Stud. Hist. Phil. Mod. Phys., Vol. 32, No. 4, pp. 569-579, 2001

© 2001 Elsevier Science Ltd. All rights reserved.

Pergamon Printed in Great Britain
1355-2198/01/$ - see front matter

Maxwell’s Demon and the Thermodynamics
of Computation
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It is generally accepted, following Landauer and Bennett, that the process
of measurement involves no minimum entropy cost, but the erasure of
information in resetting the memory register of a computer to zero requires
dissipating heat into the environment. This thesis has been challenged
recently in a two-part article by Earman and Norton. I review some
relevant observations in the thermodynamics of computation and argue
that Earman and Norton are mistaken: there is in principle no entropy cost
to the acquisition of information, but the destruction of information does
involve an irreducible entropy cost. © 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Maxwell first introduced the demon in a letter to Tait (dated 11 December
1867; see Knott (1911, p. 214)) and repeated the demon argument in his 1871
treatise, Theory of Heat (Maxwell, 1871). He imagined a being capable of
monitoring the positions and velocities of the individual molecules in a
container of air at uniform temperature, divided into two chambers by a
partition with a small aperture. While the mean velocity of the air molecules is
uniform, the velocities of the individual molecules vary. The demon opens and
closes the aperture so as to allow the faster molecules to move to one chamber
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and the slower molecules to the other chamber. In this way the temperature of
one chamber is raised and the temperature of the other chamber lowered
without any work being done, contradicting the second law of thermodynamics.

As Maxwell indicated in an undated letter to Tait (see Leff and Rex, 1990,
p. 5; and Knott, 1911), the point of the demon argument was to show that the
second law ‘has only a statistical certainty’. The question then arises whether it
is possible to design a perpetual motion machine that, over time, reliably
exploits statistical fluctuations to convert heat from the environment into work.

In 1912, Smoluchowski (1912, 1914) showed that an automatic mechanism,
like a spring-loaded trapdoor blocking an aperture between two chambers of a
gas-filled container and capable of opening only one way, would be prevented
by its own Brownian motion from functioning reliably as a one-way valve that
allowed more energetic gas molecules to accumulate in one chamber over time.
The trapdoor would be heated by collisions with the gas molecules and open
and close randomly, and these random fluctuations in the trapdoor motion
would allow a molecule to pass from the hotter chamber to the colder chamber
as often as a molecule pushes past the trapdoor from the colder chamber to the
hotter chamber. So such a device could not function as a perpetual motion
machine capable of converting heat from the environment into work. In other
words, a purely mechanical Maxwell’s demon is impossible.

In his seminal article, Szilard (1929) cites Smoluchowski (1914, p. 89):

As far as we know today, there is no automatic, permanently effective perpetual
motion machine, in spite of the molecular fluctuations, but such a device might,
perhaps, function regularly if it were appropriately operated by intelligent beings

[...]
and states his objective as follows:

The objective of the investigation is to find the conditions which apparently allow
the construction of a perpetual-motion machine of the second kind, if one permits
an intelligent being to intervene in a thermodynamic system.

The appropriate way to think about this question is to consider whether a
mechanical demon incorporating a computer could work as a perpetual motion
machine—that is, a device with information-gathering and information-
processing abilities. Assuming the second law, the relevant question is: at what
stage of the information-gathering or information-processing would the device
fail?

The accepted position, before arguments by Landauer (1961) and Bennett
(1982), was that there is an irreducible entropy cost to measurement. The thesis
that acquiring information involves a certain entropy cost, specifically at least
klog2 per bit of information, was first proposed by Szilard (1929) and
elaborated by Brillouin (1951) in terms of a model in which the demon
measures the positions of the gas molecules by shining light on them.

Landauer and Bennett argued that measurement is in principle reversible
and can be done without entropy cost. By contrast, they showed that there is
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an irreducible entropy cost to information destruction as opposed to
information acquisition: resetting the memory register of a computer to zero
involves an entropy cost. This result has important consequences for the
thermodynamics of computation. Bennett (1973), Fredkin and Toffoli (1982),
and Toffoli (unpublished manuscript) showed that the most efficient
computers, like Carnot engines, are reversible. It follows that the minimum
energy required to carry out a computation does not depend on the complexity
of the computation, but only on the number of bits of information in the
output: if the output is 1 bit, one needs at least k7 log 2 of free energy to run
the computation, which is used in resetting the memory to zero.

