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1. INTRODUCTION

Richard Feynman observed in the early 1980’s [Feynman 1®@&2ertain quantum me-
chanical effects cannot be simulated efficiently on a atasiomputer. This observation
led to speculation that perhaps computation in generabido@ldone more efficiently if it
made use of these quantum effects. But building quantum aoterg) computational ma-
chines that use such quantum effects, proved tricky, and an@ was sure how to use the
quantum effects to speed up computation, the field develsiogdy. It wasn’t until 1994,
when Peter Shor surprised the world by describing a polyabtinie quantum algorithm
for factoring integers [Shor 1994; Shor 1997], that the fafldjuantum computing came
into its own. This discovery prompted a flurry of activity,th@among experimentalists try-
ing to build quantum computers and theoreticians tryingrtd &ither quantum algorithms.
Additional interest in the subject has been created by thenition of quantum key distri-
bution and, more recently, popular press accounts of exgeral successes in quantun
teleportation and the demonstration of a three-bit quartoimputer.

The aim of this paper is to guide computer scientists andratbe-physicists through
the conceptual and notational barriers that separate gecamputing from conventional
computing and to acquaint them with this new and excitingifidt is important for the
computer science community to understand these new dewelus since they may radi-
cally change the way we have to think about computation, @@mging, and complexity.

Classically, the time it takes to do certain computatiomslmadecreased by using paral
lel processors. To achieve an exponential decrease in &queres an exponential increas
in the number of processors, and hence an exponential seieahe amount of physical
space needed. However, in quantum systems the amount diefisina increases expo-
nentially with the size of the system. Thus, an exponemi@dase in parallelism requires
only a linear increase in the amount of physical space neddwas effect is called quantum
parallelism [Deutsch and Jozsa 1992].

There is a catch, and a big catch at that. While a quantumraysa@ perform massive
parallel computation, access to the results of the comipuatét restricted. Accessing the
results is equivalent to making a measurement, which distthre quantum state. This
problem makes the situation, on the face of it, seem evenantbes the classical situation;
we can only read the result of one parallel thread, and beaaessurement is probabilis-
tic, we cannot even choose which one we get.

But in the past few years, various people have found clevgswéfinessing the mea-
surement problem to exploit the power of quantum paratteli$his sort of manipulation
has no classical analog, and requires non-traditionalrproming techniques. One tech:
nigue manipulates the quantum state so that a common pyagext of the output values
such as the symmetry or period of a function can be read offs fEthnique is used in
Shor’s factorization algorithm. Another technique tramsfs the quantum state to increas
the likelihood that output of interest will be read. Grogestarch algorithm makes use o
such an amplification technique. This paper describes guaparallelism in detail, and
the techniques currently known for harnessing its power.

Section 2, following this introduction, explains of the lmasoncepts of quantum me-
chanics that are important for quantum computation. Thitie cannot give a compre-
hensive view of quantum mechanics. Our aim is to provideghder with tools in the form
of mathematics and notation with which to work with the quemtmechanics involved in
guantum computation. We hope that this paper will equip eeadell enough that they
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can freely explore the theoretical realm of quantum conmguti

Section 3 defines the quantum bit, or qubit. Unlike clasdiit, a quantum bit can
be put in a superposition state that encodes lfioéimd 1. There is no good classica
explanation of superpositions: a quantum bit represertitiagd 1 can neither be viewed
as “between0) and1 nor can it be viewed as a hidden unknown state that represiinés
0 or 1 with a certain probability. Even single quantum bits enatleresting applications.
We describe the use of a single quantum bit for secure kexitaition.

But the real power of quantum computation derives from thmerntial state spaces o
multiple quantum bits: just as a single qubit can be in a qugmtion of0 and1, a register
of n qubits can be in a superposition of &It possible values. The “extra” states the
have no classical analog and lead to the exponential siteeafiantum state space are tr
entangled states, like the state leading to the famous BBRdox (see section 3.4).

We discuss the two types of operations a quantum system aargot measurement
and quantum state transformations. Most quantum algosithuolve a sequence of quan
tum state transformations followed by a measurement. Fasaal computers there ar
sets of gates that are universal in the sense that any adhssimputation can be per-
formed using a sequence of these gates. Similarly, therets®f primitive quantum state
transformations, called quantum gates, that are univessguantum computation. Given
enough quantum bits, it is possible to construct a univeggahtum Turing machine.

Quantum physics puts restrictions on the types of transitions that can be done. Ir
particular, all quantum state transformations, and tleeesdll quantum gates and all quar
tum computations, must be reversible. Yet all classicab@igms can be made reversible
and can be computed on a quantum computer in comparableSionee common quantum
gates are defined in section 4.

Two applications combining quantum gates and entanglégeksaaie described in sectior
4.2: teleportation and dense coding. Teleportation isrdmesfer of a quantum state from
one place to another through classical channels. Thatoesfon is possible is surprising
since quantum mechanics tells us that it is not possiblednecjuantum states or evel
measure them without disturbing the state. Thus, it is neioals what information could
be sent through classical channels that could possiblyleriad reconstruction of an un-
known quantum state at the other end. Dense coding, a dugkfottation, uses a single
guantum bit to transmit two bits of classical informationotB teleportation and dense
coding rely on the entangled states described in the EPRiexqa.

Itis only in section 5 that we see where an exponential spgeaaler classical computers
might come from. The input to a quantum computation can beirpat superposition
state that encodes all possible input values. Performiagctimputation on this initial
state will result in superposition of all of the correspargloutput values. Thus, in the
same time it takes to compute the output for a single inpt¢ €A a classical computer
a quantum computer can compute the values for all inputsstakhis process is known
as quantum parallelism. However, measuring the outpuestaiil randomly yield only
one of the values in the superposition, and at the same tisteogeall of the other results
of the computation. Section 5 describes this situation tailéSections 6 and 7 describe
techniques for taking advantage of quantum parallelismiief the severe constraints
imposed by quantum mechanics on what can be measured.

Section 6 describes the details of Shor’s polynomial tinstdidng algorithm. The fastest

LEPR = Einstein, Podolsky and Rosen
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known classical factoring algorithm requires exponerimé and it is generally believed
that there is no classical polynomial time factoring aljori. Shor’s is a beautiful al-
gorithm that takes advantage of quantum parallelism byguailguantum analog of the
Fourier transform.

Lov Grover developed a technique for searching an unstredtiist of n items in
O(4/n) steps on a quantum computer. Classical computers can dottes tt&nO(n),
so unstructured search on a quantum computer is provably efficient than search on &
classical computer. However, the speed-up is only polyagmot exponential, and it has
been shown that Grover’s algorithm is optimal for quantummpaters. It seems likely that
search algorithms that could take advantage of some pratiteicture could do better. Tac
Hogg, among others, has explored such possibilities. Werithesvarious quantum searct
techniques in section 7.

It is as yet unknown whether the power of quantum paralleiambe harnessed for ¢
wide variety of applications. One tantalizing open questioiwhether quantum computer:
can solve NP complete problems in polynomial time.

Perhaps the biggest open question is whether useful quasdmputers can be built.
There are a number of proposals for building quantum comguiging ion traps, nuclear
magnetic resonance (NMR), optical and solid state tectasigall of the current proposals
have scaling problems, so that a breakthrough will be netalgd beyond tens of qubits
to hundreds of qubits. While both optical and solid stat&tégues show promise, NMR
and ion trap technologies are the most advanced so far.

In anion trap quantum computer [Cirac and Zoller 1995; Sti996] a linear sequence
of ions representing the qubits are confined by electricdieldisers are directed at indi:
vidual ions to perform single bit quantum gates. Two-bitragiens are realized by using
a laser on one qubit to create an impulse that ripples thraugjtain of ions to the seconc
qubit where another laser pulse stops the rippling and padthe two-bit operation. The
approach requires that the ions be kept in extreme vacuurataaxdremely low tempera-
tures.

The NMR approach has the advantage that it will work at roompierature, and that
NMR technology in general is already fairly advanced. Theaids to use macroscopic
amounts of matter and encode a quantum bit in the averagstspéof a large number of
nuclei. The spin states can be manipulated by magnetic Beldshe average spin state ca
be measured with NMR techniques. The main problem with thlertiggue is that it doesn’t
scale well; the measured signal scalesl A" with the number of qubits. However,
a recent proposal [Schulman and Vazirani 1998] has been thatlenay overcome this
problem. NMR computers with three qubits have been builtsssfully [Cory et al. 1998;
Vandersypen et al. 1999; Gershenfeld and Chuang 1997; Laiaet al. 1997]. This
paper will not discuss further the physical and enginegpiradplems of building quantum
computers.

The greatest problem for building quantum computers is lkdex@nce, the distortion of
the quantum state due to interaction with the environment. sbme time it was feared
that quantum computers could not be built because it wouidpessible to isolate them
sufficiently from the external environment. The breaktlylogame from the algorithmic
rather than the physical side, through the invention of ¢urarerror correction techniques
Initially people thought quantum error correction mightitmpossible because of the im-
possibility of reliably copying unknown quantum statest ibturns out that it is possible
to design quantum error correcting codes that detect oettails of errors and enable the
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reconstruction of the exact error-free quantum state. @uaerror correction is discussec
in section 8.
Appendices provide background information on tensor petsiand continued fractions.

2. QUANTUM MECHANICS

Quantum mechanical phenomena are difficult to understara shost of our everyday
experiences are not applicable. This paper cannot proddepunderstanding of quantun
mechanics (see [Feynman et al. 1965; Liboff 1997; Greemsted Zajonc 1997] for
expositions of quantum mechanics). Instead, we will giveadeeling as to the nature
of quantum mechanics and some of the mathematical formsliseded to work with
guantum mechanics to the extent needed for quantum congputin

Quantum mechanics is a theory in the mathematical sensg:gitvierned by a set of
axioms. The consequences of the axioms describe the bels@gjoantum systems. The
axioms lead to several apparent paradoxes: in the Compieat &fappears as if an action
precedes its cause; the EPR experiment makes it appearc®if aver a distance fastel
than the speed of light is possible. We will discuss the ERgegrment in detail in section
3.4. Verification of most predictions is indirect, and regsgicareful experimental desigr
and specialized equipment. We will begin, however, withgregiment that requires only
readily available equipment and that will illustrate sonfegt® key aspects of quanturr
mechanics needed for quantum computation.

2.1 Photon Polarization

Photons are the only particles that we can directly obséFie. following simple experi-
ment can be performed with minimal equipment: a strong kglutrce, like a laser pointer,
and three polaroids (polarization filters) that can be piake at any camera supply store
The experiment demonstrates some of the principles of goantechanics through pho-
tons and their polarization.

2.1.1 The ExperimentA beam of light shines on a projection screen. Filtdrg3, and
C are polarized horizontally, d5°, and vertically, respectively, and can be placed so ac
intersect the beam of light.

First, insert filterA. Assuming the incoming light is randomly polarized, theeimgity
of the output will have half of the intensity of the incomiright. The outgoing photons
are now all horizontally polarized.

The function of filterA cannot be explained as a “sieve” that only lets those phqiass
that happen to be already horizontally polarized. If thatentbe case, few of the randomly
polarized incoming electrons would be horizontally paad, so we would expect a mucl
larger attenuation of the light as it passes through the.filte

Next, when filterC' is inserted the intensity of the output drops to zero. Nonthef
horizontally polarized photons can pass through the \arfilter. A sieve model could
explain this behavior.
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Finally, after filterB is inserted betweeA andC', a small amount of light will be visible
on the screen, exactly one eighth of the original amountbitli

Here we have a nonintuitive effect. Classical experienggssts that adding a filter shoulc
only be able to decrease the number of photons getting thrddgw can it increase it?

