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Abstract

This paper is a commentary on the foundational significance of the Clifton-Bub-Halvorson

theorem characterizing quantum theory in terms of three information-theoretic constraints. I

argue that: (1) a quantum theory is best understood as a theory about the possibilities and

impossibilities of information transfer, as opposed to a theory about the mechanics of

nonclassical waves or particles, (2) given the information-theoretic constraints, any

mechanical theory of quantum phenomena that includes an account of the measuring

instruments that reveal these phenomena must be empirically equivalent to a quantum theory,

and (3) assuming the information-theoretic constraints are in fact satisfied in our world, no

mechanical theory of quantum phenomena that includes an account of measurement

interactions can be acceptable, and the appropriate aim of physics at the fundamental level

then becomes the representation and manipulation of information.
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1. Introduction

This paper is a commentary, as I see it, on the foundational significance of the
Clifton-Bub-Halvorson (CBH) theorem (Clifton, Bub, & Halvorson, 2003),
characterizing quantum theory in terms of three information-theoretic constraints.
CBH showed that one can derive the basic kinematic features of a quantum-theoretic
description of physical systems—essentially, noncommutativity and entanglement—
from three fundamental information-theoretic constraints: (i) the impossibility of
superluminal information transfer between two physical systems by performing

E-mail address: jbub@umd.edu (J. Bub).

1355-2198/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.shpsb.2003.12.002



measurements on one of them, (ii) the impossibility of perfectly broadcasting the
information contained in an unknown physical state (for pure states, this amounts to
‘no cloning’), and (iii) the impossibility of communicating information so as to
implement a certain primitive cryptographic protocol, called ‘bit commitment’, with
unconditional security. We also partly demonstrated the converse derivation, leaving
open a question concerning nonlocality and bit commitment. This remaining issue
has been resolved by Hans Halvorson (Halvorson, 2003a), so we have a
characterization theorem for quantum theory in terms of the three information-
theoretic constraints.
I argue for three theses:

* A quantum theory is best understood as a theory about the possibilities and

impossibilities of information transfer, as opposed to a theory about the mechanics of

nonclassical waves or particles. (By ‘information’ here I mean information in the
physical sense, measured classically by the Shannon entropy or, in a quantum
world, by the von Neumann entropy.)

* Given the information-theoretic constraints, any mechanical theory of quantum

phenomena that includes an account of the measuring instruments that reveal these

phenomena must be empirically equivalent to a quantum theory.
* Assuming the information-theoretic constraints are in fact satisfied in our world,

no mechanical theory of quantum phenomena that includes an account of

measurement interactions can be acceptable, and the appropriate aim of physics

at the fundamental level then becomes the representation and manipulation of

information.

The first thesis follows from the CBH analysis summarized in Section 2, and the
discussion in Section 3 concerning the problems that arise if one attempts to interpret
a quantum theory directly as a nonclassical mechanics. Following CBH, I
understand a quantum theory as a theory in which the observables and states have
a certain characteristic algebraic structure (just as a relativistic theory is a theory
with certain symmetry or invariance properties, defined in terms of a group of space-
time transformations). So, for example, the standard quantum mechanics of a system
with a finite number of degrees of freedom represented on a single Hilbert space with
a unitary dynamics defined by a given Hamiltonian is a quantum theory, and
theories with different Hamiltonians can be considered to be empirically inequivalent
quantum theories. Quantum field theories for systems with an infinite number of
degrees of freedom, where there are many unitarily inequivalent Hilbert space
representations of the canonical commutation relations, are quantum theories.
The second thesis is the claim that the information-theoretic constraints preclude

the possibility of a mechanical theory of quantum phenomena, acceptable on
empirical grounds, that includes an account of the measuring instruments that reveal
these phenomena. That is, given these constraints, the class of such theories is
necessarily underdetermined by any empirical evidence. For example, while Bohmian
mechanics (Goldstein, 2001)—Bohm’s theory with the Born distribution for particle
positions—is a perfectly good candidate for a mechanical theory of quantum
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phenomena that includes an account of measurement interactions, there can be
no empirical grounds for accepting this version of Bohm’s theory as an answer to
the question that van Fraassen (1991, pp. 2, 242) calls ‘the foundational question
par excellence’: How could the world possibly be the way a quantum theory says
it is?)
The third thesis now follows if we assume that we do in fact live in a world in

which there are certain constraints on the acquisition, representation, and
communication of information. I argue that the rational epistemological stance in
this situation is to suspend judgement about the class of empirically equivalent but
necessarily underdetermined mechanical theories that are designed to ‘solve the
measurement problem’ and regard all these theories as unacceptable. In that case,
our measuring instruments ultimately remain black boxes at some level. This
amounts to interpreting a quantum theory as a theory about the representation and
manipulation of information, which then becomes the appropriate aim of physics,
rather than a theory about the ways in which nonclassical waves or particles move.
The following discussion is divided into three sections: ‘Quantum theory from

information-theoretic constraints’ (in which I motivate the consideration of these
particular constraints and, for completeness, briefly outline the C�-algebraic
framework in which the CBH characterization theorem is formulated), ‘The
measurement problem reconsidered’ (in which I review the measurement problem
and present arguments for the first two theses), and ‘The completeness of quantum
theory’ (in which I argue for the third thesis, and show how the information-
theoretic characterization of quantum mechanics provides an answer to Wheeler’s
question: ‘Why the quantum?’).

2. Quantum theory from information-theoretic constraints

The question raised by CBH is whether we can deduce the kinematic aspects of the
quantum-theoretic description of physical systems from the assumption that we live
in a world in which there are certain constraints on the acquisition, representation,
and communication of information.
The project was first suggested to me by remarks by Gilles Brassard at the meeting

‘Quantum Foundations in the Light of Quantum Information and Cryptography,’
held in Montreal, May 17–19, 2000. Brassard and Chris Fuchs (Fuchs, 1997, 2000;
Fuchs & Jacobs, 2002) speculated that quantum mechanics could be derived from
information-theoretic constraints formulated in terms of certain primitive crypto-
graphic protocols: specifically, the possibility of unconditionally secure key
distribution, and the impossibility of unconditionally secure bit commitment. I gave
a talk where I mentioned this conjecture, with some exploration of the motivation
for and background to the ‘no bit commitment’ assumption, at the University of
Pittsburgh Center for Philosophy of Science in December, 2001. In discussions with
Rob Clifton afterwards, he proposed tackling the problem in the framework of C�-
algebras, which eventually led to the CBH paper. A follow-up email message
indicates the excitement we felt at the time:

J. Bub / Studies in History and Philosophy of Modern Physics 35 (2004) 241–266 243



Dec 4, 2001 Jeff—It was good to talk to you over pizza today. In fact, it was the
most exciting ‘truly quantum’ conversation I’ve had here with someone since
Hans left in July. I will definitely try to organize in my head where we (think!) we
are w.r.t. getting the formalism from no-cloning and no-commitment (sic)—and
I’ll summarize it all in an email to you and Hans in a few days. In the meantime,
attached is an ecopy of my paper with Hans on entanglement and open systems
(from which I think you can learn a fair bit about the algebraic formulation of
qm) and the paper you and I were talking about on noncommutativity and
teleportation. Talk soon. Rob