In a recent two-part article, Earman and Norton (1998, 1999) reject the use
of information-theoretic notions to ‘exorcise’ Maxwell’s demon as misguided.
They argue that either the demon is a thermodynamic system governed by the
second law, in which case no further assumptions about information and
entropy are needed to save the second law from the demon, or the demon is not
such a system, in which case no information-theoretic assumptions can save the
second law.

Earman and Norton call ‘Szilard’s principle’ the principle that acquiring
information involves a minimum entropy cost; specifically, gaining information
that distinguishes between n equally likely states dissipates a minimum entropy
of klogn into the environment. ‘Landauer’s principle’ is the principle that
erasing this information from a memory register involves a minimum entropy
cost of klogn. They reject the prevailing view that the locus of entropy
dissipation required to compensate for the demon’s entropy reduction is
correctly identified by Landauer’s principle not Szilard’s principle, i.e. as
associated with the erasure of information in the demon’s memory not the
acquisition of information. As they see it, both principles depend for their
validity on the second law and are not incompatible. If the demon is a
canonical thermal system, then either the process of measurement, or the
process of erasing the demon’s memory, or both, will involve entropy
dissipation sufficient to prevent the demon from exploiting thermal fluctuations
over time so as to convert heat from the environment into work.

I shall argue that Earman and Norton are wrong: in principle, the process of
measurement need not involve any entropy cost, but the erasure of information
in the memory register of a computer cannot be achieved without a minimum
entropy cost. In Section 2, I briefly review some relevant observations in the
thermodynamics of computation. In Section 3, I discuss measurement, and in
Section 4, 1 show why resetting the memory register of computer to zero
requires dissipating heat into the environment.

2. The Thermodynamics of Computation

Here 1 review some relevant observations in the thermodynamics of
computation, following the discussion in Feynman (1996).
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The fundamental principle in the thermodynamics of computation is that
information should be conceived as physically embodied in the state of a
physical system. So we can, for example, think of a message on a tape—a
sequence of 0’s and 1’s—as represented by a sequence of boxes, in each of
which there is a 1-molecule gas, where the molecule can be either in the left half
of the box (representing the state 0) or the right half of the box (representing
the state 1).

If we assume that the tape (the sequence of boxes) is immersed in a
heat bath at constant temperature 7', the amount of work, W, required to
compress the gas isothermally in one of the boxes to half the original

volume V is:
V)2
W= / pdV
Vv

/2
_ / kT
v
=kT(log(V/2) — logV)

= — kT log?2, (1)

where p is the pressure of the gas and & is Boltzmann’s constant.
(Conventionally, work done by a gas in expanding is taken as positive. The
negative sign here indicates that the work is done on the gas. Concepts such as
temperature and pressure for a 1-molecule gas are understood in a time-
averaged sense.)

The total energy, U, of the gas is related to the free energy, F, and the
entropy, S, by the equation:

U=F+TS. 2)

In an isothermal compression, the total energy of the gas remains constant,
sO:

AF = — TAS. 3)

This represents the heat energy dumped into the environment (the heat bath)
by the work done during the isothermal compression. So the entropy of the 1-
molecule gas changes in this thermodynamically reversible change of state by
an amount:

AS = —klog2 4)

and the entropy of the environment is increased by k log 2. Equivalently, there
is a change of kT log 2 in the free energy of the gas.

In statistical mechanics, the entropy of a system in a certain thermodynamic
state is introduced as a measure of the number of microstates available to the
system in the thermodynamic state. Specifically, the entropy is taken as
proportional to the logarithm of the number of available microstates, with the
proportionality factor k. This contrasts with the analysis of thermodynamic
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quantities like temperature and pressure, which are defined as statistical
averages over a distribution of molecular configurations. The sense in which
the entropy of a thermodynamic system is an objective property of the system
is nicely captured by Jaynes in the following statement:

The entropy of a thermodynamic system is a measure of the degree of ignorance
of a person whose sole knowledge about its microstate consists of the values of the
macroscopic quantities X; which define its thermodynamic state. This is a
completely ‘objective’ quantity, in the sense that it is a function only of the X},
and does not depend on anybody’s personality. There is then no reason why it
cannot be measured in a laboratory (Jaynes, 1979; quoted in Leff and Rex, 1990,
p. 17; italics in the original).