2.1.2 The Explanation A photon’s polarization state can be modelled by a unit vec
pointing in the appropriate direction. Any arbitrary patation can be expressed as
linear combinatior|T) 4 b|—) of the two basis vectof§—) (horizontal polarization) and
|T) (vertical polarization).

Since we are only interested in the direction of the poldiora(the notion of “magni-
tude” is not meaningful), the state vector will be a unit egct.e., |a|? + [b]> = 1. In
general, the polarization of a photon can be expressedijas- b|—) wherea andb are
complex numberssuch thata|? + |b|> = 1. Note, the choice of basis for this represent
tion is completely arbitrary: any two orthogonal unit vestwill do (e.g.{|~\.), | /" }).

The measurement postulate of quantum mechanics stateshdévice measuringa
dimensional system has an associated orthonormal bakisesjpect to which the quantun
measurement takes place. Measurement of a state transfioenssate into one of the
measuring device’s associated basis vectors. The prdpabdt the state is measured a
basis vectofu) is the square of the norm of the amplitude of the componerhbtiginal
state in the direction of the basis vecta). For example, given a device for measurin
the polarization of photons with associated bd$[3, |to)}, the state) = a|T) + b|—) is
measured af ) with probability|a|? and ag—) with probability|b|? (see Figure 1). Note
that different measuring devices with have different aisded basis, and measuremen
using these devices will have different outcomes. As memsents are always made wit
respect to an orthonormal basis, throughout the rest optper all bases will be assume
to be orthonormal.

Furthermore, measurement of the quantum state will chdregstate to the result of the
measurement. That is, if measurementof= a|T) + b|—) results in|T), then the state
¥ changes td1) and a second measurement with respect to the same basistwith|)
with probability 1. Thus, unless the original state happened to be one of thesgors,
measurement will change that state, and it is not possibiketermine what the original
state was.

2The notation—) is explained in section 2.2.
3Imaginary coefficients correspond to circular polarizatio
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Fig. 1. Measurement is a projection onto the basis

Quantum mechanics can explain the polarization experiragriollows. A polaroid
measures the quantum state of photons with respect to tiie dmassisting of the vector
corresponding to its polarization together with a vectdhogonal to its polarization. The
photons which, after being measured by the filter, match ttes’§i polarization are let
through. The others are reflected and now have a polarizagiggendicular to that of the
filter. For example, filterA measures the photon polarization with respect to the be
vector|—), corresponding to its polarization. The photons that passugh filter A all
have polarizatiofi—). Those that are reflected by the filter all have polarizaftjon

Assuming that the light source produces photons with rangolarization, filterA will
measure50% of all photons as horizontally polarized. These photons péks through
the filter and their state will bg—). Filter C' will measure these photons with respect |
[1). But the staté—) = 0|T) + 1|—) will be projected ontd?) with probability0 and no
photons will pass filte€'.

Finally, filter B measures the quantum state with respect to the basis

1 1
{ﬁm +1=)), ﬁm =)}
which we write as{| ), |\)}. Note that|—) = —Z=(].7) — |\)) and|1) = J5(|./) +
|\\)). Those photons that are measured &$ pass through the filter. Photons passir
throughA with state|—) will be measured by as|,”) with probability1/2 and s050%
of the photons passing throughwill pass throughB and be in staté ). As before, these
photons will be measured by filtér as|1) with probability1/2. Thus only one eighth of
the original photons manage to pass through the sequendesf i, B, andC.

2.2 State Spaces and Bra/Ket Notation

The state space of a quantum system, consisting of the grusitmomentums, polariza-
tions, spins, etc. of the various particles, is modelled bijllaert space of wave functions.
We will not look at the details of these wave functions. Foamum computing we need
only deal with finite quantum systems and it suffices to caarsithite dimensional com-
plex vector spaces with an inner product that are spannetsiyaat wave functions suct
as|—).

Quantum state spaces and the tranformations acting on taerecdescribed in terms
of vectors and matrices or in the more compact bra/ket ruotativented by Dirac [Dirac
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1958]. Kets like|z) denote column vectors and are typically used to describatqma
states. The matching bré&g|, denotes the conjugate transposdadf For example, the
orthonormal basig|0), [1)} can be expressed d$1,0)%, (0,1)7}. Any complex linear
combination ofl0) and|1), a|0) + b|1), can be writter{a, b)”". Note that the choice of the
order of the basis vectors is arbitrary. For example, regmésg|0) as(0,1)? and|1) as
(1,0)T would be fine as long as this is done consistently.

Combining(z| and|y) as in{z||y), also written agxz|y), denotes the inner product o
the two vectors. For instance, sin® is a unit vector we havéd|0) = 1 and since0)
and|1) are orthogonal we hav@|1) = 0.

The notationx)(y| is the outer product dfc) and(y|. For example|0)(1] is the trans-

formation that map#l) to |0) and|0) to (0,0)% since
0){1][1) = 10)(1[1) = |0)
0)110) = [0} 110) =010y = (

Equivalently,|0)(1] can be written in matrix form wher@) = (1,0)%, (0| = (1,0),
1) = (0,1)T, and(1]| = (0,1). Then

al=(g)on=(74)-

This notation gives us a convenient way of specifying trarmsftions on quantum state:
in terms of what happens to the basis vectors (see sectidgiodexample, the transforma:
tion that exchangel®) and|1) is given by the matrix

X = 10)(1[ + [1){0].
In this paper we will prefer the slightly more intuitive ntitan

X:00) — [1)
1) = 10)

that explicitly specifies the result of a transformation lo@ basis vectors.

3. QUANTUM BITS

A quantum bit, or qubit, is a unit vector in a two dimensionaimplex vector space for
which a particular basis, denoted b)), |1)}, has been fixed. The orthonormal basis
and|1) may correspond to th¢) and|—) polarizations of a photon respectively, or to th
polarizationg ) and|~\). Or |0) and|1) could correspond to the spin-up and spin-dow
states of an electron. When talking about qubits, and quactimputations in general, a
fixed basis with respect to which all statements are made é&s ¢hosen in advance. Ir
particular, unless otherwise specified, all measuremeiiitb&made with respect to the
standard basis for quantum computati§i9,, |1)}.

For the purposes of quantum computation, the basis dtatasd|1) are taken to repre-
sent the classical bit valu€sand1 respectively. Unlike classical bits however, qubits c:
be in a superposition ¢6) and|1) such as:|0) + b|1) wherea andb are complex numbers
such thata|? + |b|? = 1. Just as in the photon polarization case, if such a sup¢iposs
measured with respect to the ba§j8), |1)}, the probability that the measured valuéts
is |a|? and the probability that the measured valug jsis |b|%.
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Even though a quantum bit can be put in infinitely many supstiom states, it is only
possible to extract a single classical bit's worth of infation from a single quantum bit.
The reason that no more information can be gained from a tjudnit in a classical bit is
that information can only be obtained by measurement. Wheubé is measured, the
measurement changes the state to one of the basis stateswayhseen in the photon
polarization experiment. As every measurement can resattly one of two states, one of
the basis vectors associated to the given measuring deaicgist as in the classical case
there are only two possible results. As measurement chéingsgate, one cannot measur
the state of a qubit in two different bases. Furthermore,ashall see in the section 4.1.2
guantum states cannot be cloned so it is not possible to measjubit in two ways, even
indirectly by, say, copying the qubit and measuring the dopy different basis from the
original.

3.1 Quantum Key Distribution

Sequences of single qubits can be used to transmit privgted@insecure channels. Ir
1984 Bennett and Brassard described the first quantum kaibdison scheme [Bennett
and Brassard 1987; Bennett et al. 1992]. Classically, pltgy encryption techniques,
e.g. RSA, are used for key distribution.

Consider the situation in which Alice and Bob want to agre@a sacret key so that they
can communicate privately. They are connected by an onglbiatirectional open channel
and a uni-directional quantum channel both of which can lsented by Eve, who wishes
to eavesdrop on their conversation. This situation istifted in the figure below. The
guantum channel allows Alice to send individual particles( photons) to Bob who can
measure their quantum state. Eve can attempt to measurtathesthese particles anc
can resend the particles to Bob.

classical channel

guantum c}:\annel

To begin the process of establishing a secret key, Alicesarstquence of bits to Bok
by encoding each bit in the quantum state of a photon as felloor each bit, Alice
randomly uses one of the following two bases for encoding &itc

0 — 1)

1= =)
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0 — I\

Bob measures the state of the photons he receives by rangaskiyg either basis. After
the bits have been transmitted, Bob and Alice communicaebtsis they used for en-
coding and decoding of each bit over the open channel. Withitfiormation both can
determine which bits have been transmitted correctly, leytiflying those bits for which
the sending and receiving bases agree. They will use thesasthe key and discard al
the others. On average, Alice and Bob will agrees6ft, of all bits transmitted.

Suppose that Eve measures the state of the photons traagnjitAlice and resends new
photons with the measured state. In this process she withesgrong basis approximately
50% of the time, in which case she will resend the bit with the vgrdrasis. So when
Bob measures a resent qubit with the correct basis therd&vali25% probability that he
measures the wrong value. Thus any eavesdropper on theuguahtinnel is bound to
introduce a high error rate that Alice and Bob can detect byroanicating a sufficient
number of parity bits of their keys over the open channel. r&x,only is it likely that
Eve’s version of the key i185% incorrect, but the fact that someone is eavesdropping v
be apparent to Alice and Bob.

Other techniques for exploiting quantum effects for keyrdiation have been proposed
See, for example, Ekert [Ekert et al. 1992], Bennett [Benb@$2] and Lo and Chau [Lo
and Chau 1999]. But none of the quantum key distributionri@pkes are substitutes for
public key encryption schemes. Attacks by eavesdroppéer ahan the one describec
here are possible. Security against all such schemes axesded in both Mayers [Mayers
1998] and Lo and Chau [Lo and Chau 1999].

Quantum key distribution has been realized over a distahz4 km using standard fiber
optical cables [Hughes et al. 1997] and over 0.5 km througlatmosphere [Hughes et al
1999].

3.2 Multiple Qubits

Imagine a macroscopic physical object breaking apart anipteupieces flying off in
different directions. The state of this system can be diesdrcompletely by describing the
state of each of its component pieces separately. A sungrasid unintuitive aspect of the
state space of an particle quantum system is that the state of the system tahmays
be described in terms of the state of its component piecés.when examining systems
of more than one qubit that one first gets a glimpse of wheredheputational power of
guantum computers could come from.

As we saw, the state of a qubit can be represented by a vectioe itwvo dimensional
complex vector space spanned|By and|1). In classical physics, the possible states
a system ofn particles, whose individual states can be described by tovat a two
dimensional vector space, form a vector spaceroflimensions. However, in a quantun
system the resulting state space is much larger; a systemubits has a state spacef
dimensions!. It is this exponential growth of the state space with the neina particles
that suggests a possible exponential speed-up of computati quantum computers ove
classical computers.

4Actually, as we shall see, the state space is the set of n@edalectors in thi2” dimensional space, just as
the statez|0) + b|1) of a qubit is normalized so thét|2 + [b|? = 1.
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Individual state spaces afparticles combine classically through the cartesian pcodu
Quantum states, however, combine through the tensor profetails on properties of
tensor products and their expression in terms of vectorsraatdces is given in Appendix
A. Let us look briefly at distinctions between the cartesieadpct and the tensor product
that will be crucial to understanding quantum computation.

