failure is
reflected in any attempted physical instantiation will depend on the details
of the physics—in one instantiation the indicator device will burn out
before the crucial moment, in another the indicator will continue to dis-
play but the display will not faithfully mirror the information sent from
v, and so on. Independently of the details of the physics, we know in
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advance-that the functional description of the device is not self-consistent.
Does this knowledge constitute a general reductio of the possibility of
using M-H spacetimes to create the functional equivalents of Plato ma-
chines? No, for the inconsistency here can be traced to the conditions
imposed on one component of the 7 machine—the receiver-indicator—
and such conditions are not imposed in mimicking Plato machines.

If the M-H analogue of the super 7 is to operate as intended, then the
receiver-indicator must satisfy three demands: (a) the indicator has a def-
inite state for all relevant values of its proper time 7; (b) the indicator is
faithful in the sense that, if it receives an odd/even signal at 7, then it
instantly adopts the corresponding odd/even indicator state; and (c) the
indicator does not change its state except in response to a received signal
in the sense that if 7,, is a time at which no signal is received, then the
indicator state at 7, is the limit of indicator states as 7 approaches 7,
from below. These demands are supposed to guarantee that at the crucial
moment the indicator displays the parity of the “last digit” of . That
such a component is possible by itself leads to contradictions if it is as-
sumed that the receiver-indicator device is subject to infinitely many al-
ternating signals in a finite time. The limit required by (c) does not always
exist, contradicting (a). We take the impossibility of such a component
to be the lesson of forlorn attempts to construct a M-H analogue of the
super 71 machines.

Denying the use of such functionally inconsistent devices will not affect
attempts to construct M-H analogues of Plato machines and to use them
to gain new mathematical knowledge. The computer vy, uses is an infinity
machine in the innocuous sense that it performs an infinite number of
operations in an infinite amount of proper time. We see no grounds for
thinking that such machines involve any conceptual difficulties unless they
are required to compute a nonexistent quantity. The uses to which we
will put them makes no such demand. Similarly, a conceptually non-
problematic receiver-indicator device can be coupled to the computer
through M-H spacetime relations in order to determine the truth-values
of mathematical conjectures. To flesh out the suggestion already made
above, imagine, as in Pitowsky’s example, that vy, is the world-line of a
computer which successively checks a conjecture of number theory for
“1”, for “2”, and so on. Since it has available to it an infinite amount
of proper time, the computer will eventually check the conjecture for all
the integers. It is arranged that y, sends a signal to 1y, iff a counterexample
is found. Receiver v, is equipped with a receiver and an indicator device
that is initially set to “true” and that retains that state unless the receiver
detects a signal, in which case the indicator shifts to “false” and the re-
ceiver shuts off. By reading the display at the M-H point, vy, can learn
whether the conjecture is true. Although we can give no formal proof of
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the consistency of this functional description, we see no basis for doubt.
However, we will show below that attempts to physically instantiate this
functional description runs into various difficulties. But the difficulties
have nothing to do with the paradoxes and conundrums of Thomson lamps
and the like.

5. Characterization of M-H Spacetimes. We saw that M-H spacetimes
are not. globally hyperbolic. The converse is generally not true: Some
spacetimes that are not globally hyperbolic can fail to be M-H spacetimes
(e.g., Minkowski spacetime with a closed set of points removed does not
contain a Cauchy surface but is not an M-H spacetime). Some M-H
spacetimes are acausal. Godel spacetime is causally vicious in that for
every point p € M (= R”) there is a closed future-directed timelike curve
through p (see Hawking and Ellis 1973, 168—170). In fact, for any p €
M, I (p) = M. Since Godel spacetime contains timelike half-curves of
infinite proper length, every point is a M-H point. We will not discuss
such acausal spacetimes here, but not because we think that the so-called
paradoxes of time travel show that such spacetime are physically impos-
sible. Such paradoxes, however, do raise a host of difficulties which,
though interesting in themselves, serve to obscure the issues we wish to
emphasize.

