10. The Einstein Equations

Two requirements to geometrize the gravitational force in a relativistic spacetime:

(I) Relativistic theory: Our theory must get everything right that special relativity
gets right.

» Replace ds* = n,, dx*dx’ with ds? = g, dx*dx>.

a \

flat Minkowski metric non-flat metric

e Require g,, to reduce to n,, in small regions of spacetime.

Any sufficiently small
piece looks flat

arbitrarily curved surface



(II) Geometrization: We want to construct a spacetime in which the
equation for a straight line takes the form (d?x/dt? + V®) = 0, in the
Newtonian limit, where ® is the Newtonian gravitational potential.

e This means our theory will reproduce Newtonian gravity in the appropriate limit,

To accomplish (ll), Einstein had to learn differential geometry!
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Two Facts from Differential Geometry

1. Geodesic Equation. The general equation for a straight line (a geodesic) in a
curved space is given by,

d?xt o dxV dx° 0
dt2 Voo dt dt

(a) The "correction factors" I'Y, are (64!) functions that encode the curvature.
(b) They depend explicitly on the metric g,,.

(c) I, = 0is asufficient, but not necessary, condition for flatness.



2. Curvature Tensor. Gives us a necessary and sufficient condition for flatness.

Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

p

e In a flat space, start at point p and
transport the vector around the loop in
such a way that it always points in the
same direction, tangent to the space.
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Idea: Parallel-transport a tangent vector around a closed loop.

- If the space is curved, it will come back pointing in a different direction!

p
e In a flat space, start at point p and e In a curved space, start at point p and
transport the vector around the loop in transport the vector around the loop in
such a way that it always points in the such a way that it always points in the
same direction, tangent to the space. same direction, tangent to the space.
e [t ends back pointing in same direction. e [tends back pointing in a different

direction.
15



 Define a 4-indexed quantity, the curvature tensor R, that measures this
change.

e [tacts on three vectors XV, Y?, Z# and outputs the amount of change experienced
by Z* upon parallel-transport around an infinitesimal curve defined by XV and Y?:

ZG

Xv
Yr
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e Define a 4-indexed quantity,

change.

the curvature tensor RY,,,,

that measures this

e [tacts on three vectors XV, Y?, Z# and outputs the amount of change experienced
by Z* upon parallel-transport around an infinitesimal curve defined by XV and Y?:

o
Ry

ZG

Xv
Yr

XVYPZH = O6Z°

=ZO'_Z’O'

= change in Z° upon parallel transport

around loop defined by X and YP”.

Properties of curvature tensor:

(a) R
(b) R

(02
uvp

(02
uvp

= 0 if and only if the space is flat.

depends explicitly on the metric g,,.

N
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e To geometrize gravity, we need to relate the source of gravity (energy/mass) to

the curvature tensor!

 We want there to be curvature in the presence of gravity, and no curvature in its

absence.

e Require: (curvature of spacetime) X (matter density).

Can represent this

Can represent this

mathematically by curvature mathematically by "energy-

o
tensor RY,,,,

f

~
Il

e
momentum
density

Uv

e Problem: The curvature tensor R°

(energy qux) h

S

momentum tensor" T,

TY = p = energy density

TY = energy flux components

T = momentum density components
T = p, = pressure components

TY = shear components (i # j)
ij=1,23

wp Nas 4 indices and the energy-momentum

tensor T, has 2. Only tensors of the same "rank” can be equated!
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o

wp and set it equal to

Eventual solution: Construct a 2-index tensor G, out of R
T,, with an appropriate proportionality constant.

Result: The Einstein equations:

E Einstein tensor as a function of g,,,:
—_— :Gv(gv)zRv_l/zRgv
G,uv(guv)_ KT,uv | e /l/ ! '\‘\#

"Einstein" tensor

The constant k = 8m(G (G = Newtonian grav. constant) guarantees that these
equations reproduce Newton's Law of Gravity in the Newtonian limit.

Represent 16 differential equations of the metric g,,, 6 of which are dependent
on the rest; so 10 non-linear partial differential equations!

What they mean:

"...spacetime geometry tells matter how to
move, matter tells spacetime how to curve”

John Wheeler
(1911-2008)

22



e To solve the Einstein equations, one must make initial assumptions

- Either about spacetime geometry (e.g., isotropic; asymptotically flat, etc.).

- Or about the matter distribution (e.g., evenly distributed, clumped in one
spot, no negative energy, etc).

A general relativistic spacetime = a 4-dim collection of points with
the following additional structure: Between any two points, there
is a spacetime interval given by ds* = g, dx*dx", where g, is a

pseudo-Riemannian metric that satisfies the Einstein equations.
N

\

"reduces to the Minkowski metric at any point"
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