10. The Einstein Equations

Two requirements to geometrize the gravitational force in a relativistic spacetime:
(I) Relativistic theory: Our theory must get everything right that special relativity gets right.

- Replace $d s^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu}$ with $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$.

non-flat metric
- Require $g_{\mu \nu}$ to reduce to $\eta_{\mu \nu}$ in small regions of spacetime.

arbitrarily curved surface
(II) Geometrization: We want to construct a spacetime in which the equation for a straight line takes the form $\left(d^{2} x / d t^{2}+\nabla \Phi\right)=0$, in the Newtonian limit, where Φ is the Newtonian gravitational potential.
- This means our theory will reproduce Newtonian gravity in the appropriate limit.

To accomplish (II), Einstein had to learn differential geometry!

Two Facts from Differential Geometry

1. Geodesic Equation. The general equation for a straight line (a geodesic) in a curved space is given by,

$$
\frac{d^{2} x^{\mu}}{d t^{2}}+\Gamma_{v \sigma}^{\mu} \frac{d x^{v}}{d t} \frac{d x^{\sigma}}{d t}=0
$$

(a) The "correction factors" $\Gamma_{v \sigma}^{\mu}$ are (64!) functions that encode the curvature.
(b) They depend explicitly on the metric $g_{\mu v}$.
(c) $\Gamma_{v \sigma}^{\mu}=0$ is a sufficient, but not necessary, condition for flatness.
2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

- In a curved space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

- In a curved space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

- In a curved space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

- In a curved space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

- In a curved space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

- In a curved space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.

2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

- In a curved space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in a different direction.
- Define a 4-indexed quantity, the curvature tensor $R_{\mu \nu \rho}^{\sigma}$, that measures this change.
- It acts on three vectors $X^{\nu}, Y^{\rho}, Z^{\mu}$ and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

- Define a 4-indexed quantity, the curvature tensor $R_{\mu \nu \rho}^{\sigma}$, that measures this change.
- It acts on three vectors $X^{\nu}, Y^{\rho}, Z^{\mu}$ and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

- Define a 4-indexed quantity, the curvature tensor $R_{\mu \nu \rho}^{\sigma}$, that measures this change.
- It acts on three vectors $X^{\nu}, Y^{\rho}, Z^{\mu}$ and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

- Define a 4-indexed quantity, the curvature tensor $R_{\mu \nu \rho}^{\sigma}$, that measures this change.
- It acts on three vectors $X^{\nu}, Y^{\rho}, Z^{\mu}$ and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

- Define a 4-indexed quantity, the curvature tensor $R_{\mu \nu \rho}^{\sigma}$, that measures this change.
- It acts on three vectors $X^{\nu}, Y^{\rho}, Z^{\mu}$ and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

$$
\begin{aligned}
R_{\mu \nu \rho}^{\sigma} X^{\nu} Y^{\rho} Z^{\mu}= & \delta Z^{\sigma} \\
= & Z^{\sigma}-Z^{\prime \sigma} \\
= & \text { change in } Z^{\sigma} \text { upon parallel transport } \\
& \text { around loop defined by } X^{v} \text { and } Y^{\rho} .
\end{aligned}
$$

Properties of curvature tensor:
(a) $R_{\mu \nu \rho}^{\sigma}=0$ if and only if the space is flat.
(b) $R_{\mu \nu \rho}^{\sigma}$ depends explicitly on the metric $g_{\mu v}$.

- To geometrize gravity, we need to relate the source of gravity (energy/mass) to the curvature tensor!
- We want there to be curvature in the presence of gravity, and no curvature in its absence.
- Require: (curvature of spacetime) \propto (matter density).
 mathematically by curvature tensor $R^{\sigma}{ }_{\mu \nu \rho}$

Can represent this mathematically by "energymomentum tensor" $T_{\mu \nu}$

$$
\begin{aligned}
& T^{00}=\rho=\text { energy density } \\
& T^{0 i}=\text { energy flux components } \\
& T^{i 0}=\text { momentum density components } \\
& T^{i i}=p_{i}=\text { pressure components } \\
& T^{i j}=\text { shear components }(i \neq j) \\
& i, j=1,2,3
\end{aligned}
$$

- Problem: The curvature tensor $R_{\mu v \rho}^{\sigma}$ has 4 indices and the energy-momentum tensor $T_{\mu \nu}$ has 2 . Only tensors of the same "rank" can be equated!
- Eventual solution: Construct a 2 -index tensor $G_{\mu \nu}$ out of $R_{\mu \nu \rho}^{\sigma}$ and set it equal to $T_{\mu \nu}$ with an appropriate proportionality constant.
- Result: The Einstein equations:

- The constant $\kappa=8 \pi G$ ($G=$ Newtonian grav. constant) guarantees that these equations reproduce Newton's Law of Gravity in the Newtonian limit.
- Represent 16 differential equations of the metric $g_{\mu \nu}, 6$ of which are dependent on the rest; so 10 non-linear partial differential equations!
- What they mean:

"...spacetime geometry tells matter how to move, matter tells spacetime how to curve"
- To solve the Einstein equations, one must make initial assumptions
- Either about spacetime geometry (e.g., isotropic; asymptotically flat, etc.).
- Or about the matter distribution (e.g., evenly distributed, clumped in one spot, no negative energy, etc).
$\underline{\text { A general relativistic spacetime }}=$ a 4-dim collection of points with the following additional structure: Between any two points, there is a spacetime interval given by $d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}$, where $g_{\mu \nu}$ is a pseudo-Riemannian metric that satisfies the Einstein equations.
"reduces to the Minkowski metric at any point"