In what follows then we will restrict attention to causally well-behaved
spacetimes. In particular, all of the spacetimes we will discuss are stably
causal, which entails the existence of a global time function (ibid., 198—
201). We assert that among such spacetimes satisfying some subsidiary
conditions to be announced, the M-H spacetimes are physically charac-
terized by divergent blueshifts. The intuitive argument for this assertion
is straightforward. During her lifetime, 7y, measures an infinite number
of vibrations of her source, each vibration taking the same amount of her
proper time. Receiver y, must agree that an infinite number of vibrations
take place. But within a finite amount of his proper time, 7, receives an
infinite number of light signals from v,, each announcing the completion
of a vibration. For this to happen 7y, must receive the signals in ever
decreasing intervals of his proper time. Thus, vy, will perceive the fre-
quency of vy,’s source to increase without bound. (This argument does
not apply to acausal M-H spacetimes. The simplest example to think about
is the cylindrical spacetime formed from two-dimensional Minkowski
spacetime by identifying two points (x;, #;) and (x,, £,) just in case x, =
x, and ¢, = t, modulo 7. Receiver 7y, can be chosen to be some finite
timelike geodesic segment and y, can be a timelike half-geodesic that
spirals endlessly around the cylinder. The light signals from y; may arrive
at 7y, all mixed up and not blue-shifted.)

The main difficulty with this informal argument, as with all of the early
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literature on the redshift/blueshift effect (see Earman and Glymour 1980)
is that the concept of frequency it employs refers to the rate of vibration
of the source at v, and to the rates at which v, sends and v, receives
signals. But the effect actually measured by 7y, depends on the frequency
of the light signal (photon) itself. Thus, we need to calculate the blueshift
using the definition of the emission frequency of a photon from a point
P E vy, as o, = —(k, V) » and the measured frequency of the photon as
received at the point p, € vy, as w, = —(k,V3)| »,» Where the timelike
vectors V{ and V5 are respectively the normed tangent vectors to the world-
lines vy, and 7,, and the null vector £“ is the tangent to the world-line of
the photon moving from the first to the second observer (see figure 2).
Then the redshift/blueshift effect is given by the ratio

wy/ 0, = [(kV)|pal /1Y D) pil. (5.1
We establish in an appendix the following:

LEMMA 2. Let M, g, be a Malament-Hogarth spacetime containing a
timelike half-curve vy, and another timelike curve vy, from point q
to point p such that [, dr= %, [, dr < %, and vy, C I (p). Sup-
pose that the family of null geodesics from vy, to vy, forms a two-
dimensional integral submanifold in which the order of emission from
vy, matches the order of reception at vy,. If the photon frequency w,
as measured by the sender vy, is constant, then the time integrated
photon frequency [7* w,dT as measured by the receiver vy, diverges
as p, approaches p.

Parametrize 7y, by a ¢ such that v,’s past endpoint corresponds to ¢ =
0 and p corresponds to ¢+ = 1. Then it follows from Lemma 2 that
lim,,, @,(r) = o if the limit exists. If not, then lim,,, ®"“(z) = %, where
0"(1) = lub{wy(t'): 0 < t' < t}. Thus, one can choose on 7y, a countable
sequence of points approaching p such that the blueshift as measured by
v, at those points diverges. Typically this behavior will hold for any such
sequence of points on 7,, but some mathematically possible M-H space-
times exist where 7y, measures no red- or blueshift at some sequence of
points approaching p.

The following example (due to R. Geroch and D. Malament) illustrates
this counterintuitive feature. As in the toy model in figure 1, start with
parallel timelike geodesics of Minkowski spacetime. Parametrize vy, by
the proper time 7 of the Minkowski metric and adjust the curve so that
the past endpoint corresponds to 7 = 0 and r corresponds to 7 = 1. At
the points on vy, corresponding to 7 = 7, = 1 — (3/5)(!/s"), draw a sphere
of radius r, = Y,"** (as measured in the natural Euclidean metric). On
the nth sphere put a conformal factor (2, which goes smoothly to 1 on
the surface of the sphere and which has its maximum value at the point
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2 2

Figure 2. The Redshift/Blueshift Effect.

on v, corresponding to 7,. Construct the {2, such that the proper time
along v, in the conformal metric 2, is infinite. For instance, if Yin
is the part of y, within the nth sphere, set {2, so that [, £,dr = 1. The
result is an M-H spacetime. But at the points on 7, that receive photons
from the points on vy, corresponding to 7 = 1/, 3/4, 7/g, and so on, there
is no blue- or redshift.

