
10.	The	Einstein	Equations
Two	requirements	to	geometrize the	gravitational	force	in	a	relativistic spacetime:

(I) Relativistic	theory:	Our	theory	must	get	everything	right	that	special	relativity	
gets	right.

• Replace	𝑑𝑠2 =	𝜂𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈with	𝑑𝑠2 =	𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈.

flat Minkowski metric non-flat metric

• Require	𝑔𝜇𝜈 to	reduce	to	𝜂𝜇𝜈 in	small	regions	of	spacetime.

arbitrarily curved surface

Any sufficiently small 
piece looks flat
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(II) Geometrization:	We	want	to	construct	a	spacetime	in	which	the	
equation	for	a	straight	line	takes	the	form	(𝑑2𝑥/𝑑𝑡2 +	∇Φ)	=	0,	in	the	
Newtonian	limit,	where	Φ is	the	Newtonian	gravitational	potential.

• This	means	our	theory	will	reproduce	Newtonian	gravity	in	the	appropriate	limit.
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To accomplish (II), Einstein had to learn differential geometry!



Two	Facts	from	Differential	Geometry

(a) The	"correction	factors"	Γ𝜇𝜈𝜎 are	(64!)	functions	that	encode	the	curvature.
(b) They	depend	explicitly	on	the	metric	𝑔𝜇𝜈.
(c) Γ𝜇𝜈𝜎 =	0 is	a	sufficient,	but	not	necessary,	condition	for	flatness.

1. Geodesic	Equation.	The	general	equation	for	a	straight	line	(a	geodesic)	in	a	
curved	space	is	given	by,

𝑑!𝑥"

𝑑𝑡!
+ Γ#$
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𝑑𝑡
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2. Curvature	Tensor.	Gives	us	a	necessary and	sufficient condition	for	flatness.

Idea:	Parallel-transport	a	tangent	vector	around	a	closed	loop.
- If	the	space	is	curved,	it	will	come	back	pointing	in	a	different	direction!

•
𝑝

• In	a	flat	space,	start	at	point	p	and	
transport	the	vector	around	the	loop	in	
such	a	way	that	it	always	points	in	the	
same	direction,	tangent	to	the	space.
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• Define	a	4-indexed	quantity,	the	curvature	tensor Rσμνρ,	that	measures	this	
change.

X ν
Yρ

• It	acts	on	three	vectors	X𝜈,	Yρ,	Zμ and	outputs	the	amount	of	change	experienced	
by	Zμ upon	parallel-transport	around	an	infinitesimal	curve	defined	by	X𝜈 and	Yρ:

Zσ
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Properties	of	curvature	tensor:
(a) Rσ𝜇𝜈𝜌 = 0	if	and	only	if the	space	is	flat.
(b) Rσ𝜇𝜈𝜌 depends	explicitly	on	the	metric	gμν.

Z ′σ

Rσ𝜇𝜈𝜌X𝜈YρZμ = δZσ

= Zσ − Z ′σ

= change	in	Zσ upon	parallel	transport	
around	loop	defined	by	X𝜈 and	Yρ.

• Define	a	4-indexed	quantity,	the	curvature	tensor Rσμνρ,	that	measures	this	
change.

• It	acts	on	three	vectors	X𝜈,	Yρ,	Zμ and	outputs	the	amount	of	change	experienced	
by	Zμ upon	parallel-transport	around	an	infinitesimal	curve	defined	by	X𝜈 and	Yρ:

Zσ

X𝜈
Yρ
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• To	geometrize	gravity,	we	need	to	relate	the	source	of	gravity	(energy/mass)	to	
the	curvature	tensor!

T𝜇𝜈=

ρ

p1

p2

p3

energy flux

m
om

en
tu

m
de

ns
ity

shear

shear

T 00= ρ = energy	density
T 0𝑖= energy	flux	components
T 𝑖0=momentum	density	components
T 𝑖𝑖= p𝑖= pressure	components
T 𝑖𝑗= shear	components	(𝑖 ≠ 𝑗)
𝑖,	𝑗 =	1,	2,	3

Can represent this 
mathematically by curvature 
tensor Rσμνρ

Can represent this 
mathematically by "energy-
momentum tensor" Tμν

• We	want	there	to	be	curvature	in	the	presence	of	gravity,	and	no	curvature	in	its	
absence.

• Require:	(curvature	of	spacetime)	∝ (matter	density).

• Problem:	The	curvature	tensor	Rσ𝜇𝜈ρ has	4	indices	and	the	energy-momentum	
tensor	T𝜇𝜈 has	2.	Only	tensors	of	the	same	"rank"	can	be	equated!
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• Eventual	solution:	Construct	a	2-index	tensor	G𝜇𝜈 out	of	Rσ𝜇𝜈ρ and	set	it	equal	to	
T𝜇𝜈with	an	appropriate	proportionality	constant.

• The	constant	𝜅 = 8𝜋𝐺 (𝐺 = Newtonian	grav.	constant)	guarantees	that	these	
equations	reproduce	Newton's	Law	of	Gravity	in	the	Newtonian	limit.

• Represent	16	differential	equations	of	the	metric	g𝜇𝜈,	6	of	which	are	dependent	
on	the	rest;	so	10	non-linear	partial	differential	equations!

• What	they	mean:

John	Wheeler
(1911-2008)

"...spacetime	geometry	tells	matter	how	to	
move,	matter	tells	spacetime	how	to	curve"
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• Result:	The	Einstein	equations:		

𝐺𝜇𝜈(𝑔𝜇𝜈)=	𝜅𝑇𝜇𝜈

"Einstein" tensor

Einstein	tensor	as	a	function	of	𝑔𝜇𝜈:
𝐺𝜇𝜈(𝑔𝜇𝜈)	=	𝑅𝜇𝜈 −½𝑅𝑔𝜇𝜈

"Ricci" tensor "Ricci" scalar



• To	solve	the	Einstein	equations,	one	must	make	initial	assumptions

- Either	about	spacetime	geometry		(e.g.,	isotropic;	asymptotically	flat,	etc.).
- Or	about	the	matter	distribution	(e.g.,	evenly	distributed,	clumped	in	one	
spot,	no	negative	energy,	etc).

"reduces to the Minkowski metric at any point"

A	general	relativistic	spacetime = a	4-dim	collection	of	points	with	
the	following	additional	structure:	Between	any	two	points,	there	
is	a	spacetime	interval	given	by	𝑑𝑠2 =	𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈,	where	𝑔𝜇𝜈 is	a	
pseudo-Riemannianmetric	that	satisfies	the	Einstein	equations.
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