10. The Einstein Equations

Two requirements to geometrize the gravitational force in a relativistic spacetime:

- (I) <u>*Relativistic theory*</u>: Our theory must get everything right that special relativity gets right.
 - Replace $ds^{2} = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$ with $ds^{2} = g_{\mu\nu} dx^{\mu} dx^{\nu}$.
 - Require $g_{\mu\nu}$ to reduce to $\eta_{\mu\nu}$ in small regions of spacetime.

Any sufficiently small piece looks flat

arbitrarily curved surface

- (II) <u>Geometrization</u>: We want to construct a spacetime in which the equation for a straight line takes the form $(d^2x/dt^2 + \nabla \Phi) = 0$, in the *Newtonian limit*, where Φ is the Newtonian gravitational potential.
- This means our theory will reproduce Newtonian gravity in the appropriate limit.

To accomplish (II), Einstein had to learn differential geometry!

hoshichi Kohavasi

Differential Geometry of Curves and Surfaces

D Springe

D Springer

Two Facts from Differential Geometry

1. <u>*Geodesic Equation*</u>. The general equation for a straight line (a *geodesic*) in a curved space is given by,

$$\frac{d^2 x^{\mu}}{dt^2} + \Gamma^{\mu}_{\nu\sigma} \frac{dx^{\nu}}{dt} \frac{dx^{\sigma}}{dt} = 0$$

(a) The "correction factors" $\Gamma^{\mu}_{\nu\sigma}$ are (64!) functions that encode the curvature.

(b) They depend explicitly on the metric $g_{\mu\nu}$.

(c) $\Gamma^{\mu}_{\nu\sigma} = 0$ is a *sufficient*, but not *necessary*, condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

- In a flat space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in same direction.

- In a curved space, start at point p and transport the vector around the loop in such a way that it always points in the same direction, tangent to the space.
- It ends back pointing in a different direction.

- Define a 4-indexed quantity, the *curvature tensor* $R^{\sigma}_{\mu\nu\rho}$, that measures this change.
- It acts on three vectors X^{ν} , Y^{ρ} , Z^{μ} and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

- Define a 4-indexed quantity, the *curvature tensor* $R^{\sigma}_{\mu\nu\rho}$, that measures this change.
- It acts on three vectors X^{ν} , Y^{ρ} , Z^{μ} and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

- Define a 4-indexed quantity, the *curvature tensor* $R^{\sigma}_{\mu\nu\rho}$, that measures this change.
- It acts on three vectors X^{ν} , Y^{ρ} , Z^{μ} and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

- Define a 4-indexed quantity, the *curvature tensor* $R^{\sigma}_{\mu\nu\rho}$, that measures this change.
- It acts on three vectors X^{ν} , Y^{ρ} , Z^{μ} and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

- Define a 4-indexed quantity, the *curvature tensor* $R^{\sigma}_{\mu\nu\rho}$, that measures this change.
- It acts on three vectors X^{ν} , Y^{ρ} , Z^{μ} and outputs the amount of change experienced by Z^{μ} upon parallel-transport around an infinitesimal curve defined by X^{ν} and Y^{ρ} :

Properties of curvature tensor:

(a) $R^{\sigma}_{\mu\nu\rho} = 0$ *if and only if* the space is flat.

(b) $R^{\sigma}_{\mu\nu\rho}$ depends explicitly on the metric $g_{\mu\nu}$.

- To geometrize gravity, we need to relate the source of gravity (energy/mass) to the curvature tensor!
- We want there to be curvature in the presence of gravity, and no curvature in its absence.
- <u>Require</u>: (curvature of spacetime) \propto (matter density).

Can represent this mathematically by curvature tensor $R^{\sigma}_{\mu\nu\rho}$

Can represent this mathematically by "energymomentum tensor" $T_{\mu\nu}$

 $T^{00} = \rho = energy \ density$ $T^{0i} = energy \ flux \ components$ $T^{i0} = momentum \ density \ components$ $T^{ii} = p_i = pressure \ components$ $T^{ij} = shear \ components \ (i \neq j)$ i, j = 1, 2, 3

• <u>*Problem*</u>: The curvature tensor $R^{\sigma}_{\mu\nu\rho}$ has 4 indices and the energy-momentum tensor $T_{\mu\nu}$ has 2. Only tensors of the same "rank" can be equated!

- <u>Eventual solution</u>: Construct a 2-index tensor $G_{\mu\nu}$ out of $R^{\sigma}_{\mu\nu\rho}$ and set it equal to $T_{\mu\nu}$ with an appropriate proportionality constant.
- <u>Result</u>: The Einstein equations:

$$G_{\mu\nu}(g_{\mu\nu}) = \kappa T_{\mu\nu}$$

Einstein tensor as a function of
$$g_{\mu\nu}$$
:
 $G_{\mu\nu}(g_{\mu\nu}) = R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu}$
"Ricci" tensor "Ricci" scalar

- The constant $\kappa = 8\pi G$ (G = Newtonian grav. constant) guarantees that these equations reproduce Newton's Law of Gravity in the Newtonian limit.
- Represent 16 differential equations of the metric $g_{\mu\nu}$, 6 of which are dependent on the rest; so 10 non-linear partial differential equations!
- <u>What they mean</u>:

John Wheeler (1911-2008)

"...spacetime geometry tells matter how to move, matter tells spacetime how to curve"

- To solve the Einstein equations, one must make *initial assumptions*
 - Either about spacetime geometry (e.g., isotropic; asymptotically flat, etc.).
 - Or about the matter distribution (e.g., evenly distributed, clumped in one spot, no negative energy, etc).

<u>A general relativistic spacetime</u> = a 4-dim collection of points with the following additional structure: Between any two points, there is a spacetime interval given by $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$, where $g_{\mu\nu}$ is a <u>pseudo-Riemannian</u> metric that satisfies the Einstein equations.

"reduces to the Minkowski metric at any point"