
Chapter 1

Concepts of Information

1.1 How to talk about information: Some simple ways

The epigraph to this Part is drawn from Strawson’s contribution to his famous 1950 sym-

posium with Austin on truth. Austin’s point of departure in that symposium provides

also a suitable point of departure for us, concerned as we are with information.

Austin’s aim was to de-mystify the concept of truth, and make it amenable to dis-

cussion, by pointing to the fact that ‘truth’ is an abstract noun. So too is ‘information’.

This fact will be of recurrent interest in the first part of this thesis.

“ ‘What is truth?’ said jesting Pilate, and would not stay for an answer.” Said

Austin: “Pilate was in advance of his time.”

As with truth, so with1 information:

For ‘truth’ [‘information’] itself is an abstract noun, a camel, that is of a
logical construction, which cannot get past the eye even of a grammarian.

We approach it cap and categories in hand: we ask ourselves whether Truth
[Information] is a substance (the Truth [the information], the Body of
Knowledge), or a quality (something like the colour red, inhering in truths
[in messages]), or a relation (‘correspondence’ [‘correlation’]).

But philosophers should take something more nearly their own size to strain
at. What needs discussing rather is the use, or certain uses, of the word
‘true’ [‘inform’]. (Austin, 1950, p.149)

A characteristic feature of abstract nouns is that they do not serve to denote kinds

of entities having a location in space and time. An abstract noun may be either a count

1Due apologies to Austin.
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noun (a noun which may combine with the indefinite article and form a plural) or a mass

noun (one which may not). ‘Information’ is an abstract mass noun, so may usefully be

contrasted with a concrete mass noun such as ‘water’; and with an abstract count noun

such as ‘number’2. Very often, abstract nouns arise as nominalizations of various adjecti-

val or verbal forms, for reasons of grammatical convenience. Accordingly, their function

may be explained in terms of the conceptually simpler adjectives or verbs from which

they derive; thus Austin leads us from the substantive ‘truth’ to the adjective ‘true’.

Similarly, ‘information’ is to be explained in terms of the verb ‘inform’. Information, we

might say, is what is provided when somebody is informed of something. If this is to

be a useful pronouncement, we should be able to explain what it is to inform somebody

without appeal to phrases like ‘to convey information’, but this is easily done. To inform

someone is to bring them to know something (that they did not already know).

Now, I shall not be seeking to present a comprehensive overview of the different uses

of the terms ‘information’ or ‘inform’, nor to exhibit the feel for philosophically charged

nuance of an Austin. It will suffice for our purposes merely to focus on some of the

broadest features of the concept, or rather, concepts, of information.

The first and most important of these features to note is the distinction between

the everyday concept of information and technical notions of information, such as that

deriving from the work of Shannon (1948). The everyday concept of information is

closely associated with the concepts of knowledge, language and meaning; and it seems,

furthermore, to be reliant in its central application on the the prior concept of a person

(or, more broadly, language user) who might, for example, read and understand the

information; who might use it; who might encode or decode it.

By contrast, a technical notion of information is specified using a purely mathemat-

ical and physical vocabulary and, prima facie, will have at most limited and deriviative

links to semantic and epistemic concepts3.

A technical notion of information might be concerned with describing correlations

and the statistical features of signals, as in communication theory with the Shan-

2An illuminating discussion of mass, count and abstract nouns may be found in Rundle (1979,
§§27-29).

3For discussion of Dretske’s opposing view, however, see below, Section 1.5.
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non concept, or it might be concerned with statistical inference (e.g. Fisher, 1925;

Kullback and Leibler, 1951; Savage, 1954; Kullback, 1959). Again, a technical notion of

information might be introduced to capture certain abstract notions of structure, such

as complexity (algorithmic information, Chaitin (1966); Kolmogorov (1965); Solomonoff

(1964)) or functional rôle (as in biological information perhaps, cf. Jablonka (2002) for

example4).

In this thesis our concern is information theory, quantum and classical, so we shall

concentrate on the best known technical concept of information, the Shannon informa-

tion, along with some closely related concepts from classical and quantum information

theory. The technical concepts of these other flavours I mention merely to set to one

side5.

With information in the everyday sense, a characteristic use of the term is in phrases

of the form: ‘information about p’, where p might be some object, event, or topic; or

in phrases of the form: ‘information that q’. Such phrases display what is often called

intentionality. They are directed towards, or are about something (which something

may, or may not, be present). The feature of intentionality is notoriously resistant to

subsumption into the bare physical order.