Let V and W be two 2-dimensional complex vector spaces with bgsesv,} and
{w1,wo} respectively. The cartesian product of these two spacetagerss its basis the
union of the bases of its component spaleas v2, wy, w2 }. Note that the order of the basis
was chosen arbitrarily. In particular, the dimension ofdtate space of multiple classica
particles grows linearly with the number of particles, sitim(X x Y) = dim(X) +
dim(Y"). The tensor product df andW has basigv; ® w1, v1 ® wa, va @ w1, vy ® wa }.
Note that the order of the basis, again, is arbittar§o the state space for two qubits
each with basi§|0), |1) }, has basig|0) @ |0), |0) ® |1), |1) ®|0), |1) ® |1)} which can be
written more compactly a§/00), |01), |10), |11)}. More generally, we writéx) to mean
|brbr—1...bo) whereb; are the binary digits of the number

A basis for a three qubit system is

{1000), 1001), [010), |011), [100), [101), [110), [111)}

and in general an qubit system ha&” basis vectors. We can now see the exponent
growth of the state space with the number of quantum pastidlbe tensor product R Y
has dimensiodim (X) x dim(Y).

The statd00) + |11) is an example of a quantum state that cannot be describeuhis te
of the state of each of its components (qubits) separatelgtHer words, we cannot find
a1, as, b1, by such thata|0) + b1|1)) ® (a2|0) + b2|1)) = |00) + |11) since

(a1\0> + b1|1>) X (a2|0> + b2‘1>) = a1a2|00> + a1b2\01> + b1a2\10> + b1b2‘11>

anda;b, = 0 implies that eitheni;as = 0 or b1b; = 0. States which cannot be decom
posed in this way are called entangled states. These stgisssent situations that have
no classical counterpart, and for which we have no intuitibimese are also the states the
provide the exponential growth of quantum state spacesthé@mumber of particles.
Note that it would require vast resources to simulate evemallgjuantum system on
traditional computers. The evolution of quantum systenexponentially faster than their
classical simulations. The reason for the potential poweguantum computers is the
possibility of exploiting the quantum state evolution a®aputational mechanism.

3.3 Measurement

The experiment in section 2.1.2 illustrates how measure¢wfensingle qubit projects the
guantum state on to one of the basis states associated withethsuring device. The resul
of a measurement is probabilistic and the process of measmtechanges the state to tha
measured.

Let us look at an example of measurementin a two qubit systemtwo qubit state can
be expressed ag00) +b|01)+¢|10) +d|11), whereqa, b, c andd are complex numbers such
that|a|? + [b|> + |c|? + |d|* = 1. Suppose we wish to measure the first qubit with respe

51t is only when we use matrix notation to describe state fransations that the order of basis vectors become
relevant.
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to the standard bas{g0), |1) }. For convenience we will rewrite the state as follows:
al00) + b|01) + ¢[10) + d|11)
= [0) ® (al0) +b[1)) + 1) ® (c[0) + d[1))
= u|0) ® (a/u|0) + b/ull)) +
v|1) ® (¢/v]0) + d/v|1)).

Foru = /|a|? + |b]? andv = +/|c|? + |d|? the vectorsy/u|0) + b/u|l) andc/v|0) +
d/v|1) are of unit length. Once the state has been rewritten as abewe tensor prod-
uct of the bit being measured and a second vector of unittertigé probabalistic result
of a measurement is easy to read off. Measurement of the ftratilbwith probabil-
ity u? = |a|? + |b]? return|0) projecting the state t¢0) ® (a/u|0) + b/u|1)) or with
probabilityv = |c|? + |d|? yield |1) projecting the state tpl) @ (c/v|0) + d/v|1)). As
|0) ® (a/ul0) + b/u|1)) and|1) ® (¢/v|0) 4+ d/v|1)) are both unit vectors, no scaling i
necessary. Measuring the second bit works similarly.

For the purposes of quantum computation, multi-bit measerg can be treated as
series of single-bit measurements in the standard baskser ®orts of measurements ar
possible, like measuring whether two qubits have the sarheewaithout learning the
actual value of the two qubits. But such measurements arigadent to unitary transfor-
mations followed by a standard measurement of individubitguand so it suffices to look
only at standard measurements.

In the two qubit example, the state space is a cartesian pro€ithe subspace consisting
of all states whose first qubit is in the stétié and the orthogonal subspace of states whc
first qubit is in the staté¢l). Any quantum state can be written as the sum of two vectc
one in each of the subspaces. A measurement @dibits in the standard basis h2ls
possible outcomes;. Any device measuring qubits of ann-qubit system splits of the
2"-dimensional state spaée¢into a cartesian product of orthogonal subspéties. . , Sox
with H = S5 x ... x Sax, such that the value of the qubits being measured is; and
the state after measurement is in space the spader somei. The device randomly
chooses one of th&;’s with probability the square of the amplitude of the comgoinof
1 in S;, and projects the state into that component, scaling tolgivgth1. Equivalently,
the probability that the result of the measurement is a gigdue is the sum of the square
of the the absolute values of the amplitudes of all basisove@ompatible with that value
of the measurement.

Measurement gives another way of thinking about entangdeticies. Particles are not
entangled if the measurement of one has no effect on the. oBwrinstance, the state
M%(|OO> + |11)) is entangled since the probability that the first bit is meaduo be|0)
is 1/2 if the second bit has not been measured. However, if the gebitrhad been
measured, the probability that the first bit is measureld)ais eitherl or 0, depending on
whether the second bit was measured0aor |1) respectively. Thus the probable resu
of measuring the first bit is changed by a measurement of thenskebit. On the other
hand, the stat%(\00> + 101)) is not entangled: sinc%(\00> +101)) = [0) ® %(\m +
[1)), any measurement of the first bit will yie|d) regardless of whether the second b
was measured. Similarly, the second bit has a fifty-fifty ceaof being measured &%)
regardless of whether the first bit was measured or not. Nwedantanglement, in the
sense that measurement of one particle has an effect on rapssuts of another particle,
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is equivalent to our previous definition of entangled stafestates that cannot be writte
as a tensor product of individual states.

3.4 The EPR Paradox

Einstein, Podolsky and Rosen proposed a gedanken expétinamuses entangled parti-
cles in a manner that seemed to violate fundamental prieiglativity. Imagine a source
that generates two maximally entangled particﬂ%OO) + \/L§|11>, called an EPR pair,
and sends one each to Alice and Bob.

EPR
source Bob

Alice and Bob can be arbitrarily far apart. Suppose thaté\ieeasures her particle an
observes stat®). This means that the combined state will now|6@& and if now Bob
measures his particle he will also obsej¥e Similarly, if Alice measuresl), so will Bob.
Note that the change of the combined quantum state occushtaseously even thougt
the two particles may be arbitrarily far apart. It appeas this would enable Alice and
Bob to communicate faster than the speed of light. Furthalyais, as we shall see, show
that even though there is a coupling between the two pastithere is no way for Alice or
Bob to use this mechanism to communicate.

There are two standard ways that people use to describegteestates and their mea
surement. Both have their positive aspects, but both amriect and can lead to misun:
derstandings. Let us examine both in turn.

Einstein, Podolsky and Rosen proposed that each particlsdrae internal state tha
completely determines what the result of any given measemémill be. This state is,
for the moment, hidden from us, and therefore the best we gaemntly do is to give
probabilistic predictions. Such a theory is known as a Itiddlen variable theory. The
simplest hidden variable theory for an EPR pair is that theiglas are either both in
state|0) or both in statg1), we just don’t happen to know which. In such a theory r
communication between possibly distant particles is rsargsto explain the correlated
measurements. However, this point of view cannot explaénrésults of measurement
with respect to a different basis. In fact, Bell showed that l@cal hidden variable theory
predicts that certain measurements will satisfy an inetyy&hown as Bell's inequality.
However, the result of actual experiments performing timesasurements show that Bell.
inequality is violated. Thus quantum mechanics cannot Ipdaged by any local hidden
variable theory. See [Greenstein and Zajonc 1997] for alyigfadable account of Bell's
theorem and related experiments.

The second standard description is in terms of cause anct.effer example, we said
earlier that a measurement performed by Alice affects a ureament performed by Bob.
However, this view is incorrect also, and results, as Einsteodolsky and Rosen recog
nized, in deep inconsistencies when combined with retgtihieory. It is possible to set
up the EPR scenario so that one observer sees Alice meastireéhéin Bob, while another
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observer sees Bob measure first, then Alice. According &tivél, physics must equally
well explain the observations of the first observer as thersg&cWhile our terminology of
cause and effect cannot be compatible with both observersdtual experimental values
are invariant under change of observer. The experimergaltsecan be explained equally
well by Bob’s measuring first and causing a change in the stafdice’s particle, as the
other way around. This symmetry shows that Alice and Bob cgnimfact, use their EPR
pair to communicate faster than the speed of light, and thsilves the apparent paradox
All that can be said is that Alice and Bob will observe the saarelom behavior.

As we will see in the section on dense coding and teleportai®R pairs can be used
to aid communication, albeit communication slower thangbeed of light.

4. QUANTUM GATES

So far we have looked at static quantum systems which chamgeuhen measured. The
dynamics of a quantum system, when not being measured, aeergal by Schrodinger’s
equation; the dynamics must take states to states in a wayptbserves orthogonality.
For a complex vector space, linear transformations thatgpve orthogonality are unitary
transformations, defined as follows. Any linear transfaioraon a complex vector space
can be described by a matrix. L&f* denote the conjugate transpose of the matiix
A matrix M is unitary (describes a unitary transformation)ifA/* = I. Any unitary
transformation of a quantum state space is a legitimatetgqoatransformation, and vice
versa. One can think of unitary transformations as beingtimis of a complex vector
space.

One important consequence of the fact that quantum tramstions are unitary is that
they are reversible. Thus quantum gates must be rever&iblmett, Fredkin, and Toffoli
had already looked at reversible versions of standard ctingppmodels showing that all
classical computations can be done reversibly. See Feyarectures on Computation
[Feynman 1996] for an account of reversible computationiemictlation to the energy of
computation and information.

4.1 Simple Quantum Gates

The following are some examples of useful single-qubit quisnstate transformations.
Because of linearity, the transformations are fully spedifby their effect on the basis
vectors. The associated matrix, witld), |1) } as the preferred ordered basis, is also show

I:]0) — [0) 10
1) — [1) (0 1)
X0y — |1) 0 1>
1) — [0) 10
Yi|o) » —[1) /0 1
1) — ]0) -10
Z:|0) — |0) 10
1) — —[1) \ 0 —1

The names of these transformations are conventidniasl the identity transformationy
is negation// is a phase shift operation, and = Z X is a combination of both. Th&
transformation was discussed previously in section 2 @antbe readily verified that these
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gates are unitary. For example

. 0 -1 01
Yy _(1 . )(_1 0>—I.