Although Hans Halvorson was only able to join the project later (shortly before
Clifton’s death in August, 2002), he was responsible for a great deal of the technical
work on the proofs.
A C�-algebra (as I learned!) is essentially an abstract generalization of the

structure of the algebra of operators on a Hilbert space. Technically, a (unital) C�-
algebra is a Banach �-algebra over the complex numbers containing the identity,
where the involution operation � and the norm are related by jjA�Ajj ¼ jjAjj2: So the
algebra BðHÞ of all bounded operators on a Hilbert space H is a C�-algebra, with �

the adjoint operation and jj � jj the standard operator norm.
In standard quantum theory, a state on BðHÞ is defined by a density operator D

on H in terms of an expectation-valued functional rðAÞ ¼ TrðADÞ for all observables
represented by self-adjoint operators A in BðHÞ: This definition of rðAÞ in terms of D

yields a positive normalized linear functional. So a state on a C�-algebra C is
defined, quite generally, as any positive normalized linear functional r : C-C on the
algebra. Pure states are defined by the condition that if r ¼ lr1 þ ð1� lÞr2 with
lAð0; 1Þ; then r ¼ r1 ¼ r2; other states are mixed. A pure state in standard quantum
theory corresponds to a density operator for which D2 ¼ D; and this is equivalent to
the existence of a unit vector jvSAH representing the state of the system via rðAÞ ¼
/vjAjvS: In a C�-algebra, since countable additivity is not presupposed by the C�-
algebraic notion of state (and, therefore, Gleason’s theorem does not apply), there
can be pure states of BðHÞ in the C�-algebraic sense that are not representable by
vectors in H (nor by density operators in H).
The most general dynamical evolution of a system represented by a C�-algebra of

observables is given by a completely positive linear map T on the algebra of
observables, where 0pTðIÞpI : The map or operation T is called selective if TðIÞoI

and nonselective if TðIÞ ¼ I : A yes-no measurement of some idempotent observable
represented by a projection operator P is an example of a selective operation. Here,
TðAÞ ¼ PAP for all A in the C�-algebra C; and rT; the transformed (‘collapsed’)
state, is the final state obtained after measuring P in the state r and ignoring all
elements of the ensemble that do not yield the eigenvalue 1 of P (so rTðAÞ ¼
rðTðAÞÞ=rðTðIÞÞ when rðTðIÞÞa0; and rT ¼ 0 otherwise). The time evolution in the
Heisenberg picture induced by a unitary operator UAC is an example of a
nonselective operation. Here, TðAÞ ¼ UAU�1: Similarly, the measurement of an
observable O with spectral measure fPig; without selecting a particular outcome, is
an example of a nonselective operation, with TðAÞ ¼

Pn
i¼1 PiAPi: Note that any
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completely positive linear map can be regarded as the restriction to a local system of
a unitary map on a larger system.
A representation of a C�-algebra C is any mapping p : C-BðHÞ that preserves

the linear, product, and � structure of C: The representation is faithful if p is one-to-
one, in which case pðCÞ is an isomorphic copy of C: The Gelfand-Naimark theorem
says that every abstract C�-algebra has a concrete faithful representation as a norm-
closed �-subalgebra of BðHÞ; for some appropriate Hilbert space H : In the case of
systems with an infinite number of degrees of freedom (as in quantum field theory), it
turns out that there are inequivalent representations of the C�-algebra of
observables defined by the commutation relations.
Apart from this infinite case, it might seem that C�-algebras offer no more than an

abstract way of talking about quantum mechanics. In fact, the C�-algebraic
formalism provides a mathematically abstract characterization of a broad class of
physical theories that includes all classical mechanical particle and field theories, as
well as quantum mechanical theories. One could, of course, consider weaker
mathematical structures (such as Jordan-Banach algebras, or Segal algebras (Segal,
1947)), but it seems that the C�-algebraic machinery suffices for all physical theories
that have been found to be empirically successful to date, including phase space
theories and Hilbert space theories (Landsman, 1998), and theories based on a
manifold (Connes, 1994).
The relation between classical theories and C�-algebras is this: every commutative

C�-algebra C is isomorphic to the set CðX Þ of all continuous complex-valued
functions on a locally compact Hausdorff space X that go to zero at infinity. If C has
a multiplicative identity, X is compact. So behind every abstract commutative C�-
algebra there is a classical phase space theory defined by this ‘function
representation’ on the phase space X : Conversely, every classical phase space theory
defines a C�-algebra. For example, the observables of a classical system of n point
particles—real-valued functions on the phase space R6n—can be represented as the
self-adjoint elements of the C�-algebra BðR6nÞ of all continuous complex-valued
functions f on R6n that go to zero at infinity. The phase space R6n is only locally
compact (so BðR6nÞ does not have a multiplicative identity), but it can be made
compact by adding just one point ‘at infinity’, or we can simply consider a bounded
(and thus compact) subset of R6n: The statistical states of the system are given by
probability measures m on R6n; and pure states, corresponding to maximally
complete information about the particles, are given by the individual points of R6n:
The system’s state r in the C�-algebraic sense is the expectation functional
corresponding to m; defined by rðf Þ ¼

R
R6n f dm:

So classical theories are characterized by commutative C�-algebras. The question
is whether quantum theories should be identified with the class of noncommutative
C�-algebras, or with some appropriate subclass.
Before tackling this question, it will be worthwhile to clarify the significance of the

two information-theoretic principles: ‘no superluminal information transfer via
measurement,’ and ‘no broadcasting.’
Consider a composite quantum system A þ B; consisting of two subsystems, A and

B: For simplicity, assume the systems are identical, so their C�-algebras A and B are
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isomorphic. The observables of the component systems A and B are represented by
the self-adjoint elements of A and B; respectively. Let A3B denote the C�-algebra
generated by A and B: The physical states of A; B; and A þ B; are given by positive
normalized linear functionals on their respective algebras that encode the
expectation values of all observables. To capture the idea that A and B are
physically distinct systems, we assume (as a necessary condition) that any state of A

is compatible with any state of B; i.e., for any state rA of A and rB of B; there is a
state r of A3B such that rjA ¼ rA and rjB ¼ rB:
The sense of the ‘no superluminal information transfer via measurement’

constraint is that when Alice and Bob, say, perform local measurements, Alice’s
measurements can have no influence on the statistics for the outcomes of Bob’s
measurements, and conversely. That is, merely performing a local measurement—in
the nonselective sense—cannot, in and of itself, convey any information to a
physically distinct system, so that everything ‘looks the same’ to that system after the
measurement operation as before, in terms of the expectation values for its own local
observables. (The restriction to nonselective measurements is required here, of
course, because selective measurement operations will in general change the statistics
of observables measured at a distance, simply because the ensemble relative to which
the statistics is computed changes with the selection.) It follows from this constraint
that A and B are kinematically independent systems if they are physically distinct in
the above sense, i.e., every element of A commutes pairwise with every element of B:
The ‘no broadcasting’ condition now ensures that the individual algebras A and B

are noncommutative. Broadcasting is a process closely related to cloning. In fact, for
pure states, broadcasting reduces to cloning. In cloning, a ready state s of a system B

and the state to be cloned r of system A are transformed into two copies of r: In
broadcasting, a ready state s of B and the state to be broadcast r of A are
transformed to a new state o of A þ B; where the marginal states of o with respect to
both A and B are r: In elementary quantum mechanics, neither cloning nor
broadcasting is possible in general. A pair of pure states can be cloned if and only if
they are orthogonal and, more generally, a pair of mixed states can be broadcast if
and only if they are represented by mutually commuting density operators. In CBH,
we show that broadcasting and cloning are always possible for classical systems, i.e.,
in the commutative case there is a universal broadcasting map that clones any pair of
input pure states and broadcasts any pair of input mixed states. Conversely, we show
that if any two states can be (perfectly) broadcast, then any two pure states can be
cloned; and if two pure states of a C�-algebra can be cloned, then they must be
orthogonal. So, if any two states can be broadcast, then all pure states are
orthogonal, from which it follows that the algebra is commutative.
So far, we have the following: For a composite system A þ B; the ‘no superluminal

information transfer via measurement’ constraint entails that the C�-algebras A and
B; whose self-adjoint elements represent the observables of A and B; commute with
each other; and the ‘no broadcasting’ constraint entails that the algebras A and B

separately are noncommutative. The quantum mechanical phenomenon of
interference is the physical manifestation of the noncommutativity of quantum
observables or, equivalently, the superposition of quantum states. From the above
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analysis, we see that the impossibility of perfectly broadcasting the information
contained in an unknown physical state, or of cloning or copying the information in
an unknown pure state, is the information-theoretic counterpart of interference.
To return to the question at issue: if A and B are noncommutative and mutually