While mathematically well defined, such examples are physically
pathological. In particular, we do not know of any examples of M-H
spacetimes which are solutions to Einstein’s field equations for sources
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Figure 3. Anti-de Sitter Spacetime.

satisfying standard energy conditions (see section 6) and which have the
curious feature that the blueshift as measured by v, diverges along some
but not all sequences of points approaching the M-H point. Thus, al-
though the slogan that M-H spacetimes involve divergent blueshifts is
potentially misleading, it is essentially correct in spirit.

It may help to fix intuitions by computing the blueshift in some con-
crete examples. For the toy model pictured in figure 1 the result is

w/w =10, /0, =0,.

1

(5.2)

This ratio diverges as 7, approaches the (missing point) » and 7, ap-
proaches the M-H point p.

Another stably causal M-H spacetime is obtained by taking the uni-
versal covering of anti-de Sitter spacetime (Hawking and Ellis 1973, 131—
134). Suppressing two spatial dimensions, the line element can be written
as ds> = dr® — (cosh’r)dt*. Following Hogarth (1991) we can take 7, to
be given by r = r, = constant and 7, to be given by a solution to dr/dt
= coshr\/2 (see figure 3). The blueshift is

w,/w, = [cosh r,]/[cosh rz(\/i - 1] (5.3)

which diverges as r, — % and p, approaches the M-H point p.

We can also pose the converse question as to whether a divergent blue-
shift behavior indicates that the spacetime has the M-H property. The
answer is positive in the sense that the proof of Lemma 2 can be inverted.



34 JOHN EARMAN AND JOHN D. NORTON

The fact that an M-H spacetime gives an indefinitely large blueshift
for the photon frequency implies that the spacetime structure acts as an
arbitrarily powerful energy amplifier. This might seem to guarantee un-
ambiguous communication from vy, to ,. But this first impression ne-
glects the fact that a realistic instantiation of 7y, will have thermal prop-
erties. The slightest amount of thermal radiation will be amplified
indefinitely, which will tend to make communication impossible. In order
not to destroy the receiver at y,, 7y, will have to progressively reduce the
energy of the photons she sends out. This means that there will be a point
at which the energy of the signal photons will be reduced below that of
the thermal noise photons. The indefinite amplification of the thermal
noise will in any case destroy the receiver. Perhaps this difficulty can be
met by cooling down v, so as to eliminate thermal noise or by devising
a scheme for draining off the energy of the signal photon while in transit.
But even assuming a resolution of this difficulty, still further problems
dog the attempt to use M-H spacetimes to accomplish supertasks.

6. Are Supertasks in M-H Spacetimes to be Taken Seriously? Our
question involves three aspects. The first concerns whether M-H space-
times are physically possible and physically realistic. As a necessary con-
dition for physical possibility, general relativists will want to demand that
the spacetime be part of a solution to Einstein’s field equations for a
stress-energy tensor 7 satisfying some form of energy condition, weak,
strong, or dominant (see Hawking and Ellis 1973, 88—-96). The toy model
of figure 1 can be regarded as a solution to Einstein’s field equations with
vanishing cosmological constant A by computing the Einstein tensor G,(g)
and then defining T,, = (!/3sm)G,,. However, there is no guarantee that
even the weak energy condition (which requires that 7,,V°V’ = 0 for
every timelike V) will be satisfied. Anti-de Sitter spacetime can be re-
garded as a vacuum solution to Einstein’s field equations with A = R/4,
R (< 0) being the curvature scalar. However, if A = 0 is required, anti-
de Sitter spacetime is ruled out by the strong energy condition (which
requires that 7,,V‘V® = —T/2, T = T if a perfect fluid source is as-
sumed.