The controlledNoT gate,C),.t, Operates on two qubits as follows: it changes the secc
bit if the first bit is 1 and leaves this bit unchanged otherwise. The vedtiirs |01),
|10), and|11) form an orthonormal basis for the state space of a two-qybtes, ad-
dimensional complex vector space. In order to represenstoamations of this space in
matrix notation we need to choose an isomorphism betwesrspiace and the space ¢
complex four tuples. There is no reason, other than corwentd pick one isomorphism
over another. The one we use here assocjatgs|01), |10), and|11) to the standard 4-
tuple basig1,0,0,0)7, (0,1,0,0)7, (0,0,1,0)T and(0,0,0, 1), in that order. The,,;
transformation has representations

Chot : [00) — [00) /1000
jo1) — j0o1) [0100
110) — |11) (0001
I11) — |10) \ 00 10

The transformatioit,,.; is unitary sinceC , = Chor andC,0:Cror = I. TheC,y,,: gate
cannot be decomposed into a tensor product of two singlganisformations.

Itis useful to have graphical representations of quantame $tansformations, especially
when several transformations are combined. The controlledgateC,,.; is typically

represented by a circuit of the form

The open circle indicates the control bit, and thendicates the conditional negation of the
subject bit. In general there can be multiple control bitsm® authors use a solid circle tc
indicate negative control, in which the subject bit is tagbWwhen the control bit i8.

Similarly, the controlled-controlledtoT, which negates the last bit of three if and onl
if the first two are both, has the following graphical representation.

Single bit operations are graphically represented by apiately labelled boxes as
shown.
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4.1.1 The Walsh-Hadamard TransformatioAnother important single-bit transforma.
tion is the Hadamard Transformation defined by

H: 10) (10) +11))
1) (10) = 1))

The transformatiol has a number of important applications. When applieldtpH
creates a superposition stat%(\m +|1)). Applied ton bits individually, H generates a
superposition of alk™ possible states, which can be viewed as the binary repeggEmof
the numbers frord to 2" — 1.

—
—

S-S

(HoH®...® H)|00...0)
= L((|0>+|1>)®(\0>+|1>)<§<>---®(\0>+\1>))

Voo
1 2n 1

- LY
2 z=0

The transformation that applié$ to n bits is called the Walsh, or Walsh-Hadamard, tran
formationW. It can be defined as a recursive decomposition of the form

Wy =H W,11 =HW,.

4.1.2 No Cloning. The unitary property implies that quantum states cannobpéed or
cloned. The no cloning proof given here, originally due todt¥ers and Zurek [Wootters
and Zurek 1982], is a simple application of the linearity pitary transformations.

Assume thaU is a unitary transformation that clones, in ttiaf|a0)) = |aa) for all
quantum statels). Let|a) and|b) be two orthogonal quantum states. $&ya0)) = |aa)
andU (|b0)) = |bb). Considefic) = (1/v/2)(|a) + |b)). By linearity,

U(|c0)) = -5 (U(la0)) + U(|60)))
L (|aa) + [bb)).

But if U is a cloning transformation then

1
V2

U(|c0)) = |ce) = 1/2(|aa) + |ab) + |ba) + |bb)),

which is not equal tq1/v/2)(Jaa) + |bb)). Thus there is no unitary operation that ca
reliably clone unknown quantum states. It is clear thaticigris not possible by using
measurement since measurement is both probabalistic strdictéve of states not in the
measuring device’s associated subspaces.

It is important to understand what sort of cloning is andtistiowed. It is possible to
clone a known quantum state. What the no cloning principle s is that it is impossible
to reliably clone an unknown quantum state. Also, it is passto obtainn particles
in an entangled statg/00...0) + b|11...1) from an unknown state|0) + b|1). Each
of these particles will behave in exactly the same way wheasmed with respect to
the standard basis for quantum computafi)® . .. 0), |00...01),...,|11...1)}, butnot
when measured with respect to other bases. It is not pogsibleate the: particle state
(al0) + b]1)) ® ... ® (a|0) 4 b|1)) from an unknown state|0) + b|1).
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4.2 Examples

The use of simple quantum gates can be studied with two siexamples: dense coding
and teleportation.

Dense coding uses one quantum bit together with an EPR paitdode and transmit
two classical bits. Since EPR pairs can be distributed abEtiahe, only one qubit (parti-
cle) needs to be physically transmitted to communicate fitgodh information. This result
is surprising since, as was discussed in section 3, onlylassical bit's worth of informa-
tion can be extracted from a qubit. Teleportation is the gfipaf dense coding, in that
it uses two classical bits to transmit a single qubit. Tetegi@mn is surprising in light of
the no cloning principle of quantum mechanics, in that ittdes the transmission of an
unknown quantum state.

The key to both dense coding and teleportation is the usetahgted particles. The
initial set up is the same for both processes. Alice and Bahwi communicate. Each is
sent one of the entangled particles making up an EPR pair,

1
V2
Say Alice is sent the first particle, and Bob the second. Sib aipiarticle is transmit-

ted, only Alice can perform transformations on her partielad only Bob can perform
transformations on his.

4.2.1 Dense Coding

o (100) +[11)).

Encoder f-------chbo-iiiiiiioooioiboooo Decoder

Y

EPR
source

Alice. Alice receives two classical bits, encoding the numioetsrough3. Depending
on this number Alice performs one of the transformati¢hsX, Y, Z} on her qubit of the
entangled pairyy. Transforming just one bit of an entangled pair means pavifog the
identity transformation on the other bit. The resultingesia shown in the table.

Value Transformation New state
0 o= oD 5(I00) + [11))
1 ¢r=(X®I)to —5(/10) +101))
2 = (Y @Iy - (~[10) + [01))
3 Ws=(ZeDy 5(|00) - [11))

Alice then sends her qubit to Bob.

Bob. Bob applies a controlledtoT to the two qubits of the entangled pair.
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Initial state ControlledNoT First bit Second bit
o = 75(100) +111))  —=(|00) +[10))  —5([0) + 1)) |0)
U1 = 25(110) +01))  5(|11) +[01)) ;}=(\1>-%\0>) 1)
2 = Z5(=[10) +[01)) —=(=[11) +[01)) —=(=[1)+10))  [1)
s = 5(100) = [11))  5(/00) = [10))  —Z5(0) — [1)) |0)

Note that Bob can now measure the second qubit without distgithe quantum state.
If the measurement returt® then the encoded value was either 3, if the measurement
returns|1) then the encoded value was eitheor 2.

Bob now applied to the first bit:

Initial state First bit H (First bit)
Po SO+ S0+ 1)+ S0y — 1)) = [0)
v S0 +10) S (5(0) = 1)+ 5(0) + 1)) = o)
Gr (=) H10) 5 (= d5(0) — 1) + 5 (10) + 1)) = 1)
vs S(0)—[1)  S((0) + 1) - (o) - 1) = 1)

Finally, Bob measures the resulting bit which allows him istidguish betweef and
3, andl and2.

4.2.2 Teleportation. The objective is to transmit the quantum state of a partisiagu
classical bits and reconstruct the exact quantum state aetieiver. Since quantum stat
cannot be copied, the quantum state of the given particleedessarily be destroyed. Sin

gle bit teleportation has been realized experimentallyujfBmeester et al. 1997; Nielser
et al. 1998; Boschi et al. 1998].

Decoder Encoder

A

7

source
Alice. Alice has a qubit whose state she doesn’t know. She wantsitbtke state of ths
qubit
¢ = al0) + b[1)

to Bob through classical channels. As with dense coding:eAdind Bob each possess or
qubit of an entangled pair

Yo = 7(I00> +[11)).
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Alice applies the decoding step of dense coding to the gutgtbe transmitted and her
half of the entangled pair. The starting state is quantute sta

1
PRYy = %<a\o> ® (/00) 4 [11)) 4 b[1) @ (|00) + [11)))

%(a\OOO) + a|011) + b[100) + b[111}),

of which Alice controls the first two bits and Bob controls tast one. Alice now applies
Chot ® I andH ® I ® I to this state:

(H@I@I)(Cnot ®I)(¢®¢O)

1
= (HRIRI)(Chot ® I)ﬁ(amOO) + al011) + b[100) + b|111))
1
= (H®I®I)%(a|000> + al011) + b[110) + b|101))
= %(a(\OOO) +|011) 4 |100) + [111)) + b(|010) + [001) — [110) — [101)))
= %(\00>(a\0> +b[1)) + [01)(al1) +b]0)) + [10)(al0) — b]1)) +[11)(al1) — 0]0)))

Alice measures the first two qubits to get ond(@f), |01), |10), or |11) with equal prob-
ability. Depending on the result of the measurement, thetyua state of Bob'’s qubit is
projected taz|0) + b|1), a|1) + b]0), a|0) — b|1), ora|l) — b|0) respectively. Alice sends
the result of her measurement as two classical bits to Bob.

Note that when she measured it, Alice irretrievably altdhedstate of her original qubit
¢, whose state she is in the process of sending to Bob. Thi®fdks original state is the
reason teleportation does not violate the no cloning ppieci

Bob. When Bob receives the two classical bits from Alice he knows the state of his
half of the entangled pair compares to the original statelw’ qubit.

bits received state decoding

00  alo)+bjl) I

01 all) +5/0) X

10 al0)y —bl1)  Z
)

11 al)—bj0) Y

Bob can reconstruct the original state of Alice’s qubit,by applying the appropriate
decoding transformation to his part of the entangled paoteNhat this is the encoding
step of dense coding.

5. QUANTUM COMPUTERS

This section discusses how quantum mechanics can be useddoonp computations and
how these computations are qualitatively different frowséaperformed by a conventiona
computer. Recall from section 4 that all quantum state foangtions have to be re-
versible. While the classicaloT gate is reversibleAND, OR and NAND gates are not.

Thus it is not obvious that quantum transformations canycaut all classical computa-
tions. The first subsection describes complete sets ofsilegates that can perform any
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classical computation on a quantum computer. Furthernitatescribes sets of gates witt
which all quantum computations can be done. The second &lidrseliscusses quanturr
parallelism.

5.1 Quantum Gate Arrays

The bra/ket notation is useful in defining complex unitargi@tions. For two arbitrary
unitary transformation&; andUs,, the “conditional” transformatiof0) (0| @ U; +|1){1| ®
U, is also unitary. The controlledoT gate can defined by

Cnot = ‘0><0| I+ |1><1‘ ® X.

The three-bit controlled-controlledoT gate or Toffoli gate of section 4 is also an in
stance of this conditional definition:

T=1000®I®I+]|1){(1]® Cpnot-

The Toffoli gateT' can be used to construct complete set of boolean connectisesan
be seen from the fact that it can be used to construcAiN® andNOT operators in the
following way:

T‘1717z> = ‘1717_\x>
T|z,y,0) = |z,y,2 Ay)

TheT gate is sufficient to construct arbitrary combinatoriatuits.
The following quantum circuit, for example, implements aitifll adder using Toffoli
and controlledNoOT gates:

©) le)
|z) |)
y) y)
|0) |s)
10) <)

wherex andy are the data bits; is their sum (modul@), ¢ is the incoming carry bit, and
¢’ is the new carry bit. Vledral, Barenco and Ekert [Vedral e1886] define more complex
circuits that include in-place addition and modular aduiti

The Fredkin gate is a “controlled swap” and can be defined as

F=0)(0|@Il+1){1xS
whereS is the swap operation
S = [00)(00] + |01)(10] 4 [10)(01] + [11)(11].

The reader can verify thdf, like T', is complete for combinatorial circuits.
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Deutsch has shown [Deutsch 1985] that it is possible to cectsteversible quantum
gates for any classically computable function. In fact possible to conceive of a univer-
sal quantum Turing machine [Bernstein and Vazirani 1997thls construction we must
assume a sufficient supply of bits that correspond to theddpé&uring machine.