commuting, it can be shown that there are nonlocal entangled states on the C�-
algebra A3B they generate (see Landau, 1987; Summers, 1990; Bacciagaluppi,
1994; and—more relevantly here, in terms of a specification of the range of entangled
states that can be guaranteed to exist—Halvorson, 2003a). So it seems that
entanglement—what Schr .odinger (1935, p. 555) called ‘the characteristic trait of
quantum mechanics, the one that enforces its entire departure from classical lines of
thought’—follows automatically in any theory with a noncommutative algebra of
observables. That is, it seems that once we assume ‘no superluminal information
transfer via measurement’, and ‘no broadcasting’, the class of allowable physical
theories is restricted to those theories in which physical systems manifest both
interference and nonlocal entanglement. So if we take interference and nonlocal
entanglement as the characteristic physical attributes that distinguish quantum
systems from classical systems, it might seem that we should simply identify
quantum theories with the class of noncommutative C�-algebras.
This conclusion is surely too quick, though, since the derivation of entangled

states depends on formal properties of the C�-algebraic machinery. Suppose we
considered more general algebraic structures, such as Segal algebras (see Segal,
1947), which have the minimal amount of structure required for spectral theory (i.e.,
the minimal structure needed to make sense of the probabilities of measurement
outcomes). Hans Halvorson (Halvorson, 2003c) has speculated that the existence of
entangled states would not follow from ‘no superluminal information transfer’ and
‘no broadcasting’ in Segal algebras, but would require, in addition, the ‘no bit
commitment’ constraint. (To show this is a future project.) In an information-
theoretic characterization of quantum theory, the fact that entangled states can be
instantiated, and instantiated nonlocally, should be shown to follow from some
information-theoretic principle. The role of the ‘no bit commitment’ constraint is to
guarantee that nothing prevents a certain range of nonlocal entangled states from
being instantiated in our world—that physical systems can be prepared in such
states.
To motivate this principle, consider Schr .odinger’s discussion of entanglement in

his extended two-part commentary (Schr .odinger, 1935, 1936) on the Einstein–
Podolsky–Rosen (EPR) argument (Einstein, Podolsky, & Rosen, 1935).
In the first part, Schr .odinger considers entangled states for which the biorthogonal

decomposition is unique, as well as cases like the EPR-state, where the biorthogonal
decomposition is nonunique. There he is concerned to show that suitable
measurements on one system can fix the (pure) state of the entangled distant
system, and that this state depends on what observable one chooses to measure, not
merely on the outcome of that measurement. In the second part, he shows that a
‘sophisticated experimenter’, by performing a suitable local measurement on one
system, can ‘steer’ the distant system into any mixture of pure states representable by
its reduced density operator. (So the distant system can be steered into any pure state
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in the support of the reduced density operator, with a nonzero probability that
depends only on the pure state.) For a mixture of linearly independent states, the
steering can be done by performing a PV-measurement in a suitable basis. If the
states are linearly dependent, the experimenter performs what we would now call a
POV-measurement, which amounts to enlarging the experimenter’s Hilbert space by
adding an ancilla, so that the dimension of the enlarged Hilbert space is equal to the
number of linearly dependent states.
For example, suppose Alice and Bob each hold one of a pair of spin-1

2
particles in

the entangled EPR state:

jcS ¼
1ffiffiffi
2

p ð jþSA j�SB � j�SA jþSBÞ;

where jþS and j�S are the eigenstates of the Pauli spin operator sz:
Bob’s state is represented by the density operator rB ¼ 1

2
I : This can be interpreted

as an equal weight mixture of the states jþSB; j�SB; but also as an infinity of other
mixtures including, to take a specific example, the equal weight mixture of the four
nonorthogonal states:

jf1SB ¼ a jþSB þ b j�SB;

jf2SB ¼ a jþSB � b j�SB;

jf3SB ¼ b jþSB þ a j�SB;

jf4SB ¼ b jþSB � a j�SB:

That is:

rB ¼
1

4
ðjf1S/f1j þ jf2S/f2j þ jf3S/f3j þ jf4S/f4jÞ ¼

1

2
I :

If Alice measures the spin observable with eigenstates jþSA; j�SA on her particle A

and Bob measures the corresponding spin observable on his particle B; Alice’s
outcomes will be oppositely correlated with Bob’s outcomes (+ with �, and �
with +). If, instead, Alice prepares a spin-1

2
ancilla particle A0 in the state jf1SA0 ¼

ajþSA0 þ bj�SA0 and measures an observable on the pair of systems A þ A0 in her
possession with eigenstates:

j1S ¼
1ffiffiffi
2

p ðjþSA0 j�SA � j�SA0 jþSAÞ;

j2S ¼
1ffiffiffi
2

p ðjþSA0 j�SA þ j�SA0 jþSAÞ;

j3S ¼
1ffiffiffi
2

p ðjþSA0 jþSA � j�SA0 j�SAÞ;

j4S ¼
1ffiffiffi
2

p ðjþSA0 jþSA þ j�SA0 j�SAÞ

(the Bell states), she will obtain the outcomes 1, 2, 3, 4 with equal probability, and
these outcomes will be correlated with Bob’s states jf1SB; jf2SB; jf3SB; jf4SB (i.e., if
Bob checks to see whether his particle is in the state jfiSB when Alice reports that
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she obtained the outcome i; he will find that this is always in fact the case). This
follows because:

jf1SA0 jcS ¼
1

2
ð�j1Sjf1SB � j2Sjf2SB þ j3Sjf3SB þ j4Sjf4SBÞ:

In this sense, Alice can steer Bob’s particle into any mixture compatible with the
density operator rB ¼ 1

2I by an appropriate local measurement.
What Schr .odinger found problematic about entanglement was the possibility of

remote steering:

It is rather discomforting that the theory should allow a system to be steered or
piloted into one or the other type of state at the experimenter’s mercy in spite of
his having no access to it. (Schr .odinger, 1935, p. 556)

Notice that remote steering in this probabilistic sense is precisely what makes
quantum teleportation possible. Suppose Alice and Bob share a pair of spin-1

2

particles A and B in the EPR state and Alice is given a spin-1
2
particle A0 in an

unknown state jf1S: If Alice measures the composite system A þ A0 in the Bell basis,
she will steer Bob’s particle into one of the states jf1SB; jf2SB; jf3SB; jf4SB with equal
probability. If Alice tells Bob the outcome of her measurement, Bob can apply a
local unitary transformation to obtain the state jf1SB:

1. apply the transformation I (the identity—i.e., do nothing)
2. apply the transformation sz

3. apply the transformation sx

4. apply the transformation �isy

Today we know that remote steering and nonlocal entanglement are physically
possible, but in 1936 Schr .odinger conjectured that an entangled state of a composite
system might decay to a mixture as soon as the component systems separated. So
while there would still be correlations between the states of the component systems,
remote steering would no longer be possible:

It seems worth noticing that the [EPR] paradox could be avoided by a very simple
assumption, namely if the situation after separating were described by the
expansion (12), but with the additional statement that the knowledge of the phase

relations between the complex constants ak has been entirely lost in consequence
of the process of separation. This would mean that not only the parts, but the
whole system, would be in the situation of a mixture, not of a pure state. It would
not preclude the possibility of determining the state of the first system by suitable

measurements in the second one or vice versa. But it would utterly eliminate the
experimenters influence on the state of that system which he does not touch
(Schr .odinger, 1936, p. 451).

