
16.	Time	Travel	1
1.	Closed	Timelike	Curves	and	Time	Travel

Topics:
1. Closed	Timelike	Curves
2. Constraints	on	Time	Machines
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• Recall:	The	Einstein	cylinder	universe	is	a	solution	to	the	Einstein	equations	
(with	cosmological	constant)	that	has	closed	spacelike curves.

time closed	spacelike	curve

open	timelike	curve

space

Are there solutions to the Einstein equations with closed timelike curves?

𝐺𝜇𝜈(𝑔𝜇𝜈)=	𝜅𝑇𝜇𝜈



Timelike	curves	
"thread"	lightcones.

• A	physical	object	following	a	CTC	goes	back	in	time!
- At	some	point	in	its	history,	it	will	reach	a	point	on	its	
worldline	that	it	previously	occupied.

• Recall:	A	timelike	curve is	a	worldline	of	a	physical	object	(an	object	traveling	
at	a	speed	< c).

Def. A	closed	timelike	curve	(CTC) is	a	worldline	
of	a	physical	object	that	intersects	itself.
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Rolled-Up	Minkowski	Spacetime

• Roll	it	up:	Identify	+∞ and	−∞.

• Simplest	solution	to	the	Einstein	equations	with	CTCs.

space

time Rolled-Up	Minkowski	Spacetime

CTC

time

+∞

−∞

Minkowski	Spacetime

space
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• Albert	kills	himself	if	and	only	if Albert	does	not	kill	himself.

If (2), are such constraints mysterious?
- Any more so than typical initial conditions for physical processes?

Time	Travel	Paradox	in	Rolled-Up	Minkowski	Spacetime

space

time
Bang!
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• Possible	Resolutions:
1. Universes	with	CTCs	are	physically	impossible.
2. Universes	with	CTCs	are	physically	possible,	but	they	are	

constrained	in	ways	that	prevent violations	of	causality.



Constraints	on	Spacetimes	with	CTCs
• Simplest	example - Universe	with	only	1	particle

Case	1:	Spacetime	with	no	CTCs
• Particle	can	have	any	initial	velocity	at t = t0 (w.r.t. a	given	observer).

⋯• t= t0 • t= t0 • t= t0

• All of	these	initial	conditions	lead	to	physically	indistinguishable	spacetimes!
- Velocities	are	relative	in	general	relativistic	(and	Minkowski,	and	Galilean)	spacetimes.
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Case	2:	Rolled-Up	Minkowski	Spacetime
• Particle	is	constrained	to	have	only	one	initial	velocity	at t = t0 (w.r.t. a	given	
observer).

leads	to •• t= t0

• Any	other	initial	velocity	leads	to	contradiction!

Are there more general constraints that would 
result in more interesting spacetimes with CTCs?

• t= t0 leads	to • • •

But:	This	entails	the	initial	setup	is: • • •
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2.	Constraints	on	Time	Machines	in	General	Relativity

Time	Machine	(TM)	Characteristics
(1) TM	is	confined	to	finite	region	of	space	and	operates	for	a	finite	time.
(2) TM	causes CTCs	to	evolve.

7
In what sense does Σ determine TM?

𝐾K=	time	machine	
region

𝐽+(𝐾)

𝐽+(𝐾)	= causal	future	of	
𝐾:	contains	all	points	𝑝
such	that	there	is	at	least	
one	future-directed	
causal	curve	from	𝐾 to	𝑝.

Σ
Initial	data	surface	Σ = spacelike	
surface	without	edges:	encodes	data	
that	determines	how	TM	functions.

•𝑝

CTC V

V=	time-
travel	region:	
contains	CTCs



𝐽+(𝑆)

Def. The	(future)	domain	of	dependence 𝐷+(𝑆) of	𝑆 consists	of	all	points	𝑝 such	
that	every timelike	curve	through	𝑝with	no	past	endpoint	meets	𝑆 in	one	point.

𝐷+(𝑆)

𝑆

𝑞 is not in 𝐷+(𝑆)
since there are 
timelike curves 
through 𝑞 with no 
past endpoints that 
do not meet 𝑆

•𝑞
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𝑝 •

𝐷+(𝑆) contains all 
points that are uniquely 
determined by 𝑆!

• Important:	𝐷+(𝑆) is	different	from	𝐽+(𝑆).
- This	means	that	the	points	that	𝑆 determines	are	in	
general	different	from	those	it	can	causally	interact	with!

• Let	𝑆 be	a	spacelike	surface	(not	necessarily	without	edges).

• So:	To	say	Σ determines	TM	is	to	say	K ⊂ 𝐷+(Σ) (K is	in	the	domain	of	dependence	of	Σ).

But: Σ cannot uniquely determine what goes on in the time-travel 
region V caused by the TM!



Deutsch-Politzer	Spacetime (Deutsch	1991,	Politzer	1992)

time
space

𝑝1

𝑝2

𝑝3

𝑝4

- Remove	four	points	𝑝1,	𝑝2,	𝑝3,	𝑝4
from	Minkowski	spacetime.