None of these concerns touch Reissner-Nordstrdm spacetime which is
the unique spherically symmetric electrovac solution of Einstein’s field
equations with A = 0 (ibid., 156—161). Since this spacetime is a M-H
spacetime, at least some M-H spacetimes meet the minimal requirements
for physical possibility.

It is far from clear, however, that M-H spacetimes meet the (neces-
sarily vaguer) criteria for physically realistic spacetime arenas. First, as
shown in the preceding section, M-H spacetimes involve divergent blue-
shifts, which may be taken as an indicator that these spacetimes involve
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singularity + singularity
H(S)

Figure 4. Conformal Diagram of Reissner-Nordstrom Spacetime.

instabilities. Such is the case with Reissner-Nordstréom spacetime where
a small perturbation on an initial value hypersurface S (see figure 4) can
produce an infinite effect on the future Cauchy horizon H'(S) of S (see
Chandrasekhar and Hartle 1982).3 Second, various M-H spacetimes run
afoul of one or another versions of Penrose’s (1974) cosmic-censorship
hypothesis which states that naked singularities do not develop in phys-
ically reasonable models of general relativity theory. The strongest ver-
sion of cosmic censorship, favored by Penrose himself, requires global
hyperbolicity and, thus, by Lemma 1, would exclude all M-H spacetimes.
More moderate versions of cosmic censorship are compatible with at least
some M-H spacetimes. For example, Geroch and Horowitz (1979) sug-
gest that the form of a definition that picks out the set of points from
which a spacetime can be detected to be nakedly singular is given by:

*The future Cauchy horizon H *(S) of S is the future boundary of the future domain of
dependence D*(S) of S. Future domain of dependence D*(S) is defined as the set of all
points p € M such that every nonspacelike curve which passes through p and which has
no past endpoint meets S.
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DEFINITION. N = {p € M: there is a future-directed timelike curve 7y
such that vy has no future endpoint, y C I (p), and —__}.

Different versions of cosmic censorship are obtained by putting different
fillings in the blank and then setting N' = @. If nothing additional is put
in the blank, then N = @ implies that a Cauchy surface exists, and the
present approach yields Penrose’s preferred version of censorship. But if
the blank is filled with “vy is a timelike geodesic”, then N' = @ does not
entail global hyperbolicity. This version of cosmic censorship excludes
the toy model of figure 1 and Reissner-Nordstrom spacetime but not anti-
de Sitter spacetime—/ " (p) in figure 3 does not contain any timelike geo-
desics without future endpoint because none of them escape to infinity
due to a refocusing effect.

Pursuing the intricacies of the cosmic-censorship hypothesis would take
us far afield (for a review of the current status of the cosmic-censorship
hypothesis, see Earman 1993). We have said enough, we hope, to show
that arguments in favor of cosmic censorship can be marshalled against
some or all M-H spacetimes, depending upon the version of cosmic cen-
sorship at issue. Conversely, evidence for violations of cosmic censorship
may, depending upon the form of violation, force one to take M-H space-
times seriously.

We now turn to the second aspect of the question of how seriously to
take the possibility of completing supertasks in M-H spacetimes. This
aspect concerns whether y, can be implemented by a physically possible/
physically realistic device which, over the infinite proper time available
to it, carries out the assigned infinite task. Once again our task is made
difficult because no agreed-upon list of criteria is given that identifies
physically realistic devices. We will make the task tractable by confining
attention to dynamical constraints that physically realistic 7y, should sat-
isfy. (We do not have to worry about dynamical constraints on 7, since
typically vy, can be chosen to be a geodesic.) Minimally, the magnitude
of acceleration of y; must remain bounded, otherwise any device that we
could hope to build would be crushed by g-forces. This condition is sat-
isfied in the anti-de Sitter case (figure 3) where a(r,) = \/2[exp(2rl) -11/
[exp(2r,) +1], which approaches V2 as r, — %, However, we must also
demand a finite bound on the total acceleration of y,: TA(y,) = [,, adr.
For even with perfectly efficient rocket engines, the mass m, of the rocket
and the mass m; of the fuel needed to accelerate the rocket must satisfy

m,/(m, + m;) < exp(—TA(y,)). 6.1)