Expansion (12) is the biorthogonal expansion:

Cðx; yÞ ¼
X

k

akgkðxÞfkðyÞ: ð1Þ
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It seems that Schr .odinger regarded the phenomenon of interference associated
with noncommutativity in quantum mechanics as unproblematic, because he saw
this as reflecting the fact that particles are wavelike. But he did not believe that we
live in a world in which physical systems can exist nonlocally in entangled states,
because such states would allow remote steering, i.e., effectively teleportation.
Schr .odinger did not expect that experiments would bear this out and thought that
nonlocal entangled states were simply an artifact of the formalism (like paraparticle
states, which are allowed in Hilbert space quantum mechanics but not observed in
nature).
Schr .odinger’s conjecture raises the possibility of a quantum-like world in which

there is interference but no nonlocal entanglement, and this possibility needs to be
excluded on information-theoretic grounds. This is the function of the ‘no bit
commitment’ constraint.
Bit commitment is a cryptographic protocol in which one party, Alice, supplies an

encoded bit to a second party, Bob, as a warrant for her commitment to 0 or 1. The
information available in the encoding should be insufficient for Bob to ascertain the
value of the bit at the initial commitment stage, but sufficient, together with further
information supplied by Alice at a later stage when she is supposed to ‘open’ the
commitment by revealing the value of the bit, for Bob to be convinced that the
protocol does not allow Alice to cheat by encoding the bit in a way that leaves her
free to reveal either 0 or 1 at will.
In 1984, Bennett and Brassard (1984) proposed a quantum bit commitment

protocol now referred to as BB84. The basic idea was to encode the 0 and 1
commitments as two quantum mechanical mixtures represented by the same density
operator, o: As they showed, Alice can cheat by adopting an EPR attack or cheating
strategy. Instead of following the protocol and sending a particular mixture to Bob
she prepares pairs of particles A þ B in the same entangled state r; where rjB ¼ o:
She keeps one of each pair (the ancilla A) and sends the second particle B to Bob, so
that Bob’s particles are in the mixed state o: In this way she can reveal either bit at
will at the opening stage, by effectively steering Bob’s particles into the desired
mixture via appropriate measurements on her ancillas. Bob cannot detect this
cheating strategy.
Mayers (1996, 1997), and Lo and Chau (1997), showed that the insight of Bennett

and Brassard can be extended to a proof that a generalized version of the EPR
cheating strategy can always be applied, if the Hilbert space is enlarged in a suitable
way by introducing additional ancilla particles. The proof of this ‘no go’ quantum
bit commitment theorem exploits biorthogonal decomposition via a result by
Hughston, Jozsa, and Wootters (1993) (effectively anticipated by Schr .odinger’s
analysis). Informally, this says that for a quantum mechanical system consisting of
two (separated) subsystems represented by the C�-algebra BðH1Þ#BðH2Þ; any
mixture of states on BðH2Þ can be generated from a distance by performing an
appropriate POV-measurement on the system represented by BðH1Þ; for an
appropriate entangled state of the composite system BðH1Þ#BðH2Þ: This is what
makes it possible for Alice to cheat in her bit commitment protocol with Bob. It is
easy enough to see this for the original BB84 protocol. Suprisingly, this is also the
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case for any conceivable quantum bit commitment protocol. See Bub (1997, 2001)
for a discussion.
Now, unconditionally secure bit commitment is also impossible for classical

systems, in which the algebras of observables are commutative.1 But the insecurity of
any bit commitment protocol in a noncommutative setting depends on considera-
tions entirely different from those in a classical commutative setting. Classically,
unconditionally secure bit commitment is impossible, essentially because Alice can
send (encrypted) information to Bob that guarantees the truth of an exclusive
classical disjunction (equivalent to her commitment to a 0 or a 1) only if the
information is biased towards one of the alternative disjuncts (because a classical
exclusive disjunction is true if and only if one of the disjuncts is true and the other
false). No principle of classical mechanics precludes Bob from extracting this
information. So the security of the protocol cannot be unconditional and can only
depend on issues of computational complexity.
By contrast, in a situation of the sort envisaged by Schr .odinger, in which the

algebras of observables are noncommutative but composite physical systems cannot
exist in nonlocal entangled states, if Alice sends Bob one of two mixtures associated
with the same density operator to establish her commitment, then she is, in effect,
sending Bob evidence for the truth of an exclusive disjunction that is not based on
the selection of a particular disjunct. (Bob’s reduced density operator is associated
ambiguously with both mixtures, and hence with the truth of the exclusive
disjunction: ‘0 or 1’.) Noncommutativity allows the possibility of different mixtures
associated with the same density operator. What thwarts the possibility of using the
ambiguity of mixtures in this way to implement an unconditionally secure bit
commitment protocol is the existence of nonlocal entangled states between Alice and
Bob. This allows Alice to cheat by preparing a suitable entangled state instead of one
of the mixtures, where the reduced density operator for Bob is the same as that of the
mixture. Alice is then able to steer Bob’s systems into either of the two mixtures
associated with the alternative commitments at will.
So what would allow unconditionally secure bit commitment in a noncommutative

theory is the absence of physically occupied nonlocal entangled states. One can
therefore take Schr .odinger’s remarks as relevant to the question of whether or not

1Kent (1999) has shown how to implement a secure classical bit commitment protocol by exploiting

relativistic signalling constraints in a timed sequence of communications between verifiably separated sites

for both Alice and Bob. In a bit commitment protocol, as usually construed, there is a time interval of

arbitrary length, where no information is exchanged, between the end of the commitment stage of the

protocol and the opening or unveiling stage, when Alice reveals the value of the bit. Kent’s ingenious

scheme effectively involves a third stage between the commitment state and the unveiling stage, in which

information is exchanged between Bob’s sites and Alice’s sites at regular intervals until one of Alice’s sites

chooses to unveil the originally committed bit. At this moment of unveiling the protocol is not yet

complete, because a further sequence of unveilings is required between Alice’s sites and corresponding sites

of Bob before Bob has all the information required to verify the commitment at a single site. If a bit

commitment protocol is understood to require an arbitrary amount of ‘free’ time between the end of the

commitment stage and the opening stage (in which no step is to be executed in the protocol), then

unconditionally secure bit commitment is impossible for classical systems. (I am indebted to Dominic

Mayers for clarifying this point.)
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secure bit commitment is possible in our world. In effect, Schr .odinger raises the
possibility that we live in a quantum-like world in which secure bit commitment is
possible! The suggestion is that if Alice and Bob prepare two particles A þ B in an
entangled state whose biorthogonal decomposition is:

jcS ¼
X ffiffiffiffi

li

p
jaiSjbiS

and then separate, each taking one particle, the phase relations between the
components of the density operator of the composite system r ¼ jcS/cj will
become randomized (presumably, virtually instantaneously), resulting in the
transition:

r-
X

li jaiS/ai j#jbiS/bij;

so that:

rA ¼
X

li jaiS/ai j; ð2Þ

rB ¼
X

li jbiS/bij: ð3Þ

Then unconditionally secure bit commitment would be possible. Alice would have to
prepare a specific mixture associated with a particular commitment—she could no
longer steer Bob’s particles at will into one of two alternative mixtures consistent
with the same density operator by exploiting the EPR cheating strategy. It follows
that the impossibility of unconditionally secure bit commitment entails that, for any
mixed state that Alice and Bob can prepare by following some (bit commitment)
protocol, there is a corresponding nonlocal entangled state that can be physically
occupied by Alice’s and Bob’s particles.
What CBH showed was that quantum theories—theories where (i) the observables

of the theory are represented by the self-adjoint operators in a noncommutative C�-
algebra (but the algebras of observables of distinct systems commute), (ii) the states
of the theory are represented by C�-algebraic states (positive normalized linear
functionals on the C�-algebra), and spacelike separated systems can be prepared in
entangled states that allow remote steering, and (iii) dynamical changes are
represented by completely positive linear maps—are characterized by the three
information-theoretic ‘no-go’s’: no superluminal communication of information via
measurement, no (perfect) broadcasting, and no (unconditionally secure) bit
commitment.