In terms of a statistical mechanical analysis, the kinetic energy of the 1-
molecule gas is unchanged by the compression. The only change is that
initially, before the compression, the molecule could be anywhere in the volume
V, while after the compression the molecule is confined to the region V/2.
Since the number of microstates available to the molecule in the volume V" at
temperature 7 is proportional to V, if the volume of the gas is halved
at constant temperature, the number of available microstates is halved,
because the molecule has access to only half the number of possible positions.
So the entropy is decreased by an amount equal to k(log V' — log V' /2) =
klog 2.

The information in a message can be defined as proportional to the amount
of free energy required to reset the entire message tape to zero, in the sense that
each cell of the tape—each 1-molecule gas in a box—is compressed to half its
volume, reducing the number of available microstates by half. In appropriate
units (taking logarithms to the base 2), it takes 1 bit of free energy to reset each
cell to a zero value.

Clearly, if we already know whether the value of a cell is 0 or 1, there is no
information contained in the cell. In terms of the above definition, if the
value is 0, we do nothing to reset the cell; if the value is 1 so that the molecule
is in the right half of the box, we can insert a partition trapping the molecule
in the right half and then turn the box over. This involves no expenditure of
free energy (assuming quasi-static, frictionless motion). So it is only if we do
not know whether the molecule is in the left half of the box or the right half—if
the specification of the thermodynamic state of the 1-molecule gas is
simply that the molecule is somewhere in the box—that free energy is
required to trap the molecule in one half of the box. Evidently, it should
make no difference whether the zero for the tape is defined as a sequence of 0’s
or a sequence of 1’s. But this will only be the case if the reset operation
is understood as a compression, to be applied to a cell irrespective of the
value of the cell, that is, as an operation applied in ignorance of whether the
molecule is in the left half or the right half, after which we know where
the molecule is.
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3. Measurement

The essential feature of a measurement is that it establishes a correlation
between the state of a system and the state of a memory register. Now,
establishing a correlation between the states of the two systems is equivalent to
a copying operation, and there is no entropy cost to copying. This can be seen
as follows (Feynman, 1996, p. 155).

Suppose we have two memory registers, for definiteness two tapes, 77 and
T, each considered as above to consist of a sequence of boxes each containing
one molecule, which can be either in the left half of the box (L), representing a
0, or the right half of the box (R), representing a 1. Suppose each tape is in the
same state (the same sequence of 0’s and 1’s) and we would like to reset each
tape to the zero state, which we take as a sequence of 0’s.

We can use the first tape to reset the second tape as follows: if the state of the
first box in 77 is 0, do nothing to the state of the first box in 75. If the state of
the first box in 77 is 1, insert a partition trapping the molecule in the right half
of the first box of T, and invert the box. Continue in this way for the other
boxes in the tape. We now have to reset the first tape.

It follows that the entropy cost of the reset operation for two identical tapes
is the same as the cost for one tape. (There is no more information in a tape
and a copy than in a single tape.) So the entropy cost of copying the first tape
(seeing that these operations are reversible) must be zero. In principle, then,
insofar as a measurement can simply be regarded as a copying operation, a
measurement process need not involve any entropy cost, that is, it can be done
without the expenditure of free energy.

Of course, there are measurement procedures—procedures for establishing
correlations between systems—that will involve dissipating entropy into the
environment, such as the optical procedure considered by Brillouin. But there
is no requirement in principle for a mechanical Maxwell’s demon that
incorporates an information processing device to use a light source to
distinguish the molecules.

For a I-molecule gas in a box, Bennett (1987) has proposed a mechanical
measurement apparatus designed to determine which half of the box the
molecule is trapped in without doing any work, hence with no entropy cost
(assuming frictionless forces and quasi-static motion). Earman and Norton
(1999, pp. 13—14) object that Bennett’s apparatus would be subject to the usual
fluctuation phenomena, since it is a mechanical device governed by
Hamiltonian mechanics and so must behave like a canonical thermal system.
These fluctuations would prevent the device from functioning as a measuring
instrument, for much the same reason that Smoluchowski’s trapdoor would
fail to function as a sorting device.