Knowing that an arbitrary classical functigrwith m input andk output bits can be im-
plemented on quantum computer, we assume the existenapiahaum gatearray/; that
implementsf. Uy is am + k bit transformation of the fornb/y : |z,y) — |z,y & f(x))
whered denotes the bitwise exclusiver®. Quantum gate arrays;, defined in this way,
are unitary for any functiorf. To computef(x) we applyU; to |x) tensored withk
zores|z,0). Sincef(z) @ f(x) = 0 we haveU;U,; = I. Graphically the transformation
Uy : |z, y) — |z, y & f(x)) is depicted as

|r) — — [7)

ly) — — |y @ f(z)).

While theT andF' gates are complete for combinatorial circuits, they caaobieve ar-
bitrary quantum state transformations. In order to reaibétrary unitary transformatiofs
single bit rotations need to be included. Barenco et. al.rdBeo et al. 1995] show that
Chot together with all 1-bit quantum gates is a universal gatelsstiffices to include the
following one-bit transformations

cosa  Sina e 0
—sino cosa )7\ 0 ei@
forall 0 < o < 27 together with the”,,,; to obtain a universal set of gates. As we sha

see, such non-classical transformations are crucial fploéing the power of quantum
computers.

5.2 Quantum Parallelism

What happens it/; is applied to input which is in a superposition? The answesisy
but powerful: sincd/; is a linear transformation, it is applied to all basis vestor the
superposition simultaneously and will generate a supérpp®f the results. In this way,
it is possible to computg(x) for n values ofx in a single application of/ ;. This effectis
called quantum parallelism.

The power of quantum algorithms comes from taking advantégaantum parallelism
and entanglement. So most quantum algorithms begin by ctmgpaifunction of interest
on a superposition of all values as follows. Start withnaqubit statd00 . . . 0). Apply the

8@ is not the direct sum of vectors.
"More precisely, we mean arbitrary unitary transformatiopgo a constant phase factor. A constant phase sh
of the state has no physical, and therefore no computafisiadificance.



22 . E. Rieffel and W. Polak

Walsh-Hadamard transformatid¥i of section 4.1.1 to get a superposition

2" -1
1

W(\oo...(»+\00...1>+...+\11.. \/Q_HZ\

which should be viewed as the superposition of all integers « < 2". Add ak-bit
register|0) then by linearity

= 2m—1
Uy ( > z,0) = Z Uy(|z,0))
\/2_71 =0 2n
2n—1

wheref (x) is the function of interest. Note that sinegubits enable working simultane-
ously with2™ states, quantum parallelism circumvents the time/spade1off of classical
parallelism through its ability to provide an exponentiaaunt of computational space ir
a linear amount of physical space.

Consider the trivial example of a controlled-controlledT (Toffoli) gate, 7", that com-
putes the conjunction of two values:

|z) ——o— |)
ly) —o— y)
0) —>— [z Ay)

Now take as input a superposition of all possible bit comtiims of z andy together
with the necessary:

1
(10) + 1) E(\@ +1) ®]0)

(1000) 4 |010) + [100) + |110)).

H|0) ® H|0) ® |0) =

Sl

N =

Apply T to the superposition of inputs to get a superposition of ésalts, namely
1
T(H|0) ® H|0) ®[0)) = §(|OOO> +]010) 4 |100) + |111)).

The resulting superposition can be viewed as a truth talsléhi conjunction, or more
generally as the graph of a function. In the output the vahfes, y, andz A y are
entangled in such a way that measuring the result will give lore of the truth table, or
more generally one point of graph of the function. Note that bits can be measurec
in any order: measuring the result will project the state smperposition of the set of all
input values for whicly produces this result and measuring the input will projeetrésult
to the corresponding function value.
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Measuring at this point gives no advantage over classicallpism as only one result
is obtained, and worse still one cannot even choice whichlrese gets. The heart of
any quantum algorithm is the way in which it manipulates dquanparallelism so that
desired results will be measured with high probability. sTeért of manipulation has no
classical analog, and requires non-traditional programyrtéchniques. We list a couple o
the techniques currently known.

—Amplify output values of interest. The general idea is &amsform the state in such a wa
that values of interest have a larger amplitude and thezdfave a higher probability of
being measured. Examples of this approach will be descitbselction 7.

—Find common properties of all the values ffx). This idea is exploited in Shor’s
algorithm which uses a quantum Fourier transformation taiakihe period off.

6. SHOR'S ALGORITHM

In 1994, inspired by work of Daniel Simon (later published®imon 1997]), Peter Shor
found a bounded probability polynomial time algorithm facforingn-digit numbers on
a quantum computer. Since the 1970’s people have searcheffiteent algorithms for
factoring integers. The most efficient classical algorittmown today is that of Lenstra anc
Lenstra [Lenstra and Lenstra 1993] which is exponentidiésize of the input. The input
is the list of digits of M, which has sizex ~ log M. People were confident enough the
no efficient algorithm existed, that the security of cryptgghic systems, like the widely
used RSA algorithm, depend on the difficulty of this proble®hor’s result surprised the
community at large, prompting widespread interest in quiantomputing.

Most factoring algorithms, including Shor’s, use a stadd&duction of the factoring
problem to the problem of finding the period of a function. Shges quantum parallelisi
in the standard way to obtain a superposition of all the \&hi¢he function in one step. He
then computes the quantum Fourier transform of the fungtidnich like classical Fourier
transforms, puts all the amplitude of the function into ripléts of the reciprocal of the
period. With high probability, measuring the state yields period, which in turn is used
to factor the integef/.

The above description captures the essence of the quanganitiah, but is something
of an oversimplification. The biggest complication is theg guantum Fourier transformis
based on the fast Fourier transform and thus gives only appete results in most cases
Thus extracting the period is trickier than outlined abdng,the techniques for extracting
the period are classical.

We will first describe the quantum Fourier transform and thiee a detailed outline of
Shor’s algorithm.

6.1 The Quantum Fourier Transform

Fourier transforms in general map from the time domain toftaquency domain. So
Fourier transforms map functions of periotb functions which have non-zero values onl
at multiples of the frequenc%rﬁ. Discrete Fourier transform (DFT) operates/@requally
spaced samples in the intery@l 27r) for someN and outputs a function whose domain i
the integers betwednand N —1. The discrete Fourier transform of a (sampled) function
periodr is a function concentrated near muItipIes%f If the periodr divides N evenly,
the result is a function that has non-zero values only atipies of % Otherwise, the
result will approximate this behavior, and there will be rraT0 terms at integers close t
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multiples of .

The Fast Fourier transform (FFT) is a version of DFT wharés a power of 2. The
guantum Fourier transform (QFT) is a variant of the discFeterier transform which, like
FFT, uses powers of 2. The quantum Fourier transform opeoatéhe amplitude of the
guantum state, by sending

Y 9@)lz) = Y Gle)le)

whereG(c) is the discrete Fourier transform ¢fx), andx andc both range over the
binary representations for the integers betweemd N — 1. If the state were measurec
after the Fourier transform was performed, the probaltitigt the result wag:) would be
|G(c)|?. Note that the quantum Fourier transform does not outpuhation the way the
Uy transformation does; no output appears in an extra register

Applying the quantum Fourier transform to a periodic fuantj(x) with periodr, we
would expect to end up with~_ G(c)|c), whereG(c) is zero except at multiples oF.
Thus, when the state is measured, the result would be a teuttfip”, say;<. But as
described above, the quantum Fourier transform only gigpsximate results for periods
which are not a power of two, i.e. do not dividé. However the larger the power of
two used as a base for the transform, the better the approgmahe quantum Fourier
transformUg pr with baseN = 2™ is defined by

1 2t 2mice
U ) - — e 2"
QFT : |T) N ;

In order for Shor’s algorithm to be a polynomial algorithine tyuantum Fourier trans-
form must be efficiently computable. Shor shows that the twmar-ourier transform with
base2™ can be constructed using onw gates. The construction makes use of tw
types of gates. One is a gate to perform the familiar Hadatnangformation. We will
denote byH; the Hadamard transformation applied to fttle bit. The other type of gate
performs two-bit transformations of the form

c).

100 0
010 0
Sik=1001 o0
000 ety

wheref,_; = 7 /287, This transformation acts on tith and;th bits of a larger register.
The quantum Fourier transform is given by

HySo1...80m-1H1 ... Hp—3Sm—3,m—25m—3m—1Hm—25m—2.m—1Hm—1
followed by a bit reversal transformation. If FFT is follod/by measurement, as in Shor’
algorithm, the bit reversal can be performed classicakye [Shor 1997] for more details.
6.2 A Detailed Outline of Shor’s algorithm

The detailed steps of Shor’s algorithm are illustrated withunning example where we
factor M = 21.

Step 1. Quantum parallelismChoose an integerarbitrarily. If a is not relatively prime
to M, we have found a factor af/. Otherwise apply the rest of the algorithm.
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Letm be such thafl/? < 2™ < 2M?2. [This choice is made so that the approximatio
used in Step 3 for functions whose period is not a powerwfll be good enough for the
rest of the algorithm to work.] Use quantum parallelism ascdbed in 5.2 to compute
f(z) = a® modM for all integers fromD to 2™ — 1. The function is thus encoded in the
quantum state

\:L’ flz (1)

Example.Suppose: = 11 were randomly chosen. Sindg? = 441 < 29 < 882 =
2M? we findm = 9. Thus, a total ofi4 quantum bits9 for x and5 for f(z) are required
to compute the superposition of equation 1.

Step 2. A state whose amplitude has the same perigd ahe quantum Fourier trans-
form acts on the amplitude function associated with the tirgtate. In order to use the
quantum Fourier transform to obtain the periodfofa state is constructed whose ampli
tude function has the same periodfas

To construct such a state, measure the[lagt, M ] qubits of the state of equation 1 tha
encodef (x). Arandom value: is obtained. The value is not of interest in itself; only the
effect the measurement has on our set of superpositiondrigenést. This measurement
projects the state space onto the subspace compatiblensithéasured value, so the stat
after measurementis

CZg )|z, u)

for some scale factar’' where

_J1if f(z)=u
9(x) = { 0 otherwise.
Note that ther’s that actually appear in the sum, those wjitx:) # 0, differ from each
other by multiples of the period, thysx) is the function we are looking for. If we could

measure two successiys in the sum, we would have the period. Unfortunately theslav
of quantum physics permit only one measurement.

Example.Suppose that random measurement of the superposition atiequl pro-
duces8. The state after this measurente(igure 2) clearly shows the periodicity of
!

Step 3. Applying a quantum Fourier transforfihe|u) part of the state will not be used,
so we will no longer write it. Apply the quantum Fourier tréosn to the state obtained in

Step 2.
Ugrr : > g(x)lz) = Y G(o)le

Standard Fourier analysis tells us that when the periotthe functiong(z) defined in
Step 2 is a power of two, the result of the quantum Fouriesfiam is

Seilito),
J

80nly the9 bits of = are shown in Figure 2; the bits ¢f{) are known from the measurement.
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0.0084+ F
0.00724 F

0.006+ F
0.0048 F
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0.0

0 64 128 192 256 320 384 448 512

Fig. 2. Probabilities for measuring when measuring the staté ZwEX |z, 8) obtained in Step 2, where
X = {z|211* mod21 = 8}}
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0 64 128 192 256 320 384 448 512

Fig. 3. Probability distribution of the quantum state affeurier Transformation.

where the amplitude i8 except at multiples o™ /r. When the period does not divide
2™, the transform approximates the exact case so most of thétadepis attached to
integers close to multiples éf—

Example.Figure 3 shows the result of applying the quantum Fourien§ficrm to the
state obtained in Step 2. Note that Figure 3 is the graph dastd-ourier transform of the
function shown in Figure 2. In this particular example thegeof f does not divide™.