3. The measurement problem reconsidered

A C�-algebra is, in the first instance, relevant to physical theory as an algebra of
observables, with states defined as expectation-valued functionals over these
observables. Observables here are to be contrasted with ‘beables’ in Bell’s
terminology (Bell, 1987a) or dynamical quantities, where the idempotent dynamical
quantities correspond to properties of physical systems, and the C�-algebraic states
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assign probabilities to ranges of values of observables and (unlike classical states) do
not represent complete catalogues of properties.
The picture, broadly speaking, is this: At the start of a physical investigation, one

begins by making measurements with instruments that have the status of black boxes
relative to the future theory that will eventually arise out of the investigation. Of
course, the instruments (and their inputs and outputs) will be described in terms of
current theory, whatever that is, but at this stage (since we are supposing that the
current theory will be replaced) the instruments are, epistemologically, just black
boxes that we use to investigate statistical correlations. David Albert’s book (Albert,
1992), Quantum Mechanics and Experience, begins the account of quantum
phenomena in this way, with instruments called ‘colour’ boxes and ‘hardness’ boxes
that are essentially black boxes of different types that take a system in an input state
(the output of another black box) and produce a system in one of two output states,
with a certain probability that depends on the input state (they correspond to
instruments for measuring the spin of an electron in different directions). One
investigates the statistics produced by these black boxes in various combinations and
arrives (creatively, not inductively) at a certain algebraic structure for the
observables and probabilistic states associated with the systems, and a dynamics
that accounts for change between measurements. To say that the algebraic structure
is a C�-algebra is just to impose certain minimal formal constraints on the structure
of observables and states that, we expect, will be applicable to any physical theory
that we might want to consider (and these constraints do in fact characterize all
physical theories that have been considered in the past 400 years or so). For example,
the C�-algebraic constraints exclude haecceitist theories that associate a primitive
‘thisness’ with physical systems. (See the discussion by Halvorson (2003b) and by
Halvorson and Bub (2003) on toy theories proposed by Smolin (2003) and by
Spekkens (2003) that are not C�-algebraic theories.) We might, of course, at some
point have good reasons to consider a broader class of algebraic structures than C�-
algebras (e.g., Segal algebras), and the discussion here is not intended to exclude this
possibility.2 For the three theses about quantum theory argued for here, it is
sufficient to note that C�-algebras characterize a broad class of theories including all
present and past classical and quantum theories of both field and particle varieties,
and hybrids of these theories (for example, theories with superselection rules).
So suppose we arrive at a theory formulated in this way in terms of a C�-algebra

of observables and states. There are two cases to consider. If the algebra is
commutative, there is a phase space representation of the theory—not necessarily the
phase space of classical mechanics, but a theory in which the observables of the C�-
algebra are replaced by ‘beables’ or dynamical quantities, and the C�-algebraic
states are replaced by states representing complete catalogues of properties
(idempotent quantities). In this case, it is possible to extend the theory to include

2By imposing the three information-theoretic constraints on C�-algebras, we characterize a class of

quantum theories with representations in complex Hilbert spaces. One would like to rule out real and

quaternionic Hilbert spaces on information-theoretic grounds as well, so this in itself would suggest

broadening the class of algebraic structures.
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the measuring instruments that are the source of the C�-algebraic statistics, so that
they are no longer black boxes but constructed out of systems that are characterized
by properties and states of the phase space theory. That is, the C�-algebraic theory
can be replaced by a ‘detached observer’ theory of the physical processes underlying
the phenomena, to use Pauli’s term (Pauli, 1954), including the processes involved in
the functioning of measuring instruments.
Note that this depends on a representation theorem. In the noncommutative case,

we are guaranteed only the existence of a Hilbert space representation of the C�-
algebra, and it is an open question whether a ‘detached observer’ description of the
phenomena is possible.
In the case of a quantum theory, suppose we interpret the Hilbert space

representation as the noncommutative analogue of a phase space theory. That is,
suppose we interpret the quantum state of a system as providing a complete
catalogue of the system’s properties—as complete as possible in a noncommutative
setting (so the catalogue includes all the properties represented by projection
operators assigned unit probability by the state). As Einstein realized, such an
interpretation runs into trouble because of the existence of entangled states. In a
1948 letter to Max Born, he writes:

I just want to explain what I mean when I say that we should try to hold on to
physical reality. We all of us have some idea of what the basic axioms in physics
will turn out to be. The quantum or the particle will surely not be amongst them;
the field, in Faraday’s or Maxwell’s sense, could possibly be, but it is not certain.
But whatever we regard as existing (real) should somehow be localized in time and
space. That is, the real in part of space A should (in theory) somehow ‘exist’
independently of what is thought of as real in space B: When a system in physics
extends over the parts of space A and B; then that which exists in B should
somehow exist independently of that which exists in A: That which really exists in
B should therefore not depend on what kind of measurement is carried out in part
of space A; it should also be independent of whether or not any measurement at
all is carried out in space A: If one adheres to this programme, one can hardly
consider the quantum-theoretical description as a complete representation of the
physically real. If one tries to do so in spite of this, one has to assume that the
physically real in B suffers a sudden change as a result of a measurement in A:My
instinct for physics brisles at this. However, if one abandons the assumption that
what exists in different parts of space has its own, independent, real existence,
then I simply cannot see what it is that physics is meant to describe. For what is
thought to be a ‘system’ is, after all, just a convention, and I cannot see how one
could divide the world objectively in such a way that one could make statements
about parts of it. (Born, 1971, p. 164)

The problem, for Einstein, is a conflict with two principles that he regarded as
crucial for realism: separability (the world can be divided into separable systems with
their own properties: what we think of as existing or real in region A should exist
independently of what we think of as existing or real in region B), and locality (the
properties of a system in region A should be independent of what we choose to

J. Bub / Studies in History and Philosophy of Modern Physics 35 (2004) 241–266254



measure in region B; or whether any measurement at all is performed in region B).
Now, the possibility of entangled states over any pair of spatially separated regions
A and B means that a measurement at A can change the catalogue of properties not
only at A but also at B; and this violates locality. Alternatively, if we assume that a
system in region B does not have any properties independently of the properties of
system A; then we violate separability. The separability and locality conditions,
formulated as constraints on probabilities, are equivalent to the assumption that
correlations can be reduced to a common cause, and Bell’s derivation of an
inequality (violated by certain quantum correlations) from these conditions is an
elegant demonstration of a surprising implication of Einstein’s insight: the
impossibility of embedding the quantum correlations in a common cause theory.
Aside from this difficulty, there is a further problem associated with entangled

states in carrying through this interpretation of the Hilbert space theory as a
‘detached observer’ theory. If we take the quantum state of a system as providing a
complete catalogue of the properties of the system (all the properties represented by
projection operators assigned unit probability by the state), then a unitary dynamics
(which is linear in the sense that superpositions of vector states are mapped onto
corresponding superpositions of image vector states) entails that a measuring
instrument will generally end up entangled with the system it measures. So at the end
of what we take to be a measurement, neither the measuring instrument nor the
system measured will have separable properties associated with our commonsense
account of the phenomenon (that the instrument registers a definite outcome,
associated with a definite property of the system). This is the measurement problem,
or the problem of Schr .odinger’s cat (where the cat plays the role of a macroscopic
measuring instrument): it is impossible to extend the Hilbert space theory as a
noncommutative mechanics to include the black box measuring instruments.
The orthodox response to this problem is the proposal that the unitary dynamics is

suspended whenever a quantum system is measured, and that the problematic
entangled state ‘collapses’ to one of the terms in the superposition, the term
corresponding to the registration of a definite outcome (so the final quantum state at
the end of a measurement is represented as a mixed state over the different outcomes,
with weights equal to the probabilities defined by the entangled state). But this
response is inadequate without an account, in physical terms, of what distinguishes
measurements from other physical processes. Without such an account, measuring
instruments are still black boxes and we do not have a ‘detached observer’ theory.
‘Collapse’ theories like the GRW theory (Ghirardi, Rimini, & Weber, 1986;

Ghirardi, 2002) attempt to resolve this problem by modifying the unitary dynamics.
In the GRW theory, there is a certain very small probability that the wave function
of a particle (the quantum state with respect to the position basis in Hilbert space)
will spontaneously collapse to a peaked Gaussian of a specified width. For a
macroscopic system consisting of many particles, this probability can be close to 1
for very short time intervals. In effect, GRW modify the unitary dynamics of
standard quantum mechanics by adding uncontrollable noise. When the stochastic
terms of the GRW dynamics become important at the mesoscopic and macroscopic
levels, they tend to localize the wave function in space. So measurement interactions

J. Bub / Studies in History and Philosophy of Modern Physics 35 (2004) 241–266 255



involving macroscopic pieces of equipment can be distinguished from elementary
quantum processes, insofar as they lead to the almost instantaneous collapse of the
wave function and the correlation of the measured observable with the position of a
localized macroscopic pointer observable.
The GRW dynamics for the density operator is a completely positive linear map.