Now, Bennett proposed his apparatus as an idealised reversible measuring
device to illustrate the theoretical possibility of measuring and recording the
position of a molecule without bouncing light off the molecule, and without
involving any thermodynamically irreversible step. As a real apparatus, it
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would undoubtedly fail to work. But the argument that measurement does not
have to be thermodynamically costly can be made without exhibiting a
measuring instrument that does not dissipate any heat into the environment.
The essential point is simply that a measurement does nothing more than
establish a correlation, and so is equivalent to a copying operation.

4. Erasure

Consider Bennett’s entropy analysis of Szilard’s 1-molecule engine (Bennett,
1987). The apparatus consists of a box containing one molecule, with a
movable piston at both the left end and the right end. The box is in contact
with a heat reservoir, so that the 1-molecule gas can expand isothermally
against the pistons. The demon can insert a partition that separates the box
into two equal parts, left (L) and right (R). Initially, the demon’s
memory register is in a neutral or ready state, 0. The demon first inserts
the partition and then measures the location of the molecule, whether it is
in L or R.

The phase space of the 1-molecule gas can be partitioned into two equal
regions, L and R, and the phase space of the demon’s memory register can be
partitioned into three equal regions, corresponding to either 0, or registering L,
or registering R. This yields a partition into six equal regions for the phase
space of the combined system: (L, L), (L,0), (L, R), (R, L), (R,0), (R, R), where
the first element in each pair represents the state of the 1-molecule gas, and the
second element represents the state of the memory register.

Initially, the molecule can be anywhere in the box and the memory register is
set to 0, so the entropy of the combined system is log V' (in appropriate units),
where V" here is the volume of the phase space region (L, 0)uU (R, 0). We assume
that the insertion and removal of the partition does not involve friction and can
be done without any work. After the measurement (considered as a copying
operation that involves no entropy cost), the molecule can be either in L (in
which case the memory registers L) or in R (in which case the memory registers
R), so the entropy of the combined system is:

log[(L,L)U(R,R)] =log V. (5)

The demon now pushes the piston on the side that does not contain
the molecule towards the movable partition, and removes the partition
when the piston reaches it. This compression phase does not involve any
work, since the piston is pushed against nothing and we are assuming no
friction. The entropy of the combined system after the compression phase is
still log V.

Next, the molecule pushes against the piston in an isothermal expansion
phase, absorbing heat from the environment through the walls as it expands at
constant temperature until the piston is pushed back to its original position.
After the expansion, the molecule occupies the entire region of the box, and the
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memory registers either L or R, so the entropy of the combined system is:

log[(L, L)V (L,R)U (R, LYU(R,R)] =log2V
=logV +1, (6)

an entropy increase of 1 bit (taking base 2 logarithms). At the same time, the
entropy of the environment is decreased by 1 bit.

While the molecule in the box is now in its original state, somewhere in
LU R, the memory register is not at 0 but still registers L or R. To reset the
memory to 0 requires compressing the phase space of the memory register. We
might think of the memory register too as a 1-molecule gas, partitioned into
three regions, L, 0, and R. To erase the information in this system, the pointer-
molecule, which is in the region LU R, must be compressed to the region 0.
After this erasure or compression of the memory phase space, the entropy of
the combined system is:

log[(L,0)U(R,0)] =log V. (7)

By the second law, this entropy decrease of 1 bit in the system must be
accompanied by an entropy increase in the environment of 1 bit; that is, a
minimum entropy of 1 bit must be dissipated to the environment in resetting
the memory to 0.

Earman and Norton (1999, pp. 16—-17) argue that a computerised demon can
be programmed to operate a 1-molecule Szilard engine without the need to
erase information. They consider a memory register with two states instead of
three, labelled L and R. At the starting point of the programme, the memory
register is set to L. If the molecule is detected in the left half of the box, there is
no change in the memory register. If the molecule is detected in the right half,
the programme switches from the state L to R. Then, depending on the state
of the memory, one of two subroutines is executed. The L-subroutine
implements the appropriate compression-expansion sequence (partition
inserted, piston pushed in from the right, etc.) and ends by leaving the
memory in the state L. The R-subroutine functions similarly but ends by
resetting the memory to L. So after a complete cycle, the engine and demon are
returned to the initial state with an entropy reduction of 1 bit, in violation of
the second law. Neither subroutine involves erasure, because the resetting
operation—L to L or L to R—depends on the state of the memory register: it
does not involve compressing the phase space of the register.