Thus if TA(y;) = ®, an infinite amount of fuel is needed for any finite
payload. In the anti-de Sitter case, dr, = dt so that TA(y;) = «. In the
toy model of figure 1 TA(y;) = 0 since 7, is a geodesic; but the spacetime
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involved was ruled out as not physically possible. In Reissner-Nordstrom
spacetime a timelike geodesic vy, can be chosen to start on the time slice
S (see figure 4) and to go out to future timelike infinity i*. (In figure 4,
i® labels spatial infinity and $* and $°, respectively, label future and
past null infinity. See Hawking and Ellis 1973 for definitions.) And v,
C I (p) for an appropriate point p € H'(S). But again there are reasons
to regard this spacetime as not being physically realistic.

Finally, since a physically realistic device must have some finite spatial
extent, we are really concerned not with a single world-line vy, but with
a congruence I of world-lines. Even if I'| is a geodesic congruence it
cannot be instantiated by a physically realistic computer (say) unless the
tidal forces it experiences remain bounded. Since the tidal forces are pro-
portional to the Riemann curvature tensor (see Wald 1984, 46—47, for a
derivation of the formula for geodesic deviation), we can satisfy this de-
mand in Reissner-Nordstrom spacetime, which is asymptotically flat. We
simply start the geodesic congruence sufficiently far out toward spatial
infinity and have it terminate on future timelike infinity i*.

To summarize the discussion up to this point, it is not clear that any
M-H spacetime qualifies as physically possible and physically realistic.
But to the extent that M-H spacetimes do clear this first hurdle, it seems
that the role of vy, can be played by a world-line or world tube satisfying
realistic dynamical constraints. However, Pitowsky (1990) feels that, for
other reasons, 7y, cannot be instantiated by a computer that will carry out
the assigned infinite task. We will take up his worry in section 8, below.
Before doing so we turn in the following section to the third aspect of
the question that forms the title of this section. That aspect concerns dis-
criminations that the receiver 7y, must make.

7. Can M-H Spacetimes be Used to Gain Knowledge of the Truth-
Value of Fermat’s Conjecture? Suppose now for sake of discussion that
some M-H spacetimes are regarded as physically possible and physically
realistic and that in these arenas nothing prevents a physically possible
and physically realistic instantiation of y, by a computer which carries
out the task of checking Fermat’s conjecture. Nevertheless there are rea-
sons to doubt that vy, can use vy,’s work to gain genuine knowledge of the
truth-value of the conjecture. The pessimism is based on a strengthening
of Lemma 1:

LEMMA 3. Suppose that p € M is a M-H point of the spacetime M, g,
(that is, there is a future-directed timelike half-curve vy, C M such
that [, dr = «© and vy, C 1 (p)). Choose any connected spacelike
hypersurface S C M such that vy, C I*(S). Then p is on or beyond
H'(S).
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Proof. If p € int[D"(S)] then there is a ¢ € D*(S) which is chrono-
logically preceded by p. Now M’ = (I (q) N I7(S)) C D*(S), and
the smaller spacetime M’, g, is globally hyperbolic. Choose a
Cauchy surface S’ for this smaller spacetime which passes through
p. Since y; C M' we can proceed as in the proof of Lemma 1 to
obtain a contradiction.

Lemma 3 is illustrated by the Reissner-Nordstrdm spacetime (figure
4). Any M-H point involved with a 7, starting in Region I must lie on
or beyond H*(S).