(See Simon, Buzek, & Gisin, 2001, especially footnote 14. I am indebted to Hans
Halvorson for bringing this point to my attention.) It follows that a GRW theory is
empirically equivalent to a quantum theory with a unitary dynamics on a larger
Hilbert space. Such a quantum theory will involve ‘hidden’ ancillary degrees of
freedom that are traced over. Since the GRW noise is uncontrollable in principle,
there will be entangled states associated with this larger Hilbert space that cannot be
prepared, and so cannot be exploited for steering in Schr .odinger’s sense. This
suggests that unconditionally secure bit commitment would, in principle, be possible
via a protocol that requires Alice or Bob to access these hidden degrees of freedom in
order to cheat. To put the point differently: unconditionally secure bit commitment
is possible in the sort of quantum-like theory considered by Schr .odinger, because
entangled pure states of a composite system collapse to proper mixtures as the
component systems separate, which makes cheating via steering impossible.
Similarly, in a GRW theory, the possibility of cheating via steering is diminished
to the extent that GRW noise cannot be controlled, and spontaneous collapse
destroys or degrades nonlocal entanglement involving inaccessible ‘hidden’ degrees
of freedom. So it seems that the GRW theory conflicts with the ‘no unconditionally
secure bit commitment’ information-theoretic constraint.
The other way of resolving the measurement problem—the ‘no-collapse’ route—is

to keep the linear dynamics and change the usual rule that associates a specific
catalogue of properties with a system via the quantum state (the properties assigned
unit probability by the state).3 This is tricky to do, because a variety of foundational
theorems severely restrict the assignment of properties or values to observables
under very general assumptions about the algebra of observables (Kochen &
Specker, 1967), or restrict the assignment of values to observables consistent with the
quantum statistics (Bell, 1964). The Bub-Clifton theorem (Bub & Clifton, 1996) says
that if you assume that the family of definite-valued observables has a certain
structure (essentially allowing the quantum statistics to be recovered in the usual way
as measures over different possible definite values or properties), and the pointer
observable in a measurement process belongs to the set of definite-valued
observables, then the class of such theories—so-called ‘modal interpretations’—is
uniquely specified. This amounts to the requirement that the ‘no-collapse’ theory
should include a mechanical account of the functioning of measuring instruments. It
turns out that such theories are characterized by a ‘preferred observable’ that always
has a definite value. Different theories involve different ways of selecting the

3The rule—often formulated for pure states as the ‘eigenvalue-eigenstate rule’, the assumption that an

observable has a definite value (so that the system has a definite property) if and only if the state of the

system is an eigenstate of the observable—is explicit in von Neumann (1955, p. 253) and Dirac (1958, pp.

46–47), and in the EPR argument, but notably absent in Bohr’s complementarity interpretation.
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preferred observable. For example, the orthodox interpretation that leads to the
measurement problem can be regarded as a modal interpretation in which the
preferred observable is simply the identity I ; and Bohmian mechanics (Goldstein,
2001) can be regarded as a modal interpretation in which the preferred observable is
position in configuration space.
In modal interpretations, measuring instruments generally do not function as

devices that faithfully measure dynamical quantities. In Bohmian mechanics, for
example, what we call the measurement of the x-spin of an electron which is in an
eigenstate of z-spin is not the measurement of a property of the electron. Rather, an
x-spin measurement involves a certain dynamical evolution of the wave function of
the electron in the presence of a magnetic field, in which the wave function develops
two sharp peaks, one of which contains the electron. For a multi-particle system,
since the dynamical evolution depends on the position of the system in configuration
space and the value of the wave function at that point, the outcome of a spin
measurement on one particle will depend on the configuration of the other particles.
An alternative ‘no-collapse’ solution to the measurement problem is provided by

the many-worlds interpretation, first proposed by Everett (1957). On this
interpretation, all the terms in a superposed or entangled quantum state (with
respect to a preferred basis) are regarded as actualized in different worlds in a
measurement, so every possible outcome of a measurement occurs in some world.
For example, the measurement of the x-spin of an electron in an eigenstate of z-spin
is not a process that reveals a pre-existing spin value; rather, it is a process in which
an indefinite spin value becomes definite with different spin values in different
worlds. There are a variety of different versions of Everett’s interpretation in the
literature (see Wallace, 2003 for a recent discussion). On Bell’s characterization (Bell,
1987b), the many worlds interpretation is presented as equivalent to Bohmian
mechanics without the particle trajectories.
A modal interpretation or ‘no collapse’ hidden variable theory is proposed as a

(‘deeper’) mechanical theory underlying the statistics of a C�-algebraic quantum
theory or its Hilbert space representation that includes a mechanical account of our
measuring instruments as well as the phenomena they reveal, i.e., as an extension of a
quantum theory. From the CBH theorem, a theory satisfies the information-
theoretic constraints if and only if it is empirically equivalent to a quantum theory (a
theory where the observables, the states, and the dynamics are represented as
outlined at the end of Section 2). So, given the information-theoretic constraints, any
empirically adequate extension of a quantum theory in this sense must be empirically
equivalent to the quantum theory.
Consider Bohmian mechanics as an example. The additional mechanical

structures postulated as underlying the quantum statistics in Bohmian mechanics
are the particle trajectories in configuration space, and the wave function as a
guiding field (which evolves via the Schr .odinger equation). The dynamical evolution
of a Bohmian particle is described by a deterministic equation of motion in
configuration space that is guaranteed to produce the quantum statistics for all
quantum measurements, if the initial distribution over particle positions (the hidden
variables) is the Born distribution. The Bohmian algebra of observables is the
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commutative algebra generated by the position observable and the Bohmian
particle dynamics is nonlinear, so Bohmian mechanics is not a quantum theory in the
sense of the CBH theorem. In Bohmian mechanics, the Born distribution is treated
as an equilibrium distribution, and nonequilibrium distributions can be shown to
yield predictions that conflict with the information-theoretic constraints. Valentini
(2002) shows how nonequilibrium distributions can be associated with such
phenomena as instantaneous signalling between spatially separated systems and
the possibility of distinguishing nonorthogonal pure states (hence the possibility of
cloning such states). Key distribution protocols whose security depends on ‘no
information gain without disturbance’ and ‘no cloning’ would then be insecure
against attacks based on exploiting such nonequilibrium distributions. So, in
Bohmian mechanics, the fact that the information-theoretic constraints hold depends
on (and, in this sense, is explained by) a contingent feature of the theory: that the
universe has in fact reached the equilibrium state with respect to the distribution of
hidden variables.
But now it is clear that there can be no empirical evidence for the additional

mechanical elements of Bohmian mechanics that would not also be evidence for the
statistical predictions of a quantum theory, because such evidence is unobtainable in
the equilibrium state. If the information-theoretic constraints apply at the
phenomenal level then, according to Bohmian mechanics, the universe must be in
the equilibrium state, and in that case there can be no evidence for Bohmian
mechanics that goes beyond the empirical content of a quantum theory (i.e., the
statistics of quantum superpositions and entangled states). Since it follows from the
CBH theorem that a similar analysis will apply to any ‘no collapse’ hidden variable
theory or modal interpretation, there can, in principle, be no empirical grounds for
choosing among these theories, or between any one of these theories and a quantum
theory.