But this is precisely the point: under the constraints imposed by Earman and
Norton, the demon has been reduced to an automatic mechanism analogous to
Smoluchowski’s spring-loaded trapdoor, and we already know that such a
device cannot work. As Landauer (1961; cited in Leff and Rex (1990, p. 189))
remarks:

This is not how a computer operates. In most instances, a computer pushes
information around in a manner that is independent of the exact data which are
being handled, and is only a function of the physical circuit connections.
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The question at issue is at what stage of the information acquisition or
information processing a computerised demon would fail as a perpetual
motion machine, if we assume that the system is a canonical thermal system
subject to the second law. The claim that information erasure, and not
information acquisition or information processing, involves a minimum
entropy cost depends on the observation that (i) measurement is essentially a
copying operation with no entropy cost in principle, (ii) reversible computation
is possible in principle, and (iii) erasure involves compressing the phase space
of the physical system that functions as a memory register, which requires
dumping heat into the environment.

A reset operation is logically irreversible, in the sense that the output does
not uniquely determine the input (the mapping is many-to-one). If information
is understood as physically embodied information, a logically irreversible
operation must be implemented by a physically irreversible device, which
dissipates heat into the environment. In (Landauer, 1961), Landauer considers
a sequence of n bits physically represented as an array of spins, initially all
aligned in the positive z-direction, a state he designates as ONE. As the spins
take up entropy from the environment, they become disoriented, so that each
spin can be aligned either in the positive or in the negative z-direction, with
equal probability. Since the array can be in any one of 2" states, the entropy
can increase by knlog2 (or n bits, in appropriate units) as the initial
information becomes thermalised. The reset operation RESTORE TO ONE is
the opposite of thermalisation: each bit is initially in one of two states and after
the reset operation it is in a definite state. Since the number of possible states
for each bit has been reduced by half, the entropy is reduced by k log 2 per bit.
The entropy of a closed system, such as a computer with its own batteries,
cannot decrease, so this entropy appears as heat dumped into the environment.

Landauer (1961; cited in Leff and Rex, 1990, p. 192) remarks:

Note that our argument here does not necessarily depend upon connections,
frequently made in other writings, between entropy and information. We simply
think of each bit as being located in a physical system, with perhaps a great many
degrees of freedom, in addition to the relevant one. However, for each possible
physical state which will be interpreted as a ZERO, there is a very similar possible
physical state in which the physical system represents a ONE. Hence a system
which is in a ONE state has only half as many physical states available to it as a
system which can be in a ONE or ZERO state.

If all the bits in the array are initially in the ONE state, the reset operation
RESTORE TO ONE involves no entropy change, and no heat dissipation,
since no operation is necessary. Similarly, if all the bits are initially in the
ZERO state, no entropy change is involved in resetting them all to the ONE
state (recall Feynman’s argument in Section 1). Landauer (1961; cited in Leff
and Rex, 1990, pp. 192-193) notes that the reset operation would be different
in these two cases:
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Note, however, that the reset operation which sufficed when the inputs were all
ONE (doing nothing) will not suffice when the inputs are all ZERO. When the
initial states are ZERO, and we wish to go to ONE, this is analogous to a phase
transition between two phases in equilibrium, and can, presumably, be done
reversibly and without an entropy increase in the universe, but only by a
procedure specifically designed for that task. We thus see that when the initial
states do not have their fullest possible diversity, the necessary entropy increase in
the RESET operation can be reduced, but only by taking advantage of our
knowledge about the inputs, and tailoring the reset operation accordingly.

Earman and Norton (1999, p. 16) cite these remarks by Landauer as
justification for the claim that, in their programme for a computerised demon
with no erasure, neither subroutine involves erasure. Each subroutine is
designed for a specific task: the L-subroutine ends by leaving the memory
register in the state L, the R-subroutine ends by switching the state of the
memory from R to L. This is of course correct. But their example only succeeds
in evading the issue: without a state-independent reset operation, their demon
is reduced to an automatically functioning switching device, and the question
raised by Szilard is not addressed.
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