Think of S as an initial value hypersurface on which we specify initial
data that, along with the laws of physics, prescribes how the computer
7, is to calculate and how it is to signal its results to y,. Since by Lemma
3 any M-H point p € vy, must lie on or beyond H"(S) for any appropriate
S, events at p or at points arbitrarily close to p are subject to nondeter-
ministic influences. In typical cases such as the Reissner-Nordstrom
spacetime illustrated in figure 4, null rays pass arbitrarily close to any p
€ H'(S) and terminate in the past direction on the singularity. Nothing
in the known laws of physics prevents a false signal from emerging from
the singularity and conveying the misinformation to 7y, that a counter-
example to Fermat’s conjecture has been found.* (Receiver y, need not
measure an infinite blueshift for photons emerging from the singularity;
at least nothing in Lemma 2 or the known laws of physics entails such
a divergent blueshift.) Of course, the receiver vy, can ignore the signal if
he knows that it comes from the singularity rather than from 7y,. But to
be able to discriminate such a false signal from every possible true signal
that might come from v,, 7, must be able to make arbitrarily precise
discriminations. In the original situation it was the Plato machine that had
to perform a supertask by compressing an infinite computation into a fi-
nite time span. We tried to finesse the problems associated with such a
supertask by utilizing two observers in relativistic spacetime, but we have
found that the finesse also involves a kind of supertask on the part of the
receiver who tries to use the work of the computer to gain new mathe-
matical knowledge.

This verdict may seem unduly harsh. If vy, is to be sure beforehand
that, whatever +y,’s search procedure turns up, he will obtain knowledge
of the truth-value of Fermat’s conjecture, then 7y, must be capable of
arbitrarily precise discriminations. However, it may be urged, if v, is
capable of only a finite degree of precision in his signal discriminations,

“One might also worry that a burst of noise from the singularity could swamp an au-
thentic signal, but since any real signal arrives at 7, prior to the singularity noise, the
former is not masked by the latter so long as the receiver can discriminate between a signal
and noise.
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he may yet learn that Fermat’s conjecture is false (if indeed it is) if he
receives a signal long enough before the M-H point so that it lies within
his discrimination range. This, however, would be a matter of good for-
tune. One can pick at random a quadruple of numbers (x, y, z, n), n =
3, and check whether x" + y" = z". If one is lucky, a counterexample to
Fermat’s conjecture will have been found. But the interest in Platonist
computers and their M-H analogues lay in the notion that they do not
rely on luck.

Of course any observer faces the problem of filtering out spurious back-
ground signals from those genuinely sent from the system observed.
However, it is usually assumed that sufficiently thorough attention to the
experimental setup could at least in principle control all such signals.
What Lemma 3 shows, however, is that no such efforts can succeed even
in principle in our case. No matter how carefully and expansively we set
up our experiment—that is, no matter how large we choose our initial
value hypersurface—we cannot prevent spurious signals from reaching p
or coming arbitrarily close to p.

The problem can be met by means of a somewhat more complicated
arrangement between vy, and 7y, by which 7y, not only sends a signal to
v, to announce the finding of a counterexample but also encodes the quad-
ruple of numbers that constitutes the counterexample. A false signal may
emerge from the singularity, but v, can discover the falsity by a me-
chanical check. With the new arrangement 7y, no longer has to discrim-
inate the signal’s source since a counterexample is a counterexample
whatever its origin. Unfortunately, 7y, may still have to make arbitrarily
fine discriminations since the quadruple sent will be of arbitrarily great
size (= number of bits) and must be compressed into a correspondingly
small time interval at ;.

The worry about whether v, can gain knowledge of Fermat’s conjecture
by using vy,’s efforts also involves the concern about 7,’s right to move
from “vy, has not sent me a signal” to “Fermat’s conjecture is true”. The
correctness of the inference is not secured by the agreement vy, and vy,
have worked out, for even with the best will in the world vy, cannot carry
out her part of the agreement if events conspire against her. As suggested
above, the most straightforward way to underwrite the correctness of the
inference is for there to be a spacelike S such that v, C D*(S) and such
that initial conditions on S together with the relevant laws of physics guar-
antee that vy, carries out her search task. And if, as is compatible with at
least some M-H spacetimes (e.g., Reissner-Nordstrom spacetime), the
M-H point p can be chosen so that S C I (p), it would seem that v,
could in principle come to know that the conditions which underwrite the
inference do in fact obtain. But the rub is that p or points arbitrarily close
to p may receive a false signal from the singularity indicating that con-
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ditions are not conducive to vy,’s carrying out her task. If so, 7y, is not
justified in making the inference unless he can discriminate false sig-
nals as such. This, of course, is just another version of the difficulty al-
ready discussed. But the present form does not seem to have an easy
resolution.