- Result:	A	"handle"	in	Minkowski	
spacetime	connecting	two	holes.

time
space

- Cut	two	strips	between	holes.identify

- Connect	upper	lip	of	top	strip	to	
lower	lip	of	bottom	strip.
- Connect	lower	lip	of	top	strip	to	
upper	lip	of	bottom	strip.

𝑎

𝑎

𝑏

𝑏

𝑐

𝑐

𝑏𝑎
- Worldline	𝑐 is	a	CTC!
- Worldline	𝑎 travels	back	in	time!
- Worldline	𝑏 travels	forward	in	
time	(as	per	usual).
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Deutsch-Politzer	Spacetime (Deutsch	1991,	Politzer	1992)

time
space

time
space

- Result:	A	"handle"	in	Minkowski	
spacetime	connecting	two	holes.
- Worldline	𝑐 is	a	CTC!
- Worldline	𝑎 travels	back	in	time!
- Worldline	𝑏 travels	forward	in	
time	(as	per	usual).

𝑏𝑎

- Connect	upper	lip	of	top	strip	to	
lower	lip	of	bottom	strip.
- Connect	lower	lip	of	top	strip	to	
upper	lip	of	bottom	strip.

- Cut	two	strips	between	holes.

- Remove	four	points	𝑝1,	𝑝2,	𝑝3,	𝑝4
from	Minkowski	spacetime.

Time-travel	
region	V

𝑐
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Deutsch-Politzer	Spacetime (Deutsch	1991,	Politzer	1992)

Σ

time

space

Does the initial data on Σ uniquely determine the path of the 
particle to the future of Σ?

• Consider	a	particle	traveling	to	the	right	at	constant	speed	that	registers	on	
Σ and	enters	V.

•

- Its	point	of	intersection	with	Σ records	its	position	and	its	velocity.
- This	initial	data	can	then	be	used	to	predict	the	path	of	the	particle	to	
the	future	of	Σ.

11

V



Σ •

Prediction	I:

5. Particle	leaves	region	V.

1. Particle	travels	to	right	with	constant	speed	and	enters	region	V.

3. Continues	to	right	at	constant	speed.
2. Hits	top	strip	and	goes	back	in	time	to	bottom	strip.

•

•

4. Steps	(2)	and	(3)	repeat	three	more	times.

•

•

•

•

•

•

No	collisions	in	V.
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Deutsch-Politzer	Spacetime (Deutsch	1991,	Politzer	1992)

time

space

V



Prediction	II	(same	initial	conditions):

Σ •

1. Particle	travels	to	right	with	constant	speed	and	enters	region	V.

•

4. Scatters	to	right	at	contant	speed,	travels	back	in	time	three	more	times.

•

•

•

•

•

2. At	𝑝,	hits	an	older	version	of	self	and	comes	to	rest.
3. Travels	back	in	time	and	is	hit	by	a	younger	version	of	self	(again	at	𝑝).

•

5. At	𝑞,	hits	older	version	of	self	and	comes	to	rest.

•𝑞

•

7. Scatters	to	right,	travels	back	in	time,	and	then	finally	leaves	region	V.
6. Travels	back	in	time	and	is	hit	by	younger	version	of	self	(again	at	𝑞).

•

•

Two	collisions	in	V.	

•

𝑝 •

•
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Deutsch-Politzer	Spacetime (Deutsch	1991,	Politzer	1992)

time

space

V



𝐷+(Σ)

𝐷+(Σ)	∩	𝐽+(𝐾)

𝐽+(𝐾)

So: Initial conditions on Σ do not uniquely determine what goes on in V.

• Which	means:	V cannot	be	in	𝐷+(Σ).
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Σ

𝐾

Recall:	Σ has	no edges!

CTC V



So: Initial conditions on Σ do not uniquely determine what goes on in V.

• Which	means:	V cannot	be	in	𝐷+(Σ).
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Σ

𝐾

• What	happens	if	there	are	holes	in	our	TM	spacetime?

Recall:	Σ has	no edges!

𝐷+(Σ)

𝐽+(𝐾)

𝐷+(Σ)	∩	𝐽+(𝐾)

CTC V



So: Initial conditions on Σ do not uniquely determine what goes on in V.

• Which	means:	V cannot	be	in	𝐷+(Σ).
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Σ

𝐾

• What	happens	if	there	are	holes	in	our	TM	spacetime?
• V inside J+(K) and	outside	D+(Σ) allows	for	other	influences	on	CTCs	besides	K.

causal	influence	
emerging	from	
singularity	that	
doesn't	register	on	Σ

Recall:	Σ has	no edges!

𝐷+(Σ)

𝐽+(𝐾)

𝐷+(Σ)	∩	𝐽+(𝐾)

CTC V
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Σ

𝐾

causal	influence	
emerging	from	
singularity	that	
doesn't	register	on	Σ

Hawking's	(1992)	Condition	for	TMs
In	order	for	a	TM	to	exist,	the	future	Cauchy	Horizon 𝐻+(Σ) of	Σ must	be	
compactly	generated (	generators	cannot	emerge	from	singularities	or	infinity).