As I have said, information in the everyday sense is intimately linked to the concept

of knowledge. Concerning information we can distinguish between possessing informa-

tion, which is to have knowledge; acquiring information, which is to gain knowledge; and

containing information, which is sometimes the same as containing knowledge6. Acquir-

ing information is coming to possess it; and as well as being acquired by asking, reading

or overhearing, for example, we may acquire information via perception. If something is

said to contain information then this is because it provides, or may be used to provide,

knowledge. As we shall presently see, there are at least two importantly distinct ways

4N.B. To my mind, however, Jablonka overstates the analogies between the technical notion she
introduces and the everyday concept.

5Although it will be no surprise that one will often find the same sorts of ideas and mathematical
expressions cropping up in the context of communication theory as in statistical inference, for exam-
ple. There are also links between algorithmic information and the Shannon information: the average
algorithmic entropy of a thermodynamic ensemble has the same value as the Shannon entropy of the
ensemble (Bennett, 1982).

6Containing information and containing knowledge are not always the same: we might, for example
say that a train timetable contains information, but not knowledge.
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in which this may be so.

It is primarily a person of whom it can be said that they possess information, whilst it

is objects like books, filing cabinets and computers that contain information (cf. Hacker,

1987). In the sense in which my books contain information and knowledge, I do not.

To contain information in this sense is to be used to store information, expressed in the

form of propositions7, or in the case of computers, encoded in such a way that the facts,

figures and so on may be decoded and read as desired.

On a plausible account of the nature of knowledge originating with Wittgenstein

(e.g. Wittgenstein, 1953, §150) and Ryle (1949), and developed, for example by White

(1982), Kenny (1989) and Hyman (1999), to have knowledge is to possesses a certain

capacity or ability, rather than to be in some state. On this view, the difference between

possessing information and containing information can be further elaborated in terms

of a category distinction: to possess information is to have a certain ability, while for

something to contain information is for it to be in a certain state (to possess certain

occurrent categorical properties). We shall not, however, pursue this interesting line of

analysis further here (see Kenny (1989, p.108) and Timpson (2000, §2.1) for discussion).

In general, the grounds on which we would say that something contains information,

and the senses in which it may be said that information is contained, are rather various.

One important distinction that must be drawn is between containing information propo-

sitionally and containing information inferentially. If something contains information

propositionally, then it does so in virtue of a close tie to the expression of propositions.

For example, the propositions may be written down, as in books, or on the papers in

the filing cabinet. Or the propositions might be otherwise recorded; perhaps encoded,

on computers, or on removable disks. The objects said to contain the information in

these examples are the books, the filing cabinet, the computers, the disks.

That these objects can be said to contain information about things, derives from

the fact that the sentences and symbols inscribed or encoded, possess meaning and

hence themselves can be about, or directed towards something. Sentences and symbols,

in turn, possess meaning in virtue of their rôle within a framework of language and

7Or perhaps expressed pictorially, also.
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language users.

If an object A contains information about B8 in the second sense, however, that

is, inferentially, then A contains information about B because there exist correlations

between them that would allow inferences about B from knowledge of A. (A prime

example would be the thickness of the rings in a tree trunk providing information about

the severity of past winters.) Here it is the possibility of our use of A, as part of an

inference providing knowledge, that provides the notion of information about9. And

note that the concept of knowledge is functioning prior to the concept of containing

information: as I have said, the concept of information is to be explained in terms of

the provision of knowledge.

It is with the notion of containing information, perhaps, that the closest links between

the everyday notion of information and ideas from communication theory are to be found.

The technical concepts introduced by Shannon may be very helpful in describing and

quantifying any correlations that exist between A and B. But note that describing

and quantifying correlations does not provide us with a concept of why A may contain

information (inferentially) about B, in the everyday sense. Information theory can

describe the facts about the existence and the type of correlations; but to explain why

A contains information inferentially about B (if it does), we need to refer to facts at

a different level of description, one that involves the concept of knowledge. A further

statement is required, to the effect that: ‘Because of these correlations, we can learn

something about B’. Faced with a bare statement: ‘Such and such correlations exist’,

we do not have an explanation of why there is any link to information. It is because

correlations may sometimes be used as part of an inference providing knowledge, that

we may begin to talk about containing information.