4. The completeness of quantum theory

What is the rational epistemological stance in this situation? Consider the case of
thermodynamics, which is a theory formulated in terms of constraints at the
phenomenal level (‘no perpetual motion machines of the first and second kind’), and
the kinetic-molecular theory, which is a statistical mechanical theory of processes at
the microlevel that provides a mechanical explanation of why thermodynamic
phenomena are constrained by the principles of thermodynamics. Should we take the
ontology of the kinetic-molecular theory seriously as a realist explanation of
observable thermodynamic phenomena? This was regarded as an open question at
the turn of the 20th century before Perrin’s (1909) experiments on Brownian motion.
(For an account see Nye, 1972.) Why? Because before these experiments there was
no empirical scale constraint on the sizes of molecules or atoms, the basic structural
elements of the kinetic-molecular theory. So there were no empirical grounds for
taking the unobservable aspects of the ontology proposed by the kinetic theory
seriously as an explanation of the observable phenomena. To put it simply: you
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ought to be able to count the number of molecules on the head of a pin, or you might
as well be talking about angels.
It was Einstein’s analysis of Brownian motion and his prediction of observable

fluctuation phenomena that allowed the crucial scale parameter, Avogadro’s
number, to be pinned down. Without the possibility of observable fluctuation
phenomena, the kinetic theory would have been, to use Poincar!e’s phrase, no more
than a ‘useful fiction’:

y the long-standing mechanistic and atomistic hypotheses have recently taken on
enough consistency to cease almost appearing to us as hypotheses; atoms are no
longer a useful fiction; things seem to us in favour of saying that we see them since
we know how to count them. y The brilliant determination of the number of
atoms made by M. Perrin has completed this triumph of atomism.y The atom of
the chemist is now a reality. (Poincar!e, 1912)

Einstein’s first paper on Brownian motion makes a similar point:4

In this paper it will be shown that according to the molecular-kinetic theory of
heat, bodies of macroscopically-visible size suspended in a liquid will perform
movements of such magnitude that they can be easily observed in a microscope,
on account of the molecular motions of heat. y If the movement discussed here
can actually be observed (together with the laws relating to it that one would
expect to find), then classical thermodynamics can no longer be looked upon as
applicable with precision to bodies even of dimensions distinguishable in a
microscope: an exact determination of actual atomic dimensions is then possible.
On the other hand, should the prediction of this movement prove to be incorrect,
a weighty argument would be provided against the molecular-kinetic theory of
heat. (Einstein, 1956, pp. 1–2)

Compare, now, the kinetic-molecular theory relative to thermodynamics, and a
modal interpretation or ‘no collapse’ hidden variable theory, which is proposed as an
extension of a quantum theory to solve the measurement problem and provide an
answer to the question: How could the world possibly be the way a quantum theory
says it is? From the CBH theorem, this is amounts to asking: How is it possible that
the information-theoretic constraints hold in our world? To focus the discussion,
consider Bohmian mechanics. The additional mechanical elements of Bohmian
mechanics are the Bohmian particle trajectories in configuration space and the wave
function as guiding field (the quantum state in configuration space). In Bohmian
mechanics, a measurement is represented by a dynamical evolution induced by a
measurement interaction in the configuration space of the combined system plus
measuring instrument. A Stern-Gerlach measurement of the x-spin of a spin-1

2

particle in an eigenstate of z-spin is a particularly simple example, since here the

4I have used Penelope Maddy’s translation for the last sentence (Maddy, 1997, p. 139). The English

version has ‘had’ for ‘should’ and ‘proved’ for ‘prove.’ The German reads: ‘Erwiese sich umgekehrt die

Voraussage dieser Bewegung als unzutreffend, so w.are damit ein schwerwiegendes Argument gegen die

molekularkinetische Auffassung der W.arme gegeben.’ See Nye (1997, p. 139).
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position of the particle functions as the measurement ‘pointer’ for the spin value. The
measurement is represented by the dynamical evolution of the particle in
configuration space (which, in this special case, is just real space) under the influence
of a guiding field represented by the wave function evolving in the presence of an
inhomogeneous magnetic field. During the measurement process, the wave function
evolves in such a way as to entangle the position of the particle—in effect, the
measurement ‘pointer’—and the spin. That is, the wave function develops two peaks
correlated with the two possible spin eigenstates. Since, by assumption, the Bohmian
particle always has a definite position, which must be in one or the other of the two
peaks, this position value (measured as either ‘up’ or ‘down’ in the case of a Stern-
Gerlach measurement of x-spin) can be associated with a particular spin eigenvalue.
The remaining term in the entangled state can be dropped, because it plays a
negligible role in determining the future motion of the particle. So there is an
‘effective collapse’ of the wave function (see Maudlin, 1995).
It follows from the Bohmian particle dynamics and the Schr .odinger evolution for

the guiding field that the distribution of particle positions after any measurement (as
given by the effective wave function) will never vary from the equilibrium Born
distribution if the initial distribution is the Born distribution, so there can be no
observable ‘fluctuation phenomena’ analogous to the observable fluctuation
phenomena of Brownian motion in the thermodynamics case. This means that
there can be no empirical constraint on the Bohmian particle trajectories analogous
to the empirical scale constraint in the case of the kinetic-molecular theory (if our
universe is indeed in the equilibrium state, when the information-theoretic
constraints apply).
If it was correct to suspend judgement about the reality of atoms before Perrin’s

experiments, the correct conclusion to draw with respect to Bohmian mechanics is
that, since—in principle—there can be no empirical grounds for taking the
unobservable Bohmian trajectories seriously as an explanation of observable
quantum phenomena (assuming our universe is in the equilibrium state), Bohmian
mechanics is, at best, a ‘useful fiction’ in Poincar!e’s sense. (‘Useful’ here only in
satisfying a philosophical demand for the sort of explanatory completeness
associated with commutative theories, in that the theory provides a mechanical
account of quantum phenomena, including an account of the measuring instruments
that reveal these phenomena.)
Note that the argument here is not that it is never rational to believe a theory over

an empirically equivalent rival: the methodological principle I am appealing to is
weaker than this. Rather, my point is that if T 0 and T 00 are empirically equivalent
extensions of a theory T ; and if T entails that, in principle, there could not be

evidence favoring one of the rival extensions T 0 or T 00; then it is not rational to
believe either T 0 or T 00:
To clarify this point (following a suggestion by Hans Halvorson): Say that T and

T 0 are weakly empirically equivalent in a world W just in case the theories are
equivalent relative to all evidence available in W : And say that T and T 0 are strongly

empirically equivalent just in case they are weakly empirically equivalent in all
possible worlds (in other words, there could not possibly be evidence favoring one
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theory over its rival), where the set of possible worlds is determined by an accepted
physical theory. Now let T be a quantum theory, and let T 0;T 00;y be various
extensions of this quantum theory (e.g., Bohm, Everett, etc.). If we accept T ; then
(by the CBH theorem) we accept that there could be no evidence favoring any one of
the theories T 0;T 00 as a matter of physical law. In other words, we accept that there is
no possible world satisfying the information-theoretic constraints in which there is
evidence favoring one of these extensions over its rivals.
Now, strictly speaking, thermodynamics is falsified by the kinetic-molecular

theory: matter is ‘grainy’, and the second law has only a statistical validity. The
phenomena that reveal the graininess in the thermodynamics case are fluctuation
phenomena, and these are (small) departures from equilibrium. So, one might argue,
the appropriate case to consider for a quantum theory is not the equilibrium version
of Bohm’s theory, but rather the nonequilibrium version.
I grant that it could turn out to be false that the information-theoretic constraints

hold in our universe and that some day we will find experimental evidence that
conflicts with the predictions of a quantum theory (in which case the nonequilibrium
version of Bohm’s theory might turn out to be true). The relevant point about the
thermodynamics case is that the kinetic-molecular theory was regarded as only a
‘useful fiction’ before Einstein showed that the theory could have excess empirical
content over thermodynamics (even though acceptance of the theory ultimately
required a revision of the principles of thermodynamics). The methodological moral
I draw from the thermodynamics case is simply that a mechanical theory that
purports to solve the measurement problem is not acceptable if it can be shown that,
in principle, the theory can have no excess empirical content over a quantum theory.
By the CBH theorem, given the information-theoretic constraints any extension of a
quantum theory, like Bohmian mechanics, must be empirically equivalent to a
quantum theory, so no such theory can be acceptable as a deeper mechanical
explanation of why quantum phenomena are subject to the information-theoretic
constraints. To be acceptable, a mechanical theory that includes an account of our
measuring instruments as well as the quantum phenomena they reveal (and so
purports to solve the measurement problem) must violate one or more of the

information-theoretic constraints.