Step 4. Extracting the periodVieasure the state in the standard basis for quantum c
putation, and call the resuit In the case where the period happens to be a pow2y o
so that the quantum Fourier transform gives exactly masigf2™ /r, the period is easy
to extract. In this case; = 7% for somej. Most of the timej andr will be relatively
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prime, in which case reducing the fractigh (= %) to its lowest terms will yield a frac-
tion whose denominatar is the periodr. The fact that in general the quantum Fourie
transform only approximately gives multiples of the scdledjuency complicates the ex:
traction of the period from the measurement. When the pésiodt a power o2, a good
guess for the period can be obtained using the continuetidreexpansion of;-. This
classical technique is described in Appendix B.

Example.Say that measurement of the state returas 427. Sincev and2™ are rela-
tive prime the perioa will most likely not divide2™ and the continued fraction expansiol
described in Appendix B needs to be applied. The following tsace of the algorithm
described in Appendix B:

ilai| pi | @i | €

0/0] 0| 1 |0.8339844
1111 |1 ]0.1990632
215 5 | 6 |0.02352941

3142(211|253 0.5

which terminates witlé = ¢o < M < ¢3. Thus,q = 6 is likely to be the period of.

Step 5. Finding a factor af/. When our guess for the periogl, is even, use the Eu-
clidean algorithm to efficiently check whether eitlagf? + 1 or a?/? — 1 has a non-trivial
common factor with\/.

The reason why/2 + 1 or a9/? — 1 is likely to have a non-trivial common factor with
M is as follows. Ifq is indeed the period of (x) = a® modM, thena? = 1 modM since
ala® = a® modM for all z. If ¢ is even, we can write

(a?? +1)(a?”? — 1) = 0modM.

Thus, so long as neithef/2 +1 nora?/? — 1 is a multiple ofM, eithera?/? +1 ora9/? — 1
has a non-trivial common factor with/.

Example.Since6 is even eitherf/2 — 1 =113 — 1 =13300ra%? + 1 =113+ 1 =
1332 will have a common factor wittdZ. In this particular example we find two factor:
gcd21,1330) = 7 and gcd21, 1332) = 3.

Step 6. Repeating the algorithm, if necessafrgrious things could have gone wrong s
that this process does not yield a factordf
(1) The valuev was not close enough to a multiple%}.

(2) The period- and the multiplierj could have had a common factor so that the deno
inatorq was actually a factor of the period not the period itself.

(3) Step 5yields\f asM'’s factor.

(4) The period off () = a® modM is odd.

Shor shows that few repetitions of this algorithm yieldsadaof M with high probability.

6.2.1 A Comment on Step 2 of Shor’'s Algorithithe measurement in Step 2 can b
skipped entirely. More generally Bernstein and Vaziraréfistein and Vazirani 1997]
show that measurements in the middle of an algorithm canyahie avoided. If the
measurement in Step 2 is omitted, the state consists of agmgions of several periodic
functions all of which have the same period. By the lineasftguantum algorithms, apply-
ing the quantum Fourier transformation leads to a supeiipnsif the Fourier transforms
of these functions, each of which is entangled with the spoadingu and therefore do
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not interfere with each other. Measurement gives a valua fsne of these Fourier trans.
forms. Seeing how this argument can be formalized illusgabme of the subtleties o
working with quantum superpostions. Apply the quantum kesuransform tensored with

the identity,Uqrr © I, 10 C Y2 ' |a, f(z)) to get

O’Z Z e, f(@)),

=0 c=0

CY Y Yl

u alf(@)=u c

which is equal to

for w in the range off(z). What results is a superposition of the results of Step 3
all possibleu’s. The quantum Fourier transform is being applied to a faroflseparate
functionsg,, indexed byu where

gu:{1 if f(z) =

0 otherwise,

all with the same period. Note that the amplitudes in stattsdifferentu’s never interfere
(add or cancel) with each other. The transfdfgnrr ® I as applied above can be writter

2n 1 2m 1271
Ugrr ® 1 : C’ZZgu ez, f(z HC’ZZZG Ve, u),
ueR x=0 uER =0 ¢=0

whereG,(c) is the discrete Fourier transform ¢f (z) andR is the range off ().
Measure: and run Steps 4 and 5 as before.

7. SEARCH PROBLEMS

A large class of problems can be specified as search probletims form “find somex in

a set of possible solutions such that statenfefit) is true.” Such problems range from
database search to sorting to graph coloring. For exanif@eyraph coloring problem can
be viewed as a search for an assignment of colors to verticéisas the statement “all
adjacent vertices have different colors” is true. Simylaal sorting problem can be viewec
as a search for a permutation for which the statement “thepiationa: takes the initial
state to the desired sorted state” is true.

An unstructuredsearch problem is one where nothing is know (or no assumptien
used) about the structure of the solution space and therstatd®. For example, deter-
mining P(x) provides no information about the possible valuegk+) for g # x1. A
structuredsearch problem is one where information about the searatespad statement
P can be exploited.

For instance, searching an alphabetized list is a strutsearch problem and the struc
ture can be exploited to construct efficient algorithms. thmeo cases, like constraint sat
isfaction problems such as 3-SAT or graph colorability, pheblem structure can be ex:
ploited for heuristic algorithms that yield efficient soart for some problem instances
But in the general case of an unstructured problem, randdestyng the truth of state-
mentsP(z;) one by one is the best that can be done classically. For atsspace of
size N, the general unstructured search problem requir@s’) evaluations ofP. On a
guantum computer, however, Grover showed that the unetedtsearch problem can b
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solved with bounded probability withi@(v/N) evaluations ofP. Thus Grover’s search
algorithm [Grover 1996] is provably more efficient than atyogithm that could run on a
classical computer.

While Grover’s algorithm is optimal [Bennett et al. 1997;\@o et al. 1996; Zalka 1997]
for completely unstructured searches, most search pratitemlve searching a structurec
solution space. Just as there are classical heuristicitdgar that exploit problem struc-
ture, one would expect that there are more efficient quantgorithms for certain struc-
tured problem instances. Grover et.al. [Cerf et al. 1998FuSrover’s search algorithm
in place of classical searches within a heuristic algoritbrehow that a quadratic speed
up is possible over a particularly simple classical heigrfstr solving NP-hard problems.
Brassard et.al. [Brassard et al. 1998], using the techsigfi€&rover’s search algorithm
in a less obvious way, show that general heuristic searches guantum analogs with
quadratic speed-up.

There is hope that for certain structured problems a sppeagteater than quadratic is
possible. Such algorithms will likely require new approegsthat are not merely quantun
implementations of classical algorithms. Shor’s alganitiwhen viewed as a search fo
factors, is an example of an algorithm that achieves expalepeed-up by using problem
structure (number theory) in new ways unique to quantum caatjon.

Tad Hogg has developed heuristic quantum search algorithathexploit problem struc-
ture. His approach is distincly non-classical and usesusfyoperties of quantum com-
putation. One problem with this approach is that, like mastristic algorithms, the use
of problem structure is complicated enough that it is harditi@rmine the probability that
a single iteration of an algorithm will give a correct answEnerefore it is unknown how
efficient Hogg’s algorithms are. Classically the efficiemdyheuristic algorithms is esti-
mated by empirically testing the algorithm. But as therenigx@onential slow down when
simulating a quantum computer on a classical one, emptastihg of quantum algorithms
is currently infeasible except in small cases. Small casdisate that Hogg'’s algorithms
are more efficient than Grover’s algorithm applied to stuoetl search problems, but tha
the speed-up is likely to be only polynomial. While less ietting theoretically, even a
small polynomial speed-up on average for these computdtibfficult problems is of sig-
nificant practical interest. Until sufficiently large quant computers are built, or bette
techniques for analyzing such algorithms are found, theieffcy cannot be determinec
for sure.

7.1 Grover’s Search Algorithm

Grover's algorithm searches an unstructured list of 8izior anx that makes a statemen
true. Letn be such tha2™ > N, and letU, be the quantum gate that implements tt
classical functiorP(z) that tests the truth of the statement, where true is encagled a

Up : |z,0) — |z, P(x))

The first step is the standard one for quantum computing ithestin section 5.2. Compute
P for all possible inputse;, by applyingUp to a register containing the superpositio
\/127 EZ;& |«) of all 2" possible inputs: together with a register set t leading to the

superposition

3l Ple)) @
=0
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The difficult step is to obtain a useful result from this sygmesition.
For anyzx, such thatP(x) is true, |xo, 1) will be part of the superposition of Eq. 2.
Since the amplitude of such a stated%, the probability that a random measuremel

of the superposition producesg is only 2—". The trick is to change the quantum stat
in Eq. 2 so as to greatly increase the amplitude of vedtaysl) for which P is true and
decrease the amplitude of vectrs0) for which P is false.

Once such a transformation of the quantum state has beewriped, one can simply
measure the last qubit of the quantum state which repreg¥nfs Because of the am-
plitude change, there is a high probability that the resillthe 1. If this is the case, the
measurement has projected the state of Eqg. 2 onto the smb%g@le |x;, 1) where
k is the number of solutions. Further measurement of the mingabits will provide one
of these solutions. If the measurement of qubftr) yields 0, then the whole process is
started over and the superposition of Eq. 2 must be compgtsd.a

Grover’s algorithm then consists of the following steps:

(1) Prepare aregister containing a superposition of abiptesvalues:; € [0...2" —1].

(2) ComputeP(z;) on this register.

(3) Change amplitude; to —a; for x; such thatP(z;) = 1. An efficient algorithm for
changing selected signs is described in section 7.1.2. Agblthe amplitudes after
this step is shown here.

s L T

(4) Apply inversion about the average to increase amplitfde; with P(z;) = 1. The
guantum algorithm to efficiently perform inversion about tverage is given in sec-
tion 7.1.1. The resulting amplitudes look as shown, wheszathplitude of all the;;'s
with P(x;) = 0 have been diminished imperceptibly.

s L

0 ---- S

(5) Repeat steps 2 throughg4/2™ times.
(6) Read the result.

Boyer et.al. [Boyer et al. 1996] provide a detailed analgéthe performance of Grover’s
algorithm. They prove that Grover’s algorithm is optimalto@ constant factor; no quan-
tum algorithm can perform an unstructured search fasteey Hfso show that if there is
only a singlery such thatP(z) is true, then afte§\/2_" iterations of steps 2 through 4 the
failure rate is0.5. After iterating§\/2_" times the failure rate drops & ™. Interestingly,
additional iterations will increase the failure rate. Frample, after§\/2_” iterations the
failure rate is close ta.

There are many classical algorithms in which a proceduepisated over and over agair
for ever better results. Repeating quantum proceduresmarpive results for a while, but
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after a sufficient number of repetitions the results will gerse again. Quantum proce
dures are unitary transformations, which are rotationsaffgex space, and thus while ¢
repeated applications of a quantum transform may rotatstétie closer and closer to the
desired state for a while, eventually it will rotate past tlesired state to get farther an
farther from the desired state. Thus to obtain useful restdm a repeated application o
a quantum transformation, one must know when to stop. Brdistaal. [Brassard et al.
1998] describe an extension of Grover’s algorithm that #smsier Transforms to deter-
mine the number of solutions and the optimal number of itenat The extension does no
increase the overall complexity of the algorithm.

Grover has extended his algorithm to achieve quadraticdsppdor other non-search
problems such as computing the mean and median of a func@iovér 1998]. Using
similar techniques grover has also shown that certain kgaablems that classically run
in O(log V) can be solved iD(1) on a quantum computer. Grover’s search can used
a subroutine in other quantum computations since Biron. §Baon et al. 1998] show
how the technique can be used with arbitrary initial ampgiuistributions, while still
maintainingO(v/N) complexity.

7.1.1 Inversion about the Averagélo perform inversion about the average on a qua
tum computer the inversion must be a unitary transformatieurthermore, in order for
the algorithm as a whole to solve the problentitn/ V) time, the inversion must be able
to be performed efficiently. As will be shown shortly, theansion can be accomplishec
with O(n) = O(log(NN)) quantum gates.

It is easy to see that the transformation

N—-1 N—-1
D ailw) = Y (24— ap)|a),
1=0 =0
whereA denotes the average of thgs, is performed by thév x N matrix
Z_1 2 ... 2
No o oM bl
D= N N N
S ' L

SinceDD* = I, D is unitary and is therefore a possible quantum state tramsfion.

We now turn to the question of how efficiently the transforioratcan be performed,
and show that it can be decomposed i) = O(log(N)) elementary quantum gates
Following Grover,D can be defined a® = WRW whereW is the Walsh-Hadamard
transform defined in section 4 and

1 0 . 0
0-1 0 ...
R= 0 ... ... 0
0 0 -1
To see thaD = W RW, considerR = R’ — I wherel is the identity and
20 ... 0
, 100 O
R = 0...... 0



32 . E. Rieffel and W. Polak

Now WRW = W(R' — I)W = WR'W — I. Itis easily verified that

2 2 2

¥y ¥

)
WRW=|Y N N
y 2

N N N

and thusV R'W — I = D.

7.1.2 Changing the SignWe still have to explain how to invert the amplitude of th
desired result. We show, more generally, a surprising gmaly to invert the amplitude
of exactly those states witR(z) = 1 for a generalP.

Let Up be the gate array that performs the computafign: |z,b) — |z,b @ P(x)).
Apply Up to the superposition)) = ¢2—n >z |a:> and choosé = %\m —|1) to end
up in a state where the sign of alwith P(z) = 1 has been changed, ahds unchanged.

To see this, letX, = {z|P(z) = 0} andX; = {z|P(z) = 1} and consider the
application ofUp.

Up (|, >)
- 2n+1 P 120+ Y |2 0) = > a1y = Y [2,1))
zeXo reX; zeXo reX;

= (Y 2000+ > |z,001l) = Y |[z1e0) - > |r,1o1)

2ntt reXo reX, reXo reX,
= == 50+ 3 fu1) = D le1) = Y |7,0))

2n+1 zeXo reX; zeXo reX;
= - > ey @b

azEXo reX;

Thus the amplitude of the statesii have been inverted as desired.

7.2 Heuristic Search

7.2.1 A Note on the Walsh-Hadamard Transforifhere is another representation fc
the Walsh-Hadamard transformation of section 4.1.1 thaséful for understanding how
to use the Walsh-Hadamard transformation in constructirsgntym algorithms. The bit
Walsh-Hadamard transformation i@ax 2™ matrix W with entriesW,., where both- and
s range from) to 2" — 1. We will show that

Wrs -

wherer - s is the number of commonhbits in the the binary representationscinds.
To see this equality, note that
) = Z Wisls)

Letr,_1...7o be the binary representationfands,,_; ... so be the binary representa-
tion of s.

W(r) = (H® ... H)(Jrn-1) ® ... ®|ro))
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Fig. 4. Lattice of variable assignments in a CSP
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7.2.2 Overview of Hogg's algorithmsA constraint satisfaction problem (CSP) has
variablesV = {vy, ..., v, } which can taken different valuesX = {z1,...,,,} subject
to certain constraint€’y, ..., C;. Solutions to a constraint satisfaction problem lie in th
space of assignmentsefs tov;’s, V x X. There is a natural lattice structure on this spas
given by set containment. Figure 4 shows the assignmenéspatits lattice structure for
n=2,m =2,z; =0, andzy, = 1. Note that the lattice includes both incomplete ar
inconsistent assignments.

Using the standard correspondence between sets of engch@laiments and binary
sequences, in whichlain thenth place corresponds to inclusion of thiéh element and a
0 corresponds to exclusion, standard basis vectors for atguestate space can be put ir
one to one correspondence with the sets. For example, Fgahrews the lattice of Figure
4 rewritten in ket notation where the elements= 0, v; = 1, v5 = 0 andvy, = 1 have
been enumerated in that order.

If a state violates a constraint, then so do all states ationehie lattice. The approach
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[1111)
[1110) [1101) |1011) |0111)
[1100) [1010) [1001) |0110) |0101) |0011)
|1000) |0100) |0010) |0001)
|0000)

Fig. 5. Lattice of variable assignments in ket form

Hogg takes in designing quantum algorithms for constraitisfaction problems is to be-
gin with all the amplitude concentrated in tfie . . 0) state and to iteratively move ampli-
tude up the lattice from sets to supersets and away fromsatviblate the constraints.
Note that this algorithm begins differently than Shor’saalthm and Grover’s algorithm,
which both begin by computing a function on a superpositibalbthe input values at
once.

Hogg gives two ways [Hogg 1996; Hogg 1998] of constructingnitary matrix for
moving amplitude up the lattice. We will describe both methand then describe how he
moves amplitude away from bad sets.

Moving amplitude up: Method 1. There is an obvious transformation that move
amplitude from sets to supersets. Any amplitude assoctatéde empty set is evenly
distributed among all sets with a single element. Any amgétassociated to a set with :
single elementis evenly distributed among all two elemets which contain that element
and so on. For the lattice of a three element set

111)

011) 1101) |110)
| > >
|001) 010) 1100)
1000)

We want to transform

|000) — 1/+/3(]001) 4 [010) + |100)



Introduction to Quantum Computing . 35

|001) — 1/4/3(]011) + [110) + |101)

The complete matrix for this transformation looks like (asial the basis vectors are or
dered according to their binary representation)

0O 0O 0 0 0 001
T e
\/§11

(1)75%00000
E(I)OO(l)OOO
oo

V2 V2

0O 0 O 1 0110

Unfortunately this transformation is not unitary. Hogg fip1996] uses the fact that
the closest (in a suitable metric) unitary matkix; to an arbitrary matrix\/ can be found
usingM's singular value decompositiall = UDVT whereD is a diagonal matrix, and
U andV are unitary matrices. The produg,; = UVT gives the closest unitary matrix
to M. Provided that/,, is sufficiently close ta\f, U, will behave in a similar way td/
and will therefore do a reasonably job of moving amplitudmrfrsets to their supersets.

Moving amplitude up: Method 2.The second approach [Hogg 1998] uses the Wals
Hadamard transformation. Hogg assumes that the desirgtkhas formWW DW where
W is the Walsh-Hadamard transformation abids a diagonal matrix whose entries de
pend only on the size of the sets. Hogg calculates the eritnie® which maximize the
movement of amplitude from a set to its supersets. This tztlon exploits the property

_ L st = L pyiensl
shown in section 7.2.1.

Moving amplitude away from bad sets. To effect moving amplitude away from set:
that violate the constraints, Hogg suggests adjusting iases of the sets, depending o
the extent to which they violate the constraints, in such @ that amplitude distributed
to sets that have bad subsets cancels, where as the amplisaidleuted to sets from all
good subsets adds. Different choices here will work moreess kffectively depending
on the particular problem. One choice he suggests is imgetlie phase of all bad set:s
which will result in some cancelation in the amplitude of stgets between the amplituds
coming from good subsets and bad subsets. This phase imveesi be done as in Grover’
algorithm (7.1.2) with aP that tests whether a given state satisfies all of the constrar
not. Another suggestion is to give random phases to the liadsedhat on average the
contribution to the amplitude of a superset from bad suhisetero. Other choices are
possible.

Because the canceling resulting from the phase changess\faoim problem to prob-
lem, the probability of obtaining a solution is difficult toalyse. A few small experiments
have been done and the guess is that the cost of the searguastit exponentially, but
considerably more slowly than in the unstructured case.uBtit sufficiently large quan-
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tum computers are built, or better techniques for analygingh algorithms are found, the
efficiency cannot be determined for sure.

8. QUANTUM ERROR CORRECTION

One fundamental problem in building quantum computersesited to isolate the quan-
tum state. An interaction of particles representing quivith the external environment
disturbs the quantum state, and causes it to decoherensfdren in an unintended and
often non-unitary fashion.

Steane [Steane 1998] estimates that the decoherence ofsteyndikely to be built is
107 times too large to be able to run Shor’s algorithm as it stamda 130 digit number.
However, adding error correction algorithms to Shor’s &ty mitigates the effect of
decoherence, making it again look possible that a systerd d@ubuilt on which Shor’s
algorithm could be run for large numbers.

On the surface quantum error correction is similar to ctad®rror correcting codes in
that redundant bits are used to detect and correct errorsthBusituation for quantum
error correction is somewhat more complicated than in thesital case since we are ng
dealing with binary data but with quantum states.

Quantum error correction must reconstruct the exact ermtqdantum state. Given the
impossibility of cloning or copying the quantum state, tteésonstruction appears harde
than in the classical case. However, it turns out that dass&chniques can be modifiec
to work for quantum systems.

8.1 Characterization of Errors

In the following it is assumed that all errors are the restdfumntum interaction between &
set of qubits and the environment. The possible errors fain sengle qubit considered are
linear combinations of no errorg) bit flip errors (X), phase errors®), and bit flip phase
errors ). A general single bit error is thus a transformatiqd + e2 X + esY + e4Z.
Interaction with the environment transforms single qubdsording to

) = (e1] + e2 X +e3Y +esZ)y) = ZGiEHW-

K2

For the general case of quantum registers, possible em@esxaressed as linear com
binations of unitary error operatofs;,. These could be combinations of single bit error:
like tensor products of the single bit error transformadi¢h, X, Y, Z}, or more general
multi-bit transformations. In any case, an error can betemitis) _, e; E; for some error
operatorgy; and coefficients;.

8.2 Recovery of Quantum State

An error correcting code for a set of errdt’s consists of a mapping that embeds data
bits inn + k code bits together with a syndrome extraction operatershat maps: + &
code hits to the set of indices of correctable ertBrssuch thati = S¢(E;(C(z))). If
y = E;(C(x)) for some unknown but correctable error, then e¥efy) can be used to
recover a properly encoded valG§z), i.e. Egi(y)(y) = C(x).

Now consider the case of a quantum register. First, the efdtee register can be in a
superposition of basis vectors. Furthermore, the errobesa combination of correctable
error operator€;. It turns out that it is still possible to recover the encodedntum state.
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Given an error correcting code with syndrome extraction operatSg, ann-bit quan-
tum statg) is encoded in a+ k bit quantum statep) = C|v). Assume that decoherenc
leads to an error stade), e; E;|¢) for some combination of correctable errd#s The orig-
inal encoded stat) can be recovered as follows:

(1) Apply the syndrome extraction operatt to the quantum state padded with suff
cient|0) bits:

Sc(D_eiEilg) @ 0) = > ei(Eilg) ®|i)).

K2 ?

Quantum parallelism gives a superposition of differenbesreach associated with
their respective error index

(2) Measure théi) component of the result. This yields some (random) vajuand
projects the state to

Eio ‘¢7 Z0>

(3) Apply the inverse error transformati(‘iv‘;‘o1 to the firstn + k qubits of E;,|¢, io) to
get the corrected state).

Note that step 2 projects a superposition of multiple emamgformations into a single
error. Consequently, only one inverse error transformeasgequired in step 3.

8.3 Error Correction Example

Consider the trivial error correcting codeéthat mapg0) — |000) and|1) — |111). C
can correct single bit flip errors

E={IQI[XQIQLI®XRI,I®I® X}.
The syndrome extraction operator is
S : ‘1‘071‘171‘270,07(» — ‘1‘0,1‘171‘271‘0 XOrxy,xg X0Orxrs, Ty XOF.%‘Q),

with the corresponding error correction operators showthértable. Note thak; = E[l
for this example.

Bit flipped | Syndrome| Error correction

none |000) none
0| [110) XoIal
1 1101) IoX®I
2 011) I®l®X

Consider the quantum bjig) = %UO) — |1)) that is encoded as
1

Clp) = |¢) = NG

(|oo0y — |111))

and the error
4 3
E:5X®I®I+EI®X®I.
The resulting error state is

1

E|¢p) = (%X IR+ §I®X®I)( (|o00) — |111)))

S

2
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- 5X®I®I(\/_(\000> |111>))+5I®X®I(\/_(\000> 1111)))
3
- FX@J@@I(\oom—|111>)+ml@){®J(|000>—|111>)
3
- m(|100> —|o11)) + ﬁ(|010> — |101))

Next apply the syndrome extraction{&|¢)) ® |000) as follows:
Sc((E|¢>) ® 1000))
= Se(——=(]100000) — [011000)) + i(|010000> — [101000)))

\/_ 5\/5
4
= m(\100110>—\011110>) 7(\010101> 1101101))
4 3
- m(\100>—\011>)®|110> 5\f(|010> 1101)) © [101)

Measuring the last three bits of this state yields eitté®) or |[101). Assuming the mea-
surement produces the former, the state becomes

1
—(|100) — |011)) ® |110).
\/5(\ ) — |011)) ©[110)

The measurement has the almost magical effect of causimgaiine summand of the
error to disappear. The remaining part of the error can bevedhby applying the inverse
error operatoX ® I ® I, corresponding to the measured valle)), to the first three bits,
to produce

—(\000> 111)) = ClY) = [9).

N

9. CONCLUSIONS

Quantum computing is a new, emerging field that has the pateatdramatically change
the way we think about computation, programming and conigylex he challenge for
computer scientists and others is to develop new programtaghniques appropriate for
quantum computers. Quantum entanglement and phase @itcelhtroduce a new di-
mension to computation. Programming no longer consistseseéy formulating step-by-
step algorithms but requires new techniques of adjustieges and mixing and diffusing
amplitudes to extract useful output.

We have tried to give an accurate account of the state-ethef quantum computing
for computer scientists and other non-physicists. We hageribed some of the quantun
mechanical effects, like the exponential state space,ntengled states, and the linearity
of quantum state transformations, that make quantum pésati possible. Even though
guantum computations must be linear and reversible, asgicla algorithm can be imple-
mented on a quantum computer. But the real power of these rm@hines, the exponential
parallelism, can only be exploited using new, innovativegpamming techniques. People
have only recently begun to research such techniques.
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We have described Shor’s polynomial-time factorizatiogoathm that stimulated the
field of quantum computing. Given a practical quantum corp@hor’s algorithm would
make many present cryptographic methods obsolete. Gemeaich algorithm, while only
providing a polynomial speed-up, proves that quantum cderpuare strictly more pow-
erful than classical ones. Even though Grover’s algoritlas leen shown to be optimal
there is hope that faster algorithms can be found by exptpipiroperties of the problem
structure. We have described one such approach taken by. Hogg

There are a few other known quantum algorithms that we diddismuss. Jones anc
Mosca [Jones and Mosca 1998] describe the implementatiar2ebit quantum computer
of a constant time algorithm [Deutsch and Jozsa 1992] thatlistinguish whether a func-
tion is balanced or constant. Grover [Grover 1998] deserdue efficient algorithm for
estimating the median of a set of values and both Grover [Gr2998] and Terhal and
Smolin [Terhal and Smolin 1997] using different methods salve the coin weighing
problem in a single step.

Beyond these algorithms not much more is known about whatdoel done with a
practical quantum computer. It is an open question whethapbwe can find quantum
algorithms that provide exponential speed-up for problether than factoring. There is
some speculation among physicists that quantum transfamnsamight be slightly non-
linear. So far all experiments that have been done are ¢ensigith the standard linear
guantum mechanics, but a slight non-linearity is still ploies Abrams and Lloyd [Abrams
and Lloyd 1998] show that even a very slight non-linearityldobe exploited to solve
all NP hard problems on a quantum computer in polynomial tifi@is result further
highlights the fact that computation is fundamentally agibgl process, and that what ca
be computed efficiently may depend on subtle issues in phiysic

The unique properties of quantum computers give rise to niemiskof complexity
classes. For instance, BQP is the set of all languages a&ttbpta quantum Turing ma-
chine in polynomial time with bounded probability. Detailsthe extensive research don
in the field of quantum complexity theory is beyond the scaplis paper. The interestec
reader may start by consulting [Bennett et al. 1997] and g\t 1998] respectively for
analyses of time and space complexity of quantum compuatgtigilliams and Clearwater
1998] contains an introduction to early results in quantompglexity.

Of course, there are daunting physical problems that must&eome if anyone is ever
to build a useful quantum computer. Decoherence, the timtoof the quantum state due
to interaction with the environment, is a key problem. A bigdkthrough for dealing with
decoherence came from the algorithmic, rather than theigddyside of the field with
the development of quantum error correction techniquesh&ve described some of the
principles involved. Further advances in quantum erroremion and the development o
robust algorithms will be as important for the developmépractical quantum computers
as advances in the hardware side.

9.1 Further Reading

Andrew Steane’s survey article “Quantum computing” [See2898] is aimed at physicists.
We recommend reading his paper for his viewpoint on thisestbjparticularly for his
description of connections between information theory gundntum computing and for
his discussion of error correction, of which he was one oftlaén developers. He also ha
an overview of the physics involved in actually building gtiam computers, and a surve!
of what had been done up to July 1997. His article contains eerdetailed history of
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the ideas related to quantum computing than the present,magpkhas more references as
well. Another shorter and very readable tutorial can be bar{Berthiaume 1997].

Richard Feynman’sectures on Computatigireynman 1996] contains a reprint of the
lecture “Quantum Mechanical Computers” [Feynman 1985civitiegan the whole field.
It also discusses the thermodynamics of computations whiclosely tied with reversible
computing and information theory.

Colin Williams and Scott Clearwater’s bo@kplorations in Quantum Computifig/illiams
and Clearwater 1998] comes with software, in the form of Mathtica notebooks, that
simulates some quantum algorithms like Shor’s algorithm.

The second half of the October 1997 issue of the SIAM Jourh@bonputing contains
six seminal articles on quantum computing, including foerhvave already cited [Bennett
et al. 1997] [Bernstein and Vazirani 1997] [Shor 1997] [Smi®97].

Most of the articles referenced in this paper, and many nuae,be found at the Los
Alamos preprint serverht t p: / / xxx. | anl . gov/ ar chi ve/ quant - ph. Links to
research projects and other information about quantum atingpcan be found on our
web siteht t p: / / www. pocs. com gc. ht i .
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APPENDIX
A. TENSOR PRODUCTS

The tensor productx) of an-dimensional and &-dimensional vector is ak-dimensional
vector. Similarly, if A and B are transformations on-dimensional and &-dimensional
vectors respectively, thea ® B? is a transformation onk-dimensional vectors.

The exact mathematical details of tensor products are lietfen scope of this paper
(see [Hungerford 1974] for a comprehensive treatment). deopurposes the following
algebraic rules are sufficient to calculate with tensor potsl For matricest,B,C,D, U,
vectorsu, x, y, and scalarg, b the following hold:

(A® B)(C® D) = AC ® BD

(A®B)(z®y) = Az ® By
(z+y)®u =2Qu+yu
uR x4y = uRzr+u®y

ax @by = ab(z ®@y)
ABY ., _(A9U BaU
C D T \CQU DU )’

which specialized for scalats b, ¢, d to

ab aU bU
(c d) QU= (CU dU)’
The conjugate transpose distributes over tensor produets,
(A® B)* = A* ® B*.

A matrix U is unitaryif its conjugate transpose its inverdé*U = I.

The tensor product of several matrices is unitary if and dfrdach one of the matrices
is unitary up to a constant. Lét= A4; ® A2 ®...® A,. ThenU is unitary if AT A; = k; 1
andHiki =1.

U'U = (Ai®A;0... 0 AL)(A0A4R...0A,)
= ATA @ ALA® ... ® ALA,
= kI®.. .k
=1

where eacH refers to the identity matrix of appropriate dimension.
For example, the distributive law allows computations @f tbrm:

(ao|0) + bp|1)) ® (a1|0) + b1]1))

9Technically, this is a right Kronecker product.
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(a0/0) © a1]0)) + (bo[1) ® @1|0)) + (a0[0) © ba[1)) + (bo[1) @ b:1[1))
aga1((|0) ® 10)) + boa1(|1) © [0)) + aobi(|0) @ [1)) + bob1 (|1) @ |1))
= aoal(\00> + b0a1\10> + Q0b1‘01> + b0b1|11>

B. CONTINUED FRACTIONS AND EXTRACTING THE PERIOD FROM THE MEA-
SUREMENT IN SHOR’S ALGORITHM

In the general case where the periodoes not divid™, the valuev measured in step 4
of Shor’s algorithm will be, with high probability, close smme multiple o%m, sayj?.

The aim is to extract the periodfrom the measured value Shor shows that, with high
probability,v is within 1 of somej2-. Thus

2m < 1
v—il | <2
/ r 2
for somej, which implies that
v j 1 1
2m 2.2m < 2M2°

The difference between two distinct fracUoﬁandp with denominators less thalf is
bounded

p ¥ _|pd v 1
a aq' M2
Thus there is at most one fractlérwnh denominator; < M such that‘— - %’ < ﬁ

In the high probability case that|s within 1 of]— this fraction will bei
The unique fraction with denominator Iess than M that is umtﬁ}— of 5% can be ob-
tained efficiently from the continued fraction expansion;gf as foIIows Usmg the se-

guences
- v
% = |5]
v
€p = 2—m — ap
|: : :|
Qp =
€n—1
1
€n = — Qp
€n—1
Po = ao

p1 = aiap +1

Dn = GnPn—1 + Pn—2
Q@ =1

qg1 = a1

Qn = AnQn—-1 1+ qn—2

compute the first fractioﬁf such thay,, < M < ¢,4+1. See any standard number theory
text, like Hardy and Wrigﬁit [Hardy and Wright 1979], for whyig procedure works.



Introduction to Quantum Computing . 45

In the high probability case whegt is within ﬁ of a muItipIe% of % the fraction
obtained from the above procedure%isas it has denominator less thaf. We take the
denominator; of the obtained fraction as our guess for the period, whidhwark when
j andr are relatively prime.