While I have distinguished possessing information (having knowledge) from contain-

ing information, there does exist a very strong temptation to try to explain the former

in terms of the latter. However, caution is required here. We have many metaphors

that suggest us filing away facts and information in our heads, brains and minds; but

these are metaphors. If we think the possession of information is to be explained by our

8Which might be another object, or perhaps an event, or state of affairs.
9Such inferences may become habitual and in that sense, automatic and un-reflected upon.
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containing information, then this cannot be ‘containing’ in the straightforward sense in

which books and filing cabinets contain information (propositionally), for our brains and

minds do not contain statements written down, nor even encoded. As we have noted,

books, computers, and so on contain information about various topics because they are

used by humans (language users) to store information. As Hacker remarks:

...we do not use brains as we use computers. Indeed it makes no more sense
to talk of storing information in the brain than it does to talk of having
dictionaries or filing cards in the brain as opposed to having them in a
bookcase or filing cabinet. (Hacker, 1987, p.493)

We do not stand to our brains as an external agent to an object of which we may make

use to record or encode propositions, or on which to inscribe sentences.

A particular danger that one faces if tempted to explain possessing information in

terms of containing it, is of falling prey to the homunculus fallacy (cf. Kenny, 1971).

The homunculus fallacy is to take predicates whose normal application is to complete

human beings (or animals) and apply them to parts of animals, typically to brains, or

indeed to any insufficiently human-like object. The fallacy properly so-called is attempt-

ing to argue from the fact that a person-predicate applies to a person to the conclusion

that it applies to his brain or vice versa. This form of argument is non-truth-preserving

as it ignores the fact that the term in question must have a different meaning if it is to

be applied in these different contexts.

‘Homunculus’ means ‘miniature man’, from the Latin (the diminutive of homo). This

is an appropriate name for the fallacy, for in its most transparent form it is tantamount

to saying that there is a little man in our heads who sees, hears, thinks and so on.

Because if, for example, we were to try to explain the fact that a person sees by saying

that images are produced in his mind, brain or soul (or whatever) then we would not

have offered any explanation, but merely postulated a little man who perceives the

images. For exactly the same questions arise about what it is for the mind/brain/soul

to perceive these images as we were trying to answer for the whole human being. This is

a direct consequence of the fact that we are applying a predicate—‘sees’—that applies

properly only to the whole human being to something which is merely a part of a human
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being, and what is lacking is an explanation of what the term means in this application.

It becomes very clear that the purported explanation of seeing in terms of images in the

head is no explanation at all, when we reflect that it gives rise to an infinite regress. If

we see in virtue of a little man perceiving images in our heads, then we need to explain

what it is for him to perceive, which can only be in terms of another little man, and so

on.

The same would go, mutatis mutandis, for an attempt to explain possession of in-

formation in terms of containing information propositionally. Somebody is required to

read, store, decode and encode the various propositions, and peruse any pictures; and

this leads to the regress of an army of little men. Again, the very same difficulty would

arise for attempts to describe possessing information as containing information inferen-

tially: now the miniature army is required to draw the inferences that allow knowledge

to be gained from the presence of correlations.

This last point indicates that a degree of circumspection is required when dealing

with the common tendency to describe the mechanisms of sensory perception in terms

of information reaching the brain. In illustration (cf. Hacker, 1987), it has been known

since the work of Hubel and Weisel (see for example Hubel and Wiesel (1979)) that there

exist systematic correlations between the responses of groups of cells in the visual striate

cortex and certain specific goings-on in a subject’s visual field. It seems very natural to

describe the passage of nerve impulses resulting from retinal stimuli to particular regions

of the visual cortex as visual information reaching the brain. This is unobjectionable,

so long as it is recognised that this is not a passage of information in the sense in which

information has a direct conceptual link to the acquisition of knowledge. In particular,

the visual information is not information for the subject about about the things they

have seen. The sense in which the brain contains visual information is rather the sense

in which a tree contains information about past winters.

Equipped with suitable apparatus, and because he knows about a correlation that

exists, the neurophysiologist may make, from the response of certain cells in the visual

cortex, an inference about what has happened in the subject’s visual field. But the

brain is in no position to make such an inference, nor, of course, an inference of any
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kind. Containing visual information, then, is containing information inferentially, and

trying to explain a person’s possession of information about things seen as their brain

containing visual information would lead to a homunculus regress: who is to make the

inference that provides knowledge?

This is not to deny the central importance and great interest of the scientific results

describing the mechanisms of visual perception for our understanding of how a person can

gain knowledge of the world surrounding them, but is to guard against an equivocation.

The answers provided by brain science are to questions of the form: what are the causal

mechanisms which underlie our ability to gain visual knowledge? This is misdescribed as

a question of how information flows, if it is thought that the information in question is

the information that the subject comes to possess. One might have ‘information flow’ in

mind, though, merely as a picturesque way of describing the processes of electrochemical

activity involved in perception, in analogy to the processes involved in the transmission

of information by telephone and the like. This use is clearly unproblematic, so long as

one is aware of the limits of the analogy. (We don’t want the question to be suggested:

so who answers the telephone? This would take us back to our homunculi.)