Similar remarks apply to other ‘no collapse’ hidden variable theories or modal
interpretations, including the many worlds interpretation: by the CBH theorem, the
additional mechanical elements of these theories must be idle if the information-
theoretic constraints apply. I conclude that the rational epistemological stance is to
suspend judgement about all these empirically equivalent but necessarily under-
determined theories and regard them all as unacceptable. It follows that our

measuring instruments ultimately remain black boxes at some level that we represent in
the theory simply as probabilistic sources of ranges of labelled events or ‘outcomes’,
i.e., effectively as sources of signals, where each signal is produced with a certain
probability. But this amounts to treating a quantum theory as a theory about the

representation and manipulation of information constrained by the possibilities and
impossibilities of information-transfer in our world (a fundamental change in the
aim of physics), rather than a theory about the ways in which nonclassical waves or
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particles move. The explanation for the impossibility of a ‘detached observer’
description then lies in the constraints on the representation and manipulation of
information that hold in our world.
So a consequence of rejecting Bohm-type hidden variable theories or other ‘no

collapse’ theories is that we recognize information as a new sort of physical entity,
not reducible to the motion of particles or fields. An entangled state should be
thought of as a nonclassical communication channel that we have discovered to exist
in our quantum universe, i.e., as a new sort of nonclassical ‘wire’. We can use these
communication channels to do things that would be impossible otherwise, e.g., to
teleport states, to compute in new ways, etc. A quantum theory is then about the
properties of these communication channels, and about the representation and
manipulation of states as sources of information in this physical sense.
Just as the rejection of Lorentz’s theory in favour of special relativity (formulated

in terms of Einstein’s two principles: the equivalence of inertial frames for all
physical laws, electromagnetic as well as mechanical, and the constancy of the
velocity of light in vacuo for all inertial frames) involved taking the notion of a field
as a new physical primitive, so the rejection of Bohm-type hidden variable theories in
favour of quantum mechanics—characterized via the CBH theorem in terms of three
information-theoretic principles—involves taking the notion of quantum informa-
tion as a new physical primitive. That is, just as Einstein’s analysis (based on the
assumption that we live in a world in which natural processes are subject to certain
constraints specified by the principles of special relativity) shows that we do not need
the mechanical structures in Lorentz’s theory (the aether, and the behaviour of
electrons in the aether) to explain electromagnetic phenomena, so the CBH analysis
(based on the assumption that we live in a world in which there are certain
constraints on the acquisition, representation, and communication of information)
shows that we do not need the mechanical structures in Bohm’s theory (the guiding
field, the behaviour of particles in the guiding field) to explain quantum phenomena.
You can, if you like, tell a story along Bohmian, or similar, lines (as in other ‘no
collapse’ interpretations) but, given the information-theoretic constraints, such a
story can, in principle, have no excess empirical content over Hilbert space quantum
mechanics (just as Lorentz’s theory, insofar as it is constrained by the requirement to
reproduce the empirical content of the principles of special relativity, can, in
principle, have no excess empirical content over Einstein’s theory).
Something like this view seems to be implicit in Bohr’s complementarity

interpretation of quantum theory. For Bohr, quantum mechanics is complete and
there is no measurement problem, but measuring instruments ultimately remain
outside the quantum description: the placement of the ‘cut’ between system and
measuring instrument is arbitrary, but the cut must be placed somewhere. Similarly,
the argument here is that, if the information-theoretic constraints hold in our world,
the measurement problem is a pseudo-problem, and the whole idea of an empirically
equivalent ‘interpretation’ of quantum theory that ‘solves the measurement problem’
is to miss the point of the quantum revolution.
From this information-theoretic perspective, the relevant ‘measurement problem’

is how to account for the emergence of classical information, the loss of interference
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and entanglement, when we perform quantum measurements. The solution to this
problem appears to lie in the phenomenon of environmental decoherence that occurs
during a quantum measurement. In effect, we design measurement instruments to
exploit decoherence: an instrument-environment interaction that results almost
instantaneously (as a result of information loss to the environment) in a particular
sort of noisy entanglement between the measured system, the measuring instrument,
and the environment. The noisy channel means that the system, monitored by the
measuring instrument, behaves classically: all the subsequent information-processing
we can do with it will be classical. Technically, the von Neumann entropy measuring
quantum information reduces to the classical Shannon entropy under the loss of
information induced by decoherence. So most of the information in a quantum state
that can be processed is not accessible in a measurement—just one bit of the
potentially infinite amount of quantum information in a spin-1

2
system, for example,

can be accessed in a measurement of spin in a particular direction: the classical
information content of the two alternative spin values associated with that direction.
The standard measurement problem is the problem of showing that after a

measurement interaction the measured system is actually in one of the eigenstates of
the measured observable, with the appropriate quantum mechanical probability
(which reflects our ignorance of the actual eigenstate before the measurement), and
that the measured observable therefore has a definite value (according to the usual
interpretation that takes the definite or determinate properties of a system as the
properties assigned unit or zero probability by the state). That is, the standard
measurement problem is the problem of accounting for the definiteness or
determinateness of pointer readings and measured values in a measurement process.
Bell (1990) famously objected to appealing to decoherence as a ‘for all practical
purposes (FAPP)’ solution to this problem. What he objected to was the legitimacy
of regarding the pointer observable and the measured observable correlated with the
pointer as having definite values, on the basis that decoherence justifies tracing over
the environment and ignoring certain correlational information in the system-
instrument-environment entangled state, for all practical purposes. Bell rightly
objected that decoherence cannot guarantee the determinateness of properties in this
way, and that a FAPP solution to the problem cannot therefore underwrite a
quantum ontology for a fundamental ‘detached observer’ mechanical theory of
events at the microlevel. But the objection does not apply to the problem of
accounting for the emergence of classical information in quantum measurements.
‘Why the quantum?’ was one of John Wheeler’s ‘Really Big Questions’. The

characterization of quantum mechanics in terms of three information-theoretic
constraints provides an answer to this question: a quantum theory is fundamentally
a theory about the possibilities and impossibilities of information transfer in our
world, given certain constraints on the acquisition, representation, and communica-
tion of information, not a theory about the mechanics of nonclassical waves or
particles. In the debate between Bohr and Einstein on the interpretation of quantum
theory, this answer to Wheeler’s question sides with Bohr.
The focus on quantum information as an answer to Wheeler’s question about the

quantum has been impressively successful in terms of new physics over the past
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twenty years or so. Where Einstein and Schr .odinger saw a problem (e.g., the
nonlocality of entanglement in the EPR experiment), contemporary physicists see an
opportunity to exploit entanglement as a new sort of nonclassical communication
channel (e.g., for teleportation, or for new modes of communication and
computation). This is a major revolution in the aim and practice of physics. As
Andrew Steane puts it:

Historically, much of fundamental physics has been concerned with discovering
the fundamental particles of nature and the equations which describe their
motions and interactions. It now appears that a different programme may be
equally important: to discover the ways that nature allows, and prevents,
information to be expressed and manipulated, rather than particles to move.
(Steane, 1998)
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