8. Can y; Carry Out the Assigned Infinite Task? Sender vy, is sup-
posed to check an unresolved conjecture of number theory for each of
the integers. By construction, v, has time enough. But Pitowsky feels
that vy, never has world enough:

The real reason why Platonist computers are physically impossible,
even in theory, has to do with the computation space. According to
general relativity the material universe is finite. Even if we use the
state of every single elementary particle in the universe, to code a
digit of a natural number, we shall very soon run out of hardware.
(1990, 84)

In response, we note that general relativity theory does not by itself imply
a spatially or materially finite universe. Further, we saw that some spa-
tially infinite M-H spacetimes, such as Reissner-Nordstrom spacetime,
are live physical possibilities in the minimal sense that they satisfy Ein-
stein’s field equations and the energy conditions. A vy, who wanders off
into the asymptotically flat region certainly has space enough for any
amount of hardware she needs to use. But she cannot avail herself of an
unlimited amount of hardware without violating the implicit assumption
of all of the foregoing, namely, that y; and v, have small enough masses
that they do not significantly perturb the background metric.

Perhaps there are solutions to Einstein’s field equations where the
spacetime has the M-H property and there is both space enough and ma-
terial enough for a physically embodied computer with an unlimited amount
of computation space. Pending the exhibition of such models, however,
we must confine ourselves to supertasks that can be accomplished in an
infinite amount of time but with a finite amount of computation space.
Whether there are such tasks that deserve the appellation “super” remains
to be seen. (The considerations raised here are similar to those discussed
by Barrow and Tipler 1986 under the heading of “omega points”.)

9. Conclusion. Thomson lamps, super 7 machines, and Platonist com-
puters are playthings of philosophers; they are able to survive only in the
hothouse atmosphere of philosophy journals. In the end, M-H spacetimes
and the supertasks they underwrite may similarly prove to be recreational
fictions for general relativists with nothing better to do. But to arrive at
this latter position requires a resolution of some of the deepest foundations
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problems in classical general relativity, including the nature of singular-
ities and the fate of cosmic censorship. It is this connection to real prob-
lems in physics that makes them worthy of discussion.

APPENDIX

Proof of Lemma 2. The null geodesics from vy, to 7y, form a two-dimensional submanifold.
For each of the null geodesics select an affine parameter A which varies from 0 at vy, to
1 at y,. (This will always be possible since an affine parameter can be rescaled by an
arbitrary linear transformation.) The null propagation vector k“ = (9/dA) satisfies the
geodesic equation

k“V, k" = 0. (A.1)

By supposition, these null geodesics form a submanifold. By connecting points of equal
A values we form a family of curves indexed by A that covers the submanifold and
interpolates between 7y, and v,. Select any parametrization ¢ of 7y, and propagate this
parametrization along the null geodesics to all the interpolating curves so that each null
geodesic passes through points of equal ¢ value. The indices A and ¢ form a coordinate
system. Vector fields k“ and {“ = (8/91)" are its coordinate basis vector fields, which
entails that they satisfy the condition [, k] = O so that

{'Vk, — k“V, 4, = 0. (A.2)
It follows that ({,k“) is a constant along the photon world-lines. To show this we need
to demonstrate that
(d/dN) &k = kY (§,k") = 0. (A.3)
We do this by computing
kVAGK) = k'KkV L) + §kV k. (A.4)

The second term on the right-hand side of (A.4) vanishes in virtue of (A.1). Equation
(A.2) can then be used to rewrite the first term on the right-hand side as {4’V k, =
(1/2)¢“V (k,k") = O since K is a null vector.

Thus, for a photon sent from 7y, to y, we have k( = k{3, or k,Vi|Z5| = k, V3L,
where V* = {/|¢| is the normed tangent vector to the timelike world-line. So from the
definition (1) of photon frequency ratios we can conclude that w,|{i| = ,|¢§ which

implies that
fy ‘

Sildt = f w5/t (A.5)

2

fw,d‘r = f w,dT. (A.6)
Y Y.

1 2

or

But f,,ldT = o and f,zd'r < . So if , is constant along 7y, (A.6) can hold only if fw,dr

= o0,
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