1.2 The Shannon Information and related concepts

The technical concept of information relevant to our discussion, the Shannon informa-

tion, finds its home in the context of communication theory. We are concerned with a

notion of quantity of information; and the notion of quantity of information is cashed out

in terms of the resources required to transmit messages (which is, note, a very limited

sense of quantity). I shall begin by highlighting two main ways in which the Shannon

information may be understood, the first of which rests explicitly on Shannon’s 1948

noiseless coding theorem.

1.2.1 Interpretation of the Shannon Information

It is instructive to begin by quoting Shannon:
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The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.
Frequently these messages have meaning...These semantic aspects of com-
munication are irrelevant to the engineering problem. (Shannon, 1948, p.31)

The communication system consists of an information source, a transmitter or encoder,

a (possibly noisy) channel, and a receiver (decoder). It must be able to deal with any

possible message produced (a string of symbols selected in the source, or some varying

waveform), hence it is quite irrelevant whether what is actually transmitted has any

meaning or not, or whether what is selected at the source might convey anything to

anybody at the receiving end. It might be added that Shannon arguably understates his

case: in the majority of applications of communication theory, perhaps, the messages

in question will not have meaning. For example, in the simple case of a telephone

line, what is transmitted is not what is said into the telephone, but an analogue signal

which records the sound waves made by the speaker, this analogue signal then being

transmitted digitally following an encoding.

It is crucial to realise that ‘information’ in Shannon’s theory is not associated with

individual messages, but rather characterises the source of the messages. The point of

characterising the source is to discover what capacity is required in a communications

channel to transmit all the messages the source produces; and it is for this that the

concept of the Shannon information is introduced. The idea is that the statistical nature

of a source can be used to reduce the capacity of channel required to transmit the

messages it produces (we shall restrict ourselves to the case of discrete messages for

simplicity).

Consider an ensemble X of letters {x1, x2, . . . , xn} occurring with probabilities p(xi).

This ensemble is our source10, from which messages of N letters are drawn. We are

concerned with messages of very large N . For such messages, we know that typical

sequences of letters will contain Np(xi) of letter xi, Np(xj) of xj and so on. The

number of distinct typical sequences of letters is then given by

N !

Np(x1)!Np(x2)! . . . Np(xn)!
10More properly, this ensemble models the source.
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and using Stirling’s approximation, this becomes 2NH(X), where

H(X) = −
n

∑

i=1

p(xi) log p(xi), (1.1)

is the Shannon information (logarithms are to base 2 to fix the units of information as

binary bits).

Now asN → ∞, the probability of an atypical sequence appearing becomes negligible

and we are left with only 2NH(X) equiprobable typical sequences which need ever be

considered as possible messages. We can thus replace each typical sequence with a

binary code number ofNH(X) bits and send that to the receiver rather than the original

message of N letters (N logn bits).

The message has been compressed from N letters to NH(X) bits (≤ N logn bits).

Shannon’s noiseless coding theorem, of which this is a rough sketch, states that this rep-

resents the optimal compression (Shannon 1948). The Shannon information is, then, ap-

propriately called a measure of information because it represents the maximum amount

that messages consisting of letters drawn from an ensemble X can be compressed.

One may also make the derivative statement that the information per letter in a

message is H(X) bits, which is equal to the information of the source. But ‘derivative’

is an important qualification: we can only consider a letter xi drawn from an ensemble

X to have associated with it the information H(X) if we consider it to be a member of

a typical sequence of N letters, where N is large, drawn from the source.

Note also that we must strenuously resist any temptation to conclude that because

the Shannon information tells us the maximum amount a message drawn from an en-

semble can be compressed, that it therefore tells us the irreducible meaning content of

the message, specified in bits, which somehow possess their own intrinsic meaning. This

idea rests on a failure to distinguish between a code, which has no concern with meaning,

and a language, which does (cf. Harris (1987)).
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Information and Uncertainty

Another way of thinking about the Shannon information is as a measure of the amount

of information that we expect to gain on performing a probabilistic experiment. The

Shannon measure is a measure of the uncertainty of a probability distribution as well as

serving as a measure of information. A measure of uncertainty is a quantitative measure

of the lack of concentration of a probability distribution; this is called an uncertainty be-

cause it measures our uncertainty about what the outcome of an experiment completely

described by the probability distribution in question will be. Uffink (1990) provides an

axiomatic characterisation of measures of uncertainty, deriving a general class of mea-

sures, Ur(~p), of which the Shannon information is one (see also Maassen and Uffink

1989). The key property possessed by these measures is Schur concavity (for details

of the property of Schur concavity, see Uffink (1990), Nielsen (2001) and Section 2.3.1

below).