Recall:	Σ has	no edges!

𝐷+(Σ)

𝐽+(𝐾)

𝐷+(Σ)	∩	𝐽+(𝐾)

CTC V



H+(Σ) = boundary	
of	𝐷+(Σ)

18

Σ

𝐾

causal	influence	
emerging	from	
singularity	that	
doesn't	register	on	Σ

Hawking's	(1992)	Condition	for	TMs
In	order	for	a	TM	to	exist,	the	future	Cauchy	Horizon 𝐻+(Σ) of	Σ must	be	
compactly	generated (	generators	cannot	emerge	from	singularities	or	infinity).

• Implication:	If	TMs	are	possible,	then	𝐻+(Σ)must	be	compactly	generated.
• Or:	If	𝐻+(Σ) is	not	compactly	generated,	then	TMs	are	not	possible.

generator	
of	H+(Σ)

Recall:	Σ has	no edges!

𝐷+(Σ)

𝐷+(Σ)	∩	𝐽+(𝐾)

𝐽+(𝐾)

CTC VCTC V



No-Go	Theorems	for	TMs	in	GR:	Argue	for	a	particular	TM condition	and	then	show	
that	it	does	not	hold	for	physically	relevant	general	relativistic	spacetimes.

Hawking's	(1992)	Chronology	Protection	Conjecture
If	the	following	hold	for	a	partial	Cauchy	surface	Σ,
(a) Σ is	spatially	open	("non-compact"),
(b) the	Einstein	equations	hold,
(c) the	"weak	energy	condition"	holds	(no	negative	energy),

then	H+(Σ) is	not	compactly	generated,	and	thus	(according	to	
Hawking's	Condition),	a	TM	cannot	exist.
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Is Hawking's condition necessary and sufficient for TMs?
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- But:	Just	because	there	may be	influences	on	V that	don't	register	on	
Σ,	doesn't	mean	there	actually	are such	influences.

- But:	If	no	influences	on	V get	swallowed	up	by	holes,	does	this	
guarantee	that	Σ completely	determines	what	goes	on	in	V?

• Necessary?
If	TMs	are	possible,	then	H+(Σ)must	be	compactly	generated.
Or:			If	H+(Σ) is	not	compactly	generated,	then	TMs	are	not	possible.

There may be influences on 
V that don't register on Σ!

• Sufficient?
If	H+(Σ) is	compactly	generated,	then	TMs	are	possible.

No influences on V get 
swallowed up by holes!



Def. An	extension of	D+(Σ) is	an	embedding	of	D+(Σ)
as	a	proper	subset	of	another	"larger"	spacetime.

21

𝐷+(Σ)

Σ

𝐾

ℳ



Def. An	extension of	D+(Σ) is	an	embedding	of	D+(Σ)
as	a	proper	subset	of	another	"larger"	spacetime.
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𝐷+(Σ)

Σ

𝐾

Extension	ℳext of	D+(Σ) that	has	a	V	but	also	has	a	hole
ℳext

CTC V



Earman,	Smeenk	&	Wüthrich's	(2009)	Potency	Condition	for	TMs
In	order	for	a	TM	to	exist,	every	smooth,	maximal,	"hole-free"	
extension	of	D+(Σ) that	satisfies	the	Einstein	equations	and	
energy	conditions	must	contain	CTCs.

Def. An	extension of	D+(Σ) is	an	embedding	of	D+(Σ)
as	a	proper	subset	of	another	"larger"	spacetime.

• There	may	be	many	ways	of	extending	D+(Σ) into	the	future.
- Some	extensions	may	contain	holes.	If	so,	we	can't	say	conditions	on	Σ are	
uniquely	responsible	for	CTCs	that	may	exist.

- Some	extensions	may	not	be	"maximal";	i.e.,	they	themselves	may	be	further	
extended.

- A	non-maximal	extension	may	contain	holes.	If	so,	we	can't	say	conditions	on	
Σ are	uniquely	responsible	for	CTCs	that	may	exist.
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• But:	If	allmaximal	and	hole-free	extensions	contain	CTCs,	then	we	can	
reasonably	say	that	conditions	on	Σmust be	responsible	for	these	CTCs!



𝐷+(Σ)

Σ

𝐾

ℳ
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Extension	ℳext of	D+(Σ) that	has	a	V	but	also	has	a	hole
ℳext
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CTC V

Σ

𝐷+(Σ)
𝐾



𝐷+(Σ)

Σ

𝐾

Extension	ℳ′ext of	D+(Σ) that	has	a	V	and	no	holes
ℳ′ext
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CTC V



𝐷+(Σ)

Σ

𝐾

Extension	ℳ′′ext of	ℳ′ext that	has	a	V	and	a	hole
ℳ′′ext
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CTC V



𝐷+(Σ)

Σ

𝐾

Maximal	extension	of	D+(Σ) that	has	a	V	and	no	holes
ℳmax
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CTC V