Imagine a random probabilistic experiment described by a probability distribution

~p = {p(x1), . . . , p(xn)}. The intuitive link between uncertainty and information is that

the greater the uncertainty of this distribution, the more we stand to gain from learning

the outcome of the experiment. In the case of the Shannon information, this notion of

how much we gain can be made more precise.

Some care is required when we ask ‘how much do we know about the outcome?’ for

a probabilistic experiment. In a certain sense, the shape of the probability distribution

might provide no information about what an individual outcome will actually be, as

any of the outcomes assigned non-zero probability can occur. However, we can use the

probability distribution to put a value on any given outcome. If it is a likely one, then

it will be no surprise if it occurs, so of little value; if an unlikely one, it is a surprise,

hence of higher value. A nice measure for the value of the occurrence of outcome xi is

− log p(xi), a decreasing function of the probability of the outcome. We may call this

the ‘surprise’ information associated with outcome xi; it measures the value of having

observed this outcome of the experiment (as opposed to: not bothering to observe it at

all) given that we know the probability distribution for the outcomes11.

11Of course, this is a highly restricted sense of ‘value’. It does not, for example, refer to how much
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If the information (in this restricted sense) that we would gain if outcome xi were to

occur is − log p(xi), then before the experiment, the amount of information we expect to

gain is given by the expectation value of the ‘surprise’ information,
∑

i p(xi)(− log p(xi));

and this, of course, is just the Shannon information H of the probability distribution ~p.

Hence the Shannon information tells us our expected information gain.

More generally, though, any of the measures of uncertainty Ur(~p) may be understood

as measures of information gain; and a similar story can be told for measures of ‘how

much we know’ given a probability distribution. These will be the inverses of an uncer-

tainty: we want a measure of the concentration of a probability distribution; the more

concentrated, the more we know about what the outcome will be; which just means, the

better we can predict the outcome. (To say in this way that we have certain amount of

information (knowledge) about what the outcome of an experiment will be, therefore,

is not to claim that we have partial knowledge of some predetermined fact about the

outcome of an experiment.)

The minimum number of questions needed to specify a sequence

The final common interpretation of the Shannon information is as the minimum average

number of binary questions needed to specify a sequence drawn from an ensemble (Uffink

1990; Ash 1965), although this appears not to provide an interpretation of the Shannon

information actually independent of the previous two.

Imagine that a long sequence N of letters is drawn from the ensemble X , or that

N independent experiments whose possible outcomes have probabilities p(xi) are per-

formed, but the list of outcomes is kept from us. Our task is to determine what the

sequence is by asking questions to which the guardian of the sequence can only answer

‘yes’ or ‘no’; and we choose to do so in such a manner as to minimize the average number

of questions needed. We need to be concerned with the average number to rule out lucky

guesses identifying the sequence.

might be implied by this particular outcome having occurred, nor to the value of what might be learnt
from it, nor the value of what it conveys (if anything); these ideas all lie on the ‘everyday concept of
information’ side that is not being addressed here. The distinction between the surprise information
and the everyday concept becomes very clear when one reflects that what one learns from a particular
outcome may well be, in fact generally will be, quite independent of the probability assigned to it.
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If we are trying to minimize the average number of questions, it is evident that the

best questioning strategy will be one that attempts to rule out half the possibilities with

each question, for then whatever the answer turns out to be, we still get the maximum

value from each question. Given the probability distribution, we may attempt to im-

plement this strategy by dividing the possible outcomes of each individual experiment

into classes of equal probability, and then asking whether or not the outcome lies in

one of these classes. We then try and repeat this process, dividing the remaining set of

possible outcomes into two sets of equal probabilities, and so on. It is in general not

possible to proceed in this manner, dividing a finite set of possible outcomes into two

sets of equal probabilities, and it can be shown that in consequence the average number

of questions required if we ask about each individual experiment in isolation is greater

than or equal to H(X). However, if we consider the N repeated experiments, where N

tends to infinity, and consider asking joint questions about what the outcomes of the

independent experiments were, we can always divide the classes of possibilities of (joint)

outcomes in the required way. Now we already know that for large N , there are 2NH(X)

typical sequences, so given that we can strike out half the possible sequences with each

question, the minimum average number of questions needed to identify the sequence is

NH(X). (These last results are again essentially the noiseless coding theorem.)

It is not immediately obvious, however, why the minimum average number of ques-

tions needed to specify a sequence should be related to a notion of information. (Again,

the tendency to think of bits and binary questions as irreducible meaning elements is to

be resisted.) It seems, in fact that this is either just another way of talking about the

maximum amount that messages drawn from a given ensemble can be compressed, in

which case we are back to the interpretation of the Shannon information in terms of the

noiseless coding theorem, or it is providing a particular way of characterising how much

we stand to gain from learning a typical sequence, and we return to an interpretation

in terms of our expected information gain.
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1.2.2 More on communication channels

So far we have concentrated on only one aspect of describing a communication sys-

tem, namely, on characterising the information source. The other important task is to

characterise the communication channel.

A channel is defined as a device with a set {xi} of input states, which are mapped

to a set {yj} of output states. If a channel is noisy then this mapping will not be one-

to-one. A given input could give rise to a variety of output states, as a result of noise.

The basic type of channel—the discrete memoryless channel—is characterised in terms

of the conditional probabilities p(yj |xi): given that input xi is prepared, what is the

probability that output yj will be produced?

If the distribution, p(xi), for the probability with which the various inputs will be

prepared is also specified, then we may calculate the joint distribution p(xi ∧ yj). We

may consider which input state is prepared on a given use of the channel to be a random

variable X , with p(X = xi) = p(xi); which output produced to be a random variable Y ,

p(Y = yj) = p(yj); and we may consider also the joint random variable X ∧ Y , where

p(X ∧ Y = xi ∧ yj) = p(xi ∧ yj).

The joint distribution p(xi ∧ yj) allows us to define the joint uncertainty

H(X ∧ Y ) = −
∑

i,j

p(xi ∧ yj) log p(xi ∧ yj), (1.2)

and an important quantity known as the ‘conditional entropy’:

H(X |Y ) =
∑

j

p(yj)
(

−
∑

i

p(xi|yj) log p(xi|yj)
)

. (1.3)

The scare quotes are significant, as this quantity is not actually an entropy or uncertainty

itself, but is rather the average of the uncertainties of the conditional distributions for the

input, given a particular Y output. It measures the average of how uncertain someone

will be about the X value when they have observed an output Y value.

As Uffink (1990, §1.6.6) notes, it pays to attend to the fact that H(X |Y ) is not a
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measure of uncertainty. It is easy to show (e.g. Ash, 1965, Thm.1.4.3–5) that

H(X |Y ) ≤ H(X), with equality iff X and Y are independent; (1.4)

and it is often held that this is a particularly appealing feature of the Shannon measure

of information because it captures the intuitive idea that by learning the value of Y , we

gain some information about X , therefore our uncertainty in the value of X should go

down (unless the two are independent). Thus, Shannon describes the inequality (1.4) as

follows:

The uncertainty of X is never increased by knowledge of Y . It will be
decreased unless Y and X are independent events, in which case it is not
changed. (Shannon, 1948, p.53)

But this description is highly misleading. As Uffink remarks, one’s uncertainty cer-

tainly can increase following an observation: increasing knowledge need not lead to a

decrease in uncertainty. This is well illustrated by Uffink’s ‘keys’ example: my keys are

in my pocket with a high probability, if not, they could be in a hundred places all with

equal (low) probability. This distribution is highly concentrated so my uncertainty is

low. If I look, however, and find that my keys are not in my pocket, then my uncertainty

as to their whereabouts increases enormously. An increase in knowledge has led to an

increase in uncertainty.

This does not conflict with the inequality (1.4), of course, as the latter involves

an average over post-observation uncertainties. Uffink remarks, against Jaynes (1957,

p.186) for example, that

...there is no paradox in an increase of uncertainty about the outcome of an
experiment as a result of information about its distribution. The confusion
is caused by a liberal use of the multifaceted term information, and also by
the deceptive name of conditional entropy for what is actually an average of
the entropies of conditional distributions. (Uffink, 1990, p.83)

To see why the conditional entropy is important, consider a very large number N of

repeated uses of our channel. There are 2NH(X) typical X (input) sequences that could

arise, 2NH(Y ) typical output sequences that could be produced, and 2NH(X∧Y ) typical
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sequences of pairs of X,Y values that could obtain. Suppose someone observes which

Y sequence has actually been produced. If the channel is noisy, then there is more than

one input X sequence that could have given rise to it. The conditional entropy measures

the number of possible input sequences that could have given rise to the observed output

(with non-vanishing probability).

If there are 2NH(X∧Y ) typical sequences of pairs of X,Y values, then the number of

typical X sequences that could result in the production of a given Y sequence will be

given by

2NH(X∧Y )

2NH(Y )
= 2N(H(X∧Y )−H(Y )).

Due to the logarithmic form of H , H(X ∧Y ) = H(Y )+H(X |Y ), and it follows that the

number of input sequences consistent with a given output sequence will be 2NH(X|Y ).

Shannon (1948, §12) points out that this means that if one is trying to use a noisy

channel to send a message, then the conditional entropy specifies the number of bits per

letter that would need to be sent by an auxiliary noiseless channel in order to correct

all the errors that have crept into the transmitted sequence, as a result of the noise. If

input and output states are perfectly correlated, i.e., there is no noise, then obviously

H(X |Y ) = 0.

Another most important quantity is the mutual information, H(X : Y ), defined as

H(X : Y ) = H(X) −H(X |Y ). (1.5)

It follows from Shannon’s noisy coding theorem (1948) that the mutual information

H(X : Y ) governs the rate at which information may be sent over a channel with input

distribution p(xi), with vanishingly small probability of error.

The following sorts of heuristic interpretations of the mutual information may also

be given: With a noiseless channel, an output Y sequence would contain as much in-

formation as the input X sequence, i.e., NH(X) bits. If there is noise, it will contain

less. We know, however, that H(X |Y ) measures the number of bits per letter needed

to correct an observed Y sequence, therefore the amount of information this sequence

actually contains will be NH(X) −NH(X |Y ) = NH(X : Y ) bits.



CHAPTER 1. CONCEPTS OF INFORMATION 19

Or again, we can say that NH(X : Y ) provides a measure of the amount that we

are able learn about the identity of an input X sequence from observing the output Y

sequence: There are 2NH(X|Y ) input sequences that will be compatible with an observed

output sequence, and the size of this group, as a fraction of the total number of possible

input sequences, may be used a measure of how much we have narrowed down the

identity of the X sequence by observing the Y sequence. This fractional size is

2NH(X|Y )

2NH(X)
=

1

2NH(X:Y )
,

and the smaller this fraction—hence the greater H(X : Y )—the more one learns from

learning the Y sequence.

The most important interpretation of the mutual information does derive from the

noisy coding theorem, however. Consider, as usual, sequences of length N , where N is

large; the input distribution to our channel is p(xi). Roughly speaking, the noisy coding

theorem tells us that it is possible to find 2NH(X:Y ) X sequences of length N (code

words) such that on observation of the Y sequence produced following preparation of

one of these code words, it is possible to infer which X sequence was prepared, with a

probability of error that tends to zero as N tends to infinity (Shannon, 1948). So if we

were now to consider an information source W , producing messages with an information

of H(W ) = H(X : Y ), each output sequence of length N from this source could be

associated with an X code word, and hence messages from W be sent over the channel

with arbitrarily small error as N is increased12.

The capacity, C, of a channel is defined as the supremum over all input distributions

p(xi) of H(X : Y ). The noiseless coding theorem states that given a channel with

capacity C and an information source with an information of H ≤ C, there exists a

coding system such that the output of the source can be transmitted over the channel

with an arbitrarily small frequency of errors.

12This result is particularly striking as it is not intuitively obvious that in the presence of noise,
arbitrarily good transmission may be achieved without the per letter rate of information transmission
also tending to zero. The noisy coding theorem assures us that it can be achieved.
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1.2.3 Interlude: Abstract/concrete; technical, everyday

Part of my aim in this chapter has been to deflect the pressure of the question ‘What

is information?’ by following the lead of Austin (and, of course, Wittgenstein13) and

pointing to the fact that ‘information’ is an abstract noun: correspondingly we should

not seek to illuminate the term by attempting fruitlessly to grasp for something that

it corresponds or refers to, but by considering simple examples of its function and in

particular considering its relations to grammatically simpler and less mystifying terms

like ‘inform’.

Now, when turning to information in the technical sense of Shannon’s theory, we

explicitly do not seek to understand this noun by comparison with the verb ‘inform’.

‘Information’ in the technical sense is evidently not derived from a nominalization of

this verb. Nonetheless, ‘information’ remains an abstract, rather than a concrete noun:

it doesn’t serve to refer to a material thing or substance. In this regard, note that

the distinction ‘abstract/concrete’ as applied to nouns does not map onto a distinction

between physical concepts and concepts belonging to other categories. Thus the fact that

‘information’, in the technical sense of Shannon’s theory, may be included as a concept

specifiable in physical terms does not entail that it stands for a concrete particular, entity

or substance. For example, energy is a paradigmatic physical concept (to use another

relevant term, energy is a physical quantity), yet ‘energy’ is an abstract (mass) noun

(akin to a property name). The interesting differences that exist between energy and

the technical notion of information as examples of physical quantities deserve further

analysis. See Chapter 3, Sections 3.4; 3.6 for some remarks in this direction.

Why my insistence that ‘information’ in the technical sense remains an abstract

noun? Well, consider that two strategies present themselves for providing an answer to

the question ‘What is information’ in the case of information theory. On the first the

answer is: what is quantified by the Shannon information and mutual information. On

the second it is: what is transmitted by information sources. These different strategies

13‘The questions “What is length?”, “What is meaning?”, “What is the number one?” etc., produce
in us a mental cramp. We feel that we can’t point to anything in reply to them and yet ought to point
to something. (We are up against one of the great sources of philosophical bewilderement: a substantive
makes us look for a thing that corresponds to it.)’ Wittgenstein (1958, p.1).
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provide differing, but complementary answers. Under both, however, ‘information’ is an

abstract noun.

Taking the first strategy, one considers what is quantified by the Shannon infor-

mation and mutual information. As we have seen, the Shannon information serves to

quantify how much messages produced by a source can be compressed and the mutual

information quantifies the capacity of a channel (for a particular input source distribu-

tion) to transmit messages. But this is evidently not to quantify an amount of stuff

(even of some very diaphanous kind); and the amount that messages can be compressed

and the capacity of a channel are no more concrete things than the size of my shoe is a

concrete thing.

Now consider the second strategy. Recall our earlier quotation from Shannon. There

he described the fundamental aim of communication theory as that of reproducing at one

point a message that was selected at another point. Thus we might say (very roughly)

that in the technical case, information is what it is the aim of a communication protocol

to transmit: information (in the technical sense) is what is produced by an information

source that is required to be reproduced if the transmission is to be counted a success14.

However, the pertinent sense of ‘what is produced’ is not the one pointing us towards

the concrete systems that are produced by the source on a given occasion, but rather

the one which points us towards the particular type (sequence or structure) that these

tokens instantiate. But a type is not a concrete thing, hence ‘information’, in this

technical sense, remains an abstract noun.

So, for example, if the source X produces a string of letters like the following:

x2x1x3x1x4 . . . x2x1x7x1x4,

say, then the type is the sequence ‘x2x1x3x1x4 . . . x2x1x7x1x4’; we might name this

‘sequence 17’. The aim is to produce at the receiving end of the communication chan-

nel another token of this type. What has been transmitted, though, the information

14Note that this formulation is left deliberately open. What counts as successful transmission and
therefore, indeed, as what one is trying to transmit, depends upon one’s aims and interests in setting
up a communication protocol.
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transmitted on this run of the protocol, is sequence 17; and this is not a concrete thing.

At this point we may draw an illustrative, albeit partial, analogy with information

in the everyday sense. Imagine that I write down a message to a friend on a piece of

paper (using declaritive sentences, to keep things simple); one will distinguish in the

standard way between the sentence tokens inscribed and what is said by the sentences:

the propositions expressed15. It is the latter, what is said, that is the information

(everyday sense) I wish to convey. Similarly with information in the technical sense just

described: one should distinguish between the concrete systems that the source outputs

and the type that this output instantiates. Again, it is the latter that is important; this

is the information (technical sense) that one is seeking to transmit.

An important disanalogy between the technical and everyday notions of information

now forcibly presents itself: the restatement of a by-now familiar point. In the everyday

case, when I have written down my message to my friend, one not only has the sentence

tokens and the sentence type they instantiate but also the propositions these sentences

express; and again, it is these last that are the information I wish to convey. In the case

we have just outlined for the information-theoretic notion of information, though, one

only has the tokens produced by the source and the type they instantiate; it is this type

that is transmitted, that constitutes the information in the technical sense we have just

sketched. The further level, if any, of what various types might mean, or what instances

of these types might convey, is not relevant to, or discussed by information theory: the

point once more that information in the technical sense is not a semantic notion. Indeed,

considered from the point of view of information theory, the output of an information

source does not even have any syntactic structure.

1.3 Aspects of Quantum Information

Quantum information is a rich theory that seeks to describe and make use of the distinc-

tive possibilities for information processing and communication that quantum systems

provide. What draws the discipline together is the recognition that far from quantum

15Note, of course, that the propositions expressed are not to be identified with the sentence types of
which the tokens I write are particular instances. (Consider, for example, indexicals